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Abstract: This work proposes and implements a reconfigurable parallel architecture based on 
dataflow for numerical computation, named PRADA. This architecture uses concepts of parallel 
processing to obtain a scalable performance and the dataflow concept for controlling the parallel 
execution of instructions. PRADA is composed by a control unit and several processing elements 
(PEs). In the control unit, there are several functional blocks, including data and instruction 
memories. Each PE is composed by an ALU and buffers. PRADA is organised as a cluster, in 
which several independent dataflow modules are interconnected together. PRADA was 
developed in VHDL and implemented in reconfigurable hardware using a FPGA device. 
Therefore, it can offer high performance, scalability and customised solutions for engineering 
problems. Results of the application of PRADA to the computation of a digital filter and a 
cryptography algorithm are presented. Results are also compared with other different 
architectures, such as microprocessors, ASICs, DSPs, reconfigurable architectures and dataflow 
architectures. In most cases, PRADA achieved either competitive or higher performance than the 
other architectures, regarding the measures used. Overall results suggest that this architecture can 
be applied to several classes of problems that may require a high throughput, such as 
cryptography, optimisation and scientific computing. 
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1 Introduction 

Parallel computing is presented as a promising option to 
face the growing demand for computational power of 
scientific computing. For instance, computational systems 
named petascale have thousands of processing elements 
(PEs) capable of performing 1 × 1015 operations per second 
(Bell et al., 2006). Those architectures exploit parallel 
computing, aiming at reducing the overall processing time 
of a given task, by executing many concurrent operations 
(Hennessy and Patterson, 2006). 

Parallel computer architectures known as dataflow were 
first proposed by the end of the 1970s. These architectures 
exploit naturally the intrinsic parallelism of the instructions 
of a program (Arvind and Nikhil, 1990; Šilc et al., 1999; 
Veen, 1986). These architectures are characterised by 
having a single memory for both, data and instructions, no 
program counter and no program variables. Values of 
variables are treated as packages that are transmitted 
between PEs. Associated to each processor, there is a 
template, which has all the necessary information for that 
processor to its job. A dataflow program is organised as a 
directed graph, where nodes represent instructions and 
edges represent the dataflow between nodes. A given node 
is activated, then the instruction is executed, as soon as the 
input data to that node is available. 

Using the dataflow model, the possible parallelism 
among instructions can be conveniently accessed. For 
instance, in the computation of the differential equation 
shown in equation (1), several operations can be done in 
parallel. 
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The numerical solution to equation (1) has 16 operations: 6 
multiplication, 2 sum , 2 subtraction, 3 duplication ‘D’, 1 
conditional ‘IF’, 1 relational ‘<’, and 1 stop ‘S’. Figure 1 
shows the dataflow graph for the computation of this 
differential equation, and the corresponding C-like program. 
Initially, there are five independent nodes that can be 
executed in parallel. Next, other five, and so on, following 
the dataflow graph. 

Reconfigurable computing is a computational model 
developed to join the performance of hardware-based 
solutions with the flexibility of software-based solutions, by 
using programmable devices (Becker and Hartenstein, 
2003). The central idea of reconfigurable computing came 
up in the 1960s. However, it was materialised only after the 
1980s, when powerful reconfigurable devices became 
available, such as the field-programmable gate arrays 
(FPGAs). Reconfigurable computer architecture gives great 
flexibility to the system, since it fits the hardware to the 
application, allowing the exploration of different strategies 
according to the task to be executed (Lysaght and 
Rosenstiel, 2005). In this work is used the definition of 
reconfigurability based on Adario et al. (1999). 

 

Figure 1 Example of a dataflow graph (see online version for 
colours) 

 

This work reports the development of a new architecture, 
especially devised for scientific computing, named parallel 
reconfigurable architecture using dataflow (PRADA) 
(Ferlin, 2008). This architecture is based on the dataflow 
model, in which the sequence of execution of operations is 
determined by the availability of data for processing. 
Another relevant feature of the architecture is that it 
explores the implicit parallelism of the applications and is it 
is fully implemented in reconfigurable hardware. 

2 Related work 

In the recent literature, several dataflow-based parallel 
architectures are reported. Amongst them, the following can 
be cited: 

The functional computer (Quenot et al., 1993) is a 
mixed architecture, based on transputers and PEs known as 
dataflow processors. Such architecture was created for 
specific applications, such as real-time image processing. 
Besides using an outdated technological component, it has 
restricted applicability. 

The KressArray (Hartenstein and Kress, 1995) has a 
matrix architecture in which the PEs are called datapath 
units (DPUs). The control is centralised and each DPU is 
composed by a floating-point arithmetic and logic unit 
(ALU). Operations can be done with a single data type, thus 
imposing limitations in the type of applications that can be 
run in this architecture. 

The COLT (Bittner et al., 1996) architecture has a 
matrix of PEs named interconnected functional units (IFUs) 
that operate as stages of a pipeline. In order to implement 
the desired functions, the matrix of PEs has to be configured 
using a crossbar commuter. This is the main drawback of 
the architecture because it demands a large amount of 
resources. 

WASMII and HOSMII (Shibata et al., 1998) are virtual 
data-driven hardware systems based on multiple 
configuration sets. The nodes and edges of a dataflow graph 
are directly represented in a specific FPGA configuration, 
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like a specific application. Consequently, this method of 
configuration limits the flexibility of the architecture and 
the number of possible configurations for a given device. 

The WaveScalar (Swanson et al., 2003) is a matrix 
structure of PEs called WaveCache, organised as clusters. 
Operations are mapped into these clusters and this makes 
difficult the overall distribution of tasks. Additionally, the 
control is decentralised, causing a large consumption of 
resources of the programmable device for the control logic. 

The asynchronous dataflow (Teifel and Manohar, 2004) 
is an architecture based on logic blocks that can be coupled 
together following a dataflow to accomplish the desired 
function. The standardised logic blocks operate 
asynchronously and the communication between them takes 
place by means of specific message-passing channels. The 
main drawback of this architecture is the several logic 
blocks have to be configured by means of the 
communication channels to implement the desired 
processing. This fact affects the versatility of the 
architecture, besides having a strong impact in the amount 
of resources spent. 

Liu and Furber (2005) proposed a coprocessor 
architecture to work together with a common RISC 
processor. This architecture implements tasks using the 
dataflow model, but depends on the regular processor for 
general processing. 

The extreme processing plataform (XPP) (PACT 
Technologies Inc., 2006) is a commercial architecture from 
PACT XPP Technologies (Los Gatos, CA, USA) that 
operates in a matrix structure of PEs named Processing 
array elements (PAE). The PAEs are configured and 
explicitly mapped to express the desired processing task. 
This feature limits the flexibility of the system, because it 
has to be reconfigured to be used in other subsequent tasks. 

Architectures known as coarse-grained reconfigurable 
architecture (CGRA) usually consist of a matrix structure 
with a large number of functional elements, interconnected 
as a mesh (Galanis et al., 2007; Park et al., 2008). The 
reconfigurability in such architectures is at the functional 
level, thus assuring a flexibility and low reconfiguration 
overhead. Some examples of these architectures are: 
MorphoSys (Singh et al., 2000), PipeRench (Goldstein et 
al., 2000), XiRisc (Lodi et al., 2003), programmable 
hardware cellular automaton (PHCA) (Charbouillot et al., 
2008) and DART (Pillement et al., 2008). 

Additionally, other class of architectures can be also 
cited: those known as polymorphous computing 
architectures (PCAs). These architectures are mainly 
developed for embedded systems and can be configured 
either dynamically or statically to meet the computational 
requirements of a given application (Cavin et al., 2008; 
Hardnett et al., 2003). In this category it is also included the 
architecture TRIPS (Sankaralingam et al., 2003) and 
MONARCH (Vahey et al., 2006). 

3 The proposed architecture 

The PRADA architecture presents four basic features 

1 it allows the parallel execution of algorithms 

2 it allows several PEs working in parallel with a central 
controller 

3 the control is based in the specific dataflow of the 
application 

4 it can be semi-statically adapted to other applications. 

PRADA architecture explores spatial parallelism, in which 
concurrency takes place due to the independency of 
operations, and instruction-level parallelism (ILP), where 
parallelism occurs as function of the instructions. However, 
achieving parallelism here is more complex, and requests a 
specialised methodology. The PRADA architecture is based 
on the dataflow concept. Therefore, there is no program 
counter, such as in other von Neumann architectures of 
ordinary processors, since the order of execution of 
instructions is determined only by the availability of the 
templates. There is no supervisory control over the sequence 
of execution besides the own template. This is important, 
since each template can be processed independently of the 
other, if the necessary data and free PEs are available for 
processing. 

The PRADA architecture is composed by a single 
control block and several PEs, as shown in Figure 2. 
Therefore, considering the control system, the proposed 
architecture is different from WaveScalar (Swanson et al., 
2003) that has a decentralised control, and similar to 
KressArray (Hartenstein and Kress, 1995), i.e., the control 
is also centralised. The control block is responsible for 
managing the architecture and communication, receiving 
data and sending results. This block also manages the 
transmission of templates (operations) to the PEs, by means 
of parallel buses. It also is responsible for the storage of 
processing. 

Figure 2 PRADA architecture (see online version for colours) 

 

The PRADA system is connected to a desktop computer 
used as host that is responsible for providing an interface for 
the user. The communication between PRADA and the host 
is done by means of a Universal Serial Bus (USB) interface 
and software for transmitting templates and receiving 
results. USB is a standard interface that al lows the 
connection with many systems, it is easy to implement and 
facilitates the reproduction of the work. An interesting 
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alternative would be the PCI/PCIex interface that would 
improve significantly the communication between host and 
the architecture. However, the development kit available for 
this work is external and do not provide a PCI/PCIe 
connection. This alternative interfacing will be explored in 
future work. In the FPGA, the communication is done using 
the NIOS II embedded processor. Besides providing an 
interface to the user, the host also is responsible for sending 
templates to PRADA and receiving back the results. In the 
host, there is also the development environment as well as 
the software for manually generating the templates, where 
the user is requested to fill all fields of the templates. 
Complex applications may require the use of programming 
languages that are compiled to dataflow graphs (Šilc et al., 
1999), although manual construction of the templates, when 
possible, allows a deeper insight in the process. 

As mentioned before, the template corresponds to the 
instructions each PE executes. Each template has all the 
information necessary for its execution and it is organised in 
five fields: Operation, Operand 1, Operand 2, Destination 1 
and Destination 2, as shown in Figure 3. The field operation 
has the opcode that identifies the logical operation to be 
done with operands. Operand 1 and 2 store the data that will 
be manipulated by the PE. Fields Destination 1 and 
Destination 2 have the information to where the result of the 
operation will be sent. The template width is 66 bits 
because, besides the fields mentioned, it also have ten extra 
bits used for internal control (origin of data, validity of 
operand, destination port, and other). It is worth to mention 
that, in this model, there are no subsequent readings from 
memory to operands, as in the von Neumann model. 

Figure 3 Basic structure of a template 

 

The execution cycle of a program is done by the control 
block of Figure 2 following the application dataflow. A 
more detailed view of the control block is provided in 
Figure 4, and its five main components are: 

• Interface: Provides the communication channel with the 
host by means of an embedded processor using memory 
buffer and an USB interface. 

• Template memory (TM): This is where the templates 
are stored for further processing. From the logical point 
of view, the TM is a single memory that can store the 
maximum amount of templates. Physically, this 
memory is divided into several separated modules, 
allowing other modules to access the templates in 
parallel. The memory segmentation method is based on 
the principle of locality: references to the memory in a 
given time interval tend to access a specific region of 
memory (Tanenbaum, 2005). Therefore, the probability 
of consecutive templates being executed 
simultaneously is high or, at least, reasonably higher 
than other cases. The TM is capable of storing up to 1 

K templates, 66 bits-long. It is segmented in four parts 
of the same size, in which positions are interleaved. 

• Data memory (DM): This is where data are stored, 
basically, data structures such as vectors and matrices. 
It is structured as 1 K words, 16 bits-long. There is a 
single DM for the whole system and PEs are not 
allowed to access it, since they receive the necessary 
data already incorporated in the templates. 

• Dispatch unit (DU): This block continuously verifies if 
there are templates to be executed and send them to the 
available PEs. The DU is composed by three blocks: 
fetch – responsible for seeking for templates in the TM 
and data in the DM, and ensemble the templates to be 
processed; buffer – stores the templates ready to be 
dispatched to PEs; dispatch – effectively dispatches 
templates for PEs. 

• Storage unit (SU): This block receives the processing 
results from PEs and updates the appropriate templates 
in the DM. It is composed by three blocks: store – 
controls the update of templates with data resulting 
from processing; snoop – responsible for updating the 
status of templates when DM is updated; update – 
receives the new requests from DM. It preserves the 
consistence of memory assuring that data will be 
updated in the DM. 

The PEs, shown at the top of Figure 4, are the core of 
PRADA. The PEs are identical and they are composed by 
ALUs capable of performing addition, subtraction, 
multiplication, division, logical operations, relational and 
conditional operations. This feature is different from most 
of the previously mentioned architectures, such as: XPP, 
WaveScalar, KressArray, WASMII, HOSMIII and COLT, 
in which the operations are mapped directly into PEs. 
Besides, each PE also has its own set of input and output 
buffers to facilitate synchronisation with the associated DU 
and SU. The structure of a PE allows the execution of the 
above mentioned operations with two operands (monadic or 
dyadic) and produces as output a single result that can be 
forwarded to two destinations. In PRADA, 16 PEs were 
implemented, all identical and grouped into four sets, i.e., a 
4 × 4 processing cluster. The cluster structure was used in 
PRADA in order to minimise the bottleneck for accessing 
the TM, in such a way that even if a cluster is sequentially 
accessing a TM, the remaining clusters can operate in 
parallel the remaining TM modules. 

The logical structure of PRADA recalls a multiprocessor 
cluster with four nodes, each one with four processors. 
There is also a shared DM that is not directly accessed by 
the PEs. Each node of the cluster is composed by four PEs, 
two SUs, one DU and one TM. The whole ensemble forms a 
dataflow machine with four functional units. In Figure 5 the 
logical structure of the parallel architecture of PRADA is 
represented, detailing a node of the cluster. In this 
configuration, there is a homogeneous parallel environment 
with two memory access models (Pfister, 1998): uniform 
memory access (UMA) for the DM; and non-uniform 
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memory access (NUMA) for the TM. Such duality is aimed 
at taking advantage of the best for both cases. The use of the 
UMA model guarantees the coherence of data in the DM. 

On the other hand, the use of the NUMA model for TM 
minimises the bottleneck of memory access, since each 
cluster (DF – dataflow) accesses directly one TM module. 

Figure 4 Detailed view of the physical organisation of PRADA 
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Figure 5 Logical structure of PRADA 

 
 

The processing cycle of PRADA architecture is detailed 
algorithmically in Figure 6, and explained as follows. 
Initially, the host sends to PRADA the program to be 
executed in the form of a set of templates, which are stored 
in the TM. It also sends all data structures to be loaded in 
DM. A signal from host starts processing. After, the DU 
enquires the TM and forwards to the PEs the templates to be 
executed, as soon as they become available. The PEs, once 
receiving, perform the operation described by each template 
and produce results that are stored in TM by SU. This 
process is repeated until the TM is empty. 

Figure 6 Processing cycle in the PRADA architecture 

 

The scheduling of operations is automatically done by 
PRADA. This is due to the central idea of executing an 
instruction (template) as soon as the necessary data is 
available and there is an idle PE to process such instruction. 

4 Implementation 

PRADA was developed to be implemented without the need 
of any other additional component (for instance, 
microprocessors, external memories, etc), as in other 
architectures [for instance, in Liu and Furber (2005), 
Quenot et al. (1993)]. This feature makes PRADA as 
device-independent as possible, avoiding to be 
technologically outdated. 

PRADA was implemented using reconfigurable logic, 
using high-density FPGA devices. By using 
reconfigurability the logic blocks of the FPGA are 
reconstructed to implement the necessary logical functions. 
The reconfiguration of this architecture is semi-static. That 
is, it occurs immediately before the execution of the 
application. 

The physical implementation was done in a FPGA 
device of the Stratix II family from Altera 
(http://www.altera.com), namely, the EP2S60F672C3 
device. The implementation reported in this paper was done 
with 16 PEs. The amount of resources required for such 
implementation was: 28,348 logic elements and 132,160 
memory bits, corresponding, respectively, to 59% and 5% 
of the available resources of the device. Each PE needs 535 
logic elements – less than 2% of the device. We used the 
Quartus II development system from Altera and all blocks 
were developed in standard very-high-speed-integrated-
circuit hardware description language (VHDL) (Pedroni, 
2004). 
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The implementation runs at 50 MHz and, with this 20ns 
clock cycle it is possible to execute 13 × 106 operations per 
second using a single PE. Using 16 PEs, the maximum 
attainable performance is approximately 65 MIPS. This is 
obtained considering a best-case algorithm, in which all 
instructions are independent. 

PRADA has the following features showing in Table 1. 
These features can be modified for meeting the 
requirements of a given application, by means of 
reconfigurability. Such parameters can be changed in the 
project of the architecture, before running the application, 
by sending a new configuration to the device. 

Table 1 Features of the PRADA architecture 

Feature Value 

Number of PEs 16 
Operating frequency 50 MHz 
DU -PE bus width 4 × 66 bits 
DU -PE bus bandwidth 13.2 Gbps 
PE -SU bus width 8 × 27 bits 
PE -SU bus bandwidth 10.8 Gbps 
Number of instructions 16 
Data size 16 bits (integer) 
Maximum number of templates 1 K 
DM 1 K words (16 bits) 
TM 1 K long word (66 bits) 
Template size 66 bits 

The number of PEs and the operating frequency depend on 
the constructive limitations of the device used in the 
implementation. These features of PRADA are a direct 
function of the technological advance of FPGA devices. On 
the other hand, the width of the buses and data, the size of 
internal memories and the number of instructions are 
defined by the design of the architecture. 

The PRADA architecture has a superscalar structure 
(Tanenbaum, 2005), basically, with a three-stage pipeline 
(dispatch, processing and storage) that divides the execution 
of instructions in several parts, shown in Figure 7. These 
parts are executed in parallel, each one being processed by a 
dedicated hardware with a specific function. A superscalar 
structure requests the use of a dedicated pipeline for each 
functional structure in the architecture (Stallings, 2009). 
Due to the pipeline, there is an overlap in the execution time 
of the instructions within the several units, in such a way 
that all these units will explore time parallelism. Therefore, 
pipelining is an important intrinsic feature of the 
architecture that leads to the improvement of the overall 
performance. This instruction overlap is known as ILP, and 
corresponds to the lowest possible level of parallelism that 
can be explored in computer architecture (Hennessy and 
Patterson, 2006). 

The instructions set of PRADA has 16 basic 
instructions, grouped as: arithmetic (sum, subtraction, 
multiplication and division), logical (AND, OR, NOT, 
XOR, NOR), conditional (If), relational (=, <>, >=, <) and 

miscellaneous (duplication, stop). Such instructions set were 
chosen taking into consideration the nature of the numerical 
processing of scientific applications, the primary focus of 
the PRADA architecture. The instruction set is summarised 
in Table 2. The execution time for most of instructions is  
11 clock cycles, with exception to division and conditional 
that takes 12 clock cycles. In the case of instructions that 
have two destinations, an extra clock is necessary for the 
additional destination. The STOP instruction is executed 
automatically by DU and takes only one clock cycle, the 
time necessary for finishing the fetch for new templates. 

Figure 7 Pipeline associated with the PRADA architecture 

 

Table 2 Instruction set of PRADA 

Mnemonic Operation Opcode #Clock 

ADD Sum 0000 11 
SUB Subtraction 0001 11 
MUL Multiplication 0010 11 
DIV Division 0011 12 
AND Logical AND 0100 11 
OR Logical OR 0101 11 
NOT Logical NOT 0110 11 
XOR Logical EXCLUSIVE-OR 0111 11 
NOR Logical NOT-OR 1000 11 
CEQ Compare equal 1001 11 
CNE Compare not equal 1010 11 
CGE Compare greater or equal 1011 11 
CLT Compare less than 1100 11 
IF Conditional 1101 12 
DUP Duplication 1110 11 
STOP Stop 1111 1 

A simple example of dataflow program that can be run in 
PRADA is shown in Table 3 for the numerical solution of 
the ordinary differential equation [equation (1)], subject to 
y(0) = 1 and y’(0) = 0. This dataflow program, shown as 
pseudo-templates, corresponds to the dataflow graph of 
Figure 1. In Table 3, Op. 1, Op. 2, Dest. 1 and Dest. 2, 
mean, respectively, the two operands and the two 
destinations of the operations’ result. 
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Table 3 Templates of a dataflow program corresponding to 
the graph of Figure 1 

Node Mnemonic Op. 1 Op. 2 Dest. 1 Dest. 2 

1 MUL u dx 6 0 
2 MUL 2 x 6 0 
3 MUL 2 y 7 0 
4 MUL u dx 8 0 
5 ADD dx y 9 10 
6 MUL 0 0 11 0 
7 MUL dx 0 13 0 
8 ADD 0 0 12 0 
9 CLT 0 a 12 0 
10 DUP 0 0 2 5 
11 SUB 0 0 13 0 
12 IF 0 0 14 15 
13 SUB 0 0 1 16 
14 DUP 0 0 8 9 
15 STOP 0 0 0 0 
16 DUP 0 0 11 4 

5 Computational experiments 

For testing the performance of PRADA, three problems 
were used: best-case (BC), finite impulse response (FIR), 
and international data encryption algorithm (IDEA). 

The first is a toy problem composed of 192 independent 
operations with 16 bits words and fixed-point arithmetics. 
The objective of this problem is to allow PRADA to 
demonstrate its maximum performance in an idealised 
situation, where there is no data dependence between 
templates. 

The second problem is a scientific computation. It is 
related to the computation of a five-tap digital filter. This is 
real-world problem in which the application imposes 
limitations to the performance of the architecture due to the 
data dependency between operations. In this problem, in the 
same way, we used fixed-point arithmetic with 16 bits 
resolution. The main reason for choosing this problem is 
that it has been used as benchmark for testing several 
architectures reported in the literature. Therefore, it can be 
used as a basis for comparison. A FIR digital filter is 
characterised by a response to the unity impulse that 
becomes null after a finite time. Figure 8 presents the 
algorithm for computing the FIR filter, written in C 
programming language. 

Figure 8 Algorithm for computing a five-tap FIR filter, in C 
language 

 

The IDEA is a cryptography algorithm created in the  
1990s (Lai and Massey, 1990). The algorithm operates on 
64 bits-wide in-formation blocks, using a key of 128 bits. 
IDEA is considered to be immune to differential 
cryptanalysis, and there is no known algebraic weakness in 
it (Schneier, 1996). Although IDEA has been patented in a 
number of countries, it is freely available for  
non-commercial use. This algorithm was chosen for 
experiments with PRADA not only due to its simplicity, but 
also due to the fact that some operations can be done in 
parallel. Basically the algorithm uses three operations: 
bitwise exclusive-OR, modulo 216 addition, and modulo  
216 + 1 multiplication. Both encryption and decryption 
procedures are similar. A total of eight identical 
transformations, plus an output transformation, are done. 

Figure 9 shows the dataflow graph of the IDEA. It is 
possible to observe that some operations can be executed in 
parallel (at most, four), and some must be done sequentially, 
a constraint inherent to the algorithm. In this algorithm, 
variables P1 to P4 represent each one a 16-bit block of 
information, which, together, yields a 64-bit ciphertext. 
Variables S1 to S6 are 16-bits cryptography sub-keys. The 
encryption process need eight iterations of the algorithm 
shown, using a total of 52 sub-keys generated from a key of 
128 bits. 

Figure 9 Dataflow graph for the IDEA algorithm (see online 
version for colours) 

 

For all problems, the pseudo-templates were manually 
constructed, based on the algorithm and/or dataflow graph 
for the applications. 
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6 Results 

In the following sections, the results of the experiments for 
the above mentioned problems are reported and grouped 
according to the nature of the experiments: 

1 Scalability experiments (Section 6.1), in which the 
objective is to verify the behaviour of PRADA, based 
on the maximum attainable performance with an 
idealised problem and a real-world problem, in 
comparison with the ideal response as function of the 
number of PEs. 

2 Comparison experiments (Section 6.2), in which the 
main objective is to compare the performance of 
PRADA with other architectures, some of them 
somewhat similar and other quite different. Such 
comparison was done based on experiments and 
reported results found in the literature, using the FIR 
and IDEA problems. 

6.1 Scalability experiments 

Experiments of this category were done using PRADA in 
two configurations: 

a with 4 PEs and a single TM module 

b with PEs and the TM segmented in four modules. 

6.1.1 PRADA with four PEs and a single TM module 

Experiments done with BC and FIR algorithms, using a 
single memory (like a single DF module), considering one, 
two and four PEs, indicate that the execution time were 
above the ideal processing time. The ideal processing time 
is obtained by dividing the number of machine cycles spent 
with a single PE (that is, sequential processing), by the 
amount of PEs. For instance, using four PEs, the ideal 
processing time should be 1/4 the time of a single PE. The 
difference of time between the ideal and the time taken by 
BC algorithm is 36.41%. Similarly, the difference between 
the ideal time and the FIR algorithm is 45.85%, as shown in 
the graph of Figure 10. The difference of 9.44% between 
the execution time is mainly due to the data dependencies 
inherent to the FIR algorithm presented before. 

Figure 10 Execution time for BC and FIR algorithms, using a 
single memory 

 

The curve corresponding to the BC represents the best 
possible result that can be attained by the execution of an 
application using PRADA. The ideal curve represents 
idealised hypothetical values when considering that the 
architecture does not present any limitation and the 
application takes the maximum advantage of available 
resources. 

A usual measure of performance in parallel architectures 
is speedup (Murdocca and Heuring, 2007), that is, the ratio 
between the execution time with a single PE and the 
execution time with two or more PEs in parallel. For the BC 
algorithm, the speedup achieved 63.59% of the ideal value, 
running with two and four PEs. Similarly, for the FIR 
algorithm, the speedup achieved 54.15%, as shown in 
Figure 11. For both cases, PRADA was run using a single 
memory (TM) module. Therefore, there is coherence in the 
access to the TM, causing the system to spend extra time 
due to the serialisation of the access. Obviously, this is a 
problem that negatively affects the overall performance of 
the system. For this specific analysis, we consider that the 
ideal value for speedup is the number of PEs in the 
architecture, for instance, using two PEs, the ideal speedup 
would be 2. 

Figure 11 Speedup curves for BC and FIR algorithms, using 
single memory 

 

6.1.2 PRADA with 16 PEs and TM segmented in four 
modules 

The same experiments reported before were done, 
reconfiguring PRADA for using the TM divided into four 
modules, using 4, 8 and 16 PEs. Results, regarding 
processing time, are shown in Figure 12. It can be observed 
that, using four PEs, the processing time for the BC 
algorithm was the same as the ideal processing time. This is 
due to the optimisation of the instructions, since the 
templates were constructed in such a way to obtain the 
maximum possible parallelism of operations. On the other 
hand, the average processing time for BC algorithm was 
34.17% above the ideal time. For the FIR algorithm, 
PRADA achieved a processing time 41.84% above the ideal 
time. The difference of execution time between algorithms 
BC and FIR was 7.67%, except when using 16 PEs, when 
the difference was 11.58%. This difference represents the 
percentage of serial part of the FIR algorithm, considering 
that the BC algorithm is the performance reference that can 
be achievable in the architecture. This fact indicates a 
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limitation of the architecture when running the FIR 
algorithm and it is due to the many memory accesses caused 
by the data dependencies of the application. 

Figure 12 Running time for BC and FIR algorithms with 
segmented memory 

 

Regarding the speedup, PRADA with TM segmented into 
four modules achieved an average of 49% of the ideal value 
for the BC algorithm, except when using four PEs, because 
the speedup obtained is equal to the ideal. These results are 
shown in Figure 13. The same experiment with the FIR 
algorithm showed that PRADA achieved 74.28% of the 
ideal value, in average. Again, when using four PEs, the 
speedup was very close to the ideal value. 

Figure 13 Speedup curves for BC and FIR algorithms using 
segmented memory 

 

The PRADA architecture is scalable, since we can use a 
larger number of PEs for both models (single and 
segmented memory), other than those presented in this 
work. However, we used a configuration that included a 
maximum of 16 PEs, aimed only to demonstrate the validity 
of the underlying concepts, not for achieving the maximum 
performance. Consequently, it is possible to use a larger 
number of PEs, but with some modifications in the 
architecture. On the other hand, it is possible to achieve 
higher scalability using the concept of cluster, in which each 
node is a PRADA machine. 

6.2 Comparison experiments 

Another set of experiments was done aimed at comparing 
PRADA with other architectures found in the literature. The 
first is the FIR filter mentioned before in Section 5 and the 
second is the IDEA algorithm for cryptography. These two 

problems were chosen due to the availability of comparison 
data in the literature. 

6.2.1 FIR algorithm 

Table 4 shows several important information for comparing 
performance of different architectures: operating frequency, 
in MHz (Freq.); execution time, in clock cycles (#Clock); 
number of instructions executed (#Instr.); throughput; CPI 
and MIPS. Throughput, in this case, is defined as the ratio 
between the number of operations of the tap by the number 
of clock cycles. In this case, the throughput represents a rate 
of the overall processing that is executed taking into 
consideration a time interval of a single clock pulse. CPI 
(Clock Per Instruction) is defined as the average number of 
clock cycles spent per instruction executed, for a given 
problem. IPC, on the other hand, is the inverse of CPI. IPC 
is used to compare architectures considering the number of 
instructions executed each PE. MIPS (Millions of 
Instructions per Second) is a common measure of computer 
speed, and it is a measure strongly influenced by the 
application. Consequently, it can be used with care, since 
different values can be obtained for the same architecture, 
but running different applications. In that table, we also 
provide the ratio IPC per processing element (IPC/PE) and 
number of clock cycles necessary per filter tap (cycles/tap). 

For this experiment, PRADA was configured with a 
single PE, and was compared it with a general-purpose 
desktop computer (PC). The PC used for comparison had a 
AMD Athlon XP64 3000+ processor, running at 2.17GHz, 
with 512 MBytes of RAM and Microsoft Windows XP 
operating system and using Borland C++ Builder 6 
(standard configuration without optimisation). In the PC, the 
algorithm took 0.358 μs (that is, 777 cycles × 1/2170 MHz), 
far below from the time taken by the proposed architecture 
with 1 PE (9.04 μs) (452 cycles × 1/50 MHz). However, it 
should be noted that the clock of the PC is around 43 times 
faster than that used in the reconfigurable architecture. A 
more fair comparison is considering the number of clock 
cycles. For this case, the PC needed 777 clock cycles and 
the one-PE-architecture needed only 452 clock cycles. On 
the other hand, the relative PRADA low clock operation is a 
technological limitation. New FP-GAs families will enable 
higher clock rates, improving the PRADA performance. 

We compared the values obtained in these experiments 
with other similar results running in different architectures, 
but for the same algorithm: ROCCC – reconfigurable 
Computing Compiler System, OGMS – optimisation 
generation memory structure for window operations – see 
Dong et al. (2007), AMD Athlon processor in a PC, Intel 
8051-microcontroller and Altera NIOS II/e embedded 
microprocessor. Recall that the ROCC and OGMS 
architectures are specifically designed for digital filtering. 

PRADA, with 16 PEs needed a number of clock cycles 
around 2.4 times smaller than the specialised architectures, 
i.e., 18.2, 78.5 and 7.1 times smaller than NIOS II/e, 8051 
and PC, respectively. 
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Table 4 Comparison of the performance of several architectures for the FIR filter 

Architecture #PEs Freq. #Clock #Instr. Throughput MIPS CPI IPC 
1 PC / PE
2

&&ı¿  Cycles/tap 

PRADA 

1 PE 1 50 452 122 0.56 13 3.70 0.27 0.25 7 
4 PEs 4 50 122 122 2.07 49 1.00 1.00 0.15 2 
8 PEs 8 50 101 122 2.50 60 0.83 1.20 0.11 2 
12 PEs 12 50 94 122 2.68 65 0.77 1.30 0.07 2 
16 PEs 16 50 109 122 2.31 56 0.89 1.12  2 

Application specific using Xilinx FPGA 

ROCCC  94 262  0.96     4 
OGMS  239 263  0.96     4 

Soft processors 

NIOS II/e 1 50 1986 841 0.13 45 2.36 0.42  32 
SPREE 1 80 1145 822 0.22 53 1.36 0.74  18 

Microprocessors 

AMD Athlon (PC) 1 2170 777 2158 0.32 5935    13 
8051 1 12 8559 713 0.03 1 12.00 0.08  138 

Digital signal processors (DSP) 

BF 533 1 750 186   500    3 
TMS 320C2 1 300 248   12    4 
TMS 320C5X 1 29 434   50    7 
TMS 320C55X 1 200 504   400    4 

Reconfigurable architectures 

KressArray 24 25 558       9 
COLT 16 50 496       8 
Wavescalar 512      0.01 71.4 0.14  
TRIPS 256      0.09 11.00 0.04  

Dataflow architectures 

Manchester 20 15    6 2.50 0.40 0.02  

 

Based on the results shown in Table 4 for the FIR 
algorithm, it is observed that PRADA presented better 
performance, regarding clock cycles, when compared with 
dedicated architectures (ROCCC and OGMS) (Dong et al., 
2007), digital signal processors (BF 533, TMS 320C2, TMS 
320C5x, TMS 320C55x) (Myjak and Delgado-Frias, 2008; 
Petersen, 1995; Varnagiryte et al., 2002), embedded 
processors [Altera’s NIOS II and SPREE (Yiannacouras et 
al., 2007)], general-purpose processors (AMD Athlon and 
8051), as well as reconfigurable architectures [KressArray 
with 24 PEs (Hartenstein et al., 1994), COLT with 16 PEs 
(Cherbaka, 1996), Wavescalar (Swanson et al., 2003) and 
TRIPS (Sankaralingam et al., 2003) and a Manchester 
dataflow architecture (Šilc et al, 1999)]. 

This can be also verified if considering cycles per tap 
that measures objectively the performance for the specific 
application. Regarding this measure, PRADA obtained the 
highest performance, thus indicating its efficiency for this 
kind of scientific computing. PRADA achieved, for 

instance, a value twice smaller than other dedicated 
architectures and 4.5 times smaller than reconfigurable 
architectures. 

Notice the small number of instructions executed by 
PRADA to accomplish the task, when compared with the 
other approaches. PRADA needed only 122 instructions, 
while other architectures a much larger number of 
instructions was needed: 17.7 times more in a PC Athlon, 
5.8 times more in a 8051 and 6.9 times more in the NIOS II 
embedded processor. It is also important to recall at this 
point that PRADA has a reduced set of instructions, as 
shown in Table 2, when compared with the other 
architectures. 

Comparing PRADA with Wavescalar (Swanson et al., 
2003), we observe that the latter achieves an IPC per PE of 
0.14, while PRADA achieves an average value of 0.15. This 
represents an improvement of around 8.5%, meaning that 
PRADA is more efficient than Wavescalar regarding the 
real parallelism that takes place in the execution of 
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instructions, measured as the number of instructions 
executed per clock cycle. The very same analysis is true 
when comparing PRADA with TRIPS (Sankaralingam et 
al., 2003), in which the difference is 3.75 times higher, since 
the IPC of TRIPS is 0.04. 

The simulation of the FIR algorithm was done in the 
Simulator software of Quartus-II (Altera Inc.) environment. 
For this experiment, PRADA was configured with 16 PEs 
and memory split in 4 modules. The overall processing time 
took 2.18 μs, that is, 109 clock cycles (20ns each), resulting 
in a speedup of 4.15 relative to a sequential execution. 

6.2.2 IDEA algorithm 

The implementation of PRADA architecture using 16 PEs 
was done with a EP2S60F672C3 device from Altera, and 
needed 28,348 logic elements and 132,160 bits of memory. 
We also implemented IDEA in a software version, in C++, 
to run in two PC’s, one with a Pentium II processor and 
other with a Pentium IV processor. We compared results 
found in the literature for other dedicated architectures, 
namely, Morphosys (Singh et al., 2000) and HiPCrypto 
(Salomão et al., 1998). Morphosys is an architecture with 
single instruction multiple data (SIMD) coprocessors, in 
which operations are mapped into PEs. It was specifically 
adapted for running IDEA. HiPCrypto is a specialised 
hardware implementation for IDEA, based on ASIC. 

PRADA produced ten ciphertext blocks in 245 cycles, 
although this number could be reduced if more were PEs 
were used in parallel. The only limitation is the size of the 
TM, necessary to store parts of templates of the algorithm. 
Only for comparison purposes, authors of Morphosys and 
HiPCrypto report that the first needed 73 cycles to produce 
16 ciphertext blocks, and the second produced seven in 56 
cycles. To produce a single ciphertext block, the software 
version needed 357 and 335 cycles, respectively, when 
running in a Pentiun II and a Pentium IV. The overall 
relative amount of clock cycles per ciphertext block is 
represented in Figure 14. Consequently, the proposed 
architecture achieved a significant gain compared with the 
Pentium architectures, and a performance small behind 
Morphosys and HiPCrypto. 

Figure 14 Number of cycles for one ciphertext block in different 
architectures (see online version for colours) 

 

7 Conclusions 

This work presented PRADA, a new parallel dataflow 
architecture implemented in reconfigurable logic. Several 
experiments were done with three algorithms: a set of 
instruction without data dependence (best case – BC), a 
scientific application (finite impulse response digital filter – 
FIR) and a cryptography application (IDEA). The 
comparison of PRADA with other architectures focused on 
performance. Results showed a significant reduction of 
processing time with PRADA. Even comparing PRADA 
with architectures of higher MIPS (due to higher clock 
frequency), we observed that PRADA is more efficient 
regarding the number of clock cycles necessary to carry out 
the FIR algorithm. 

Finished the experiments, we observed that the 
processing time decreases as more PEs are added to the 
architecture (see Table 4). This expected result can be also 
checked in the graphics previously shown (Figures 10 to 
13), where the curves for real and ideal processing time are 
close each other. However, the visible difference between 
these curves is due to limitations of the architecture, such as 
memory access latency time, as well as application-
dependent dependencies. 

Results indicate that PRADA needs a small number of 
operations to carry out a given task, as in the case of the FIR 
algorithm (only 122 operations). This value is significantly 
smaller when compared with other architectures, such as the 
PC Athlon, 8051 and NIOS II. Analysing an application-
dependent metric, the number of cycles per tap (of the FIR 
filter algorithm), PRADA had the smallest value (2), 
comparing with the other architectures. This is another 
interesting indication of the suitability of the proposed 
architecture for such kind of numerical computation. 
Regarding IPC, the absolute value for PRADA is small, but 
considering the ratio IPC/PE, the value is above all other 
architectures, indicating that more instructions are executed 
per clock cycle than in the other implementations. A similar 
analysis of CPI can be done, but, in this case, the small, the 
better. Comparing the throughput the other architectures, 
PRADA achieved the best performance, again supporting 
the assertion that PRADA is suitable for numerical 
computation. The number of clock cycles spent by PRADA 
with 16 PEs is smaller than any other architecture, including 
those specialised in numerical computation. 

Several architectures previously mentioned, namely, 
XPP, WaveScalar, KressArray, WASMII, HOSMII and 
COLT have their operations mapped in the PEs. Differently 
from them, PRADA has identical PEs with a predefined set 
of operations, selected by programming as function of the 
application. In the current experiments, the instructions set 
were restricted to only 16 basic operations. 
Notwithstanding, such instructions set was adequate and 
enough to cope with a large range of applications, especially 
those related to fixed-point numerical computation. 

For the IDEA algorithm, we observed that PRADA was 
15 times faster than the software versions running in PC. 
However, PRADA was slower than Morphosys (five times) 
and HiPCrypto (three times). It is important to recall that 
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these two architectures are either designed or optimised for 
cryptography, while PRADA is generic, not specific for this 
problem. This experiment showed again the flexibility of 
the proposed architecture to adapt to a real-world problem. 

Architectures that map directly the operations into PEs 
are usually arranged in a matrix structure. Such models are 
naturally less flexible than other approaches, and demands 
more resources from a reconfigurable logic device. Besides, 
such architectures have PEs with predefined functions. 
Therefore, they cannot be reused in other applications which 
operations were not previously defined in the FPGA 
configuration. Depending on the way operations are mapped 
in the matrix structure, a large idleness of PEs may take 
place. As a consequence, most of architectures that use a 
matrix structure have a large number of PEs (see Table 4). 
This is because the number of PEs must be equal of larger 
than the number of different operations required by the 
application, thus establishing bounds in the applicability of 
the architecture. 

The problems mentioned before were circumvented in 
PRADA, thanks to the way its architecture was devised. 
Recall that PRADA has identical PEs with predefined 
operations that can be reused during processing for different 
functions, without limiting the number of operations of the 
application. 

Although not new, the concept of dataflow is a great 
idea that takes several advantages for computer 
architectures. Mainly, the scheduling of operations is 
naturally performed following the dataflow graph of the 
application, thus reducing the control logic. As a side effect, 
this philosophy explores the intrinsic parallelism inherent to 
the program. 

Another important issue in this work is how parallelism 
was explored, not only in the operations/instructions, but 
also in the functional blocks of the architecture. PRADA 
explores naturally the functional parallelism by using 
several PEs. This is the most evident level of (spatial) 
parallelism in the proposed architecture. The pipeline 
structure present in PRADA enables another level of 
parallelism. This is a temporal parallelism, because 
simultaneous operations can be started even before the 
current operations have finished. Besides, there is also the 
parallelism resulting from the fact that multiple functional 
blocks (such as DU and SU, for instance) are independent 
each other and work based on events. Therefore, one can 
have, in a given moment, all those blocks working 
simultaneously. Another interesting point is that PRADA 
adjusts itself to the number of available PEs for the current 
execution, thus avoiding the need of changing the 
application code. This is due to the logic of the DU that 
directs the templates ready to run straight to the PEs, as 
soon they are available. Therefore, there is a relationship 
between the operations and the PEs, allowing the amount of 
PEs to be modified according to the availability of resources 
in the FPGA device, thus making PRADA fully scalable. 

It is important to point that a parallel architecture 
implemented in FPGA is a viable approach over traditional 
hardware design: it allows a fast reconfiguration of the 

project to adequate to other applications, better adequacy of 
the hardware to the application, reuse of resources and 
shorter development cycle. Also, the design flexibility of 
reconfigurable computing allows the functional features of 
the architecture to be expanded so as to meet the processing 
requirements of the application, for instance, increasing the 
number of PEs. In the case of PRADA, the internal structure 
was limited to 16 PEs for the experiments reported here. To 
increase its processing capacity, it would be enough to turn 
to a more powerful FPGA. 

PRADA was fully developed using VHDL, a standard 
hardware description language. Therefore, the project is 
platform-independent, facilitating the migration to other 
development environments and reconfigurable devices. 
However, a known drawback of this approach is the 
difficulty of development, when compared with a software 
project, for instance. Several complex issues emerge in the 
development of reconfigurable systems, such as the 
limitation of resources of the FPGA and difficulty in 
debugging and testing the system. Besides, there is a 
technological limitation regarding the clock rate. However, 
more recent FPGAs devices certainly will be faster. 

Finally, the proposed architecture can be applied to 
many different applications, mainly those where implicit 
parallelism can be identified (such as in numerical 
computation). An outstanding feature of PRADA is its 
scalability that allows achieving growing performances by 
increasing the number of PEs. 

8 Future work 

The features of PRADA indicate that this architecture is a 
viable alternative for problems that include a large amount 
of processing over a small amount of data. Problems of this 
category are found, for instance, in numerical computing, 
cryptography and optimisation. 

Based on the performance obtained by PRADA, there 
are some points for future improvement, for instance: 

• improve of the connectivity between the functional 
blocks to increase speedup and reduce possible idle 
time for accessing PEs 

• increase the width of internal buses and registers to 
allow PRADA deal with words of 64 or 128 bits 

• increase the number of PEs, and thus, obtain more 
performance by exploring further the parallelism 

• extent the number and type of instructions, 
incorporating more complex operations, specific for 
scientific computation 

• adapt the system to allow dynamical reconfiguration 

• implement applications in more recent and faster FPGA 
devices 

• develop a programming environment enabling the use 
of a high-level language for complex applications. 
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