
Int. J. High Performance Systems Architecture, Vol. 3, No. 1, 2011 41

Copyright © 2011 Inderscience Enterprises Ltd.

PRADA: a high-performance reconfigurable parallel
architecture based on the dataflow model

Edson P. Ferlin
Department of Computer Engineering,
Positivo University,
Rua Prof. Pedro V.P. de Souza, 5300 81280-330 Curitiba (PR), Brazil
E-mail: ferlin@up.edu.br

Heitor S. Lopes* and Carlos R. Erig Lima
Department of Electronics,
Federal University of Technology – Paraná,
Av. 7 de setembro, 3165 80230-901 Curitiba (PR), Brazil
E-mail: hslopes@utfpr.edu.br E-mail: erig@utfpr.edu.br
*Corresponding author

Maurício Perretto
Department of Computer Engineering,
Positivo University,
Rua Prof. Pedro V.P. de Souza, 5300 81280-330 Curitiba (PR), Brazil
E-mail: perretto@up.edu.br

Abstract: This work proposes and implements a reconfigurable parallel architecture based on
dataflow for numerical computation, named PRADA. This architecture uses concepts of parallel
processing to obtain a scalable performance and the dataflow concept for controlling the parallel
execution of instructions. PRADA is composed by a control unit and several processing elements
(PEs). In the control unit, there are several functional blocks, including data and instruction
memories. Each PE is composed by an ALU and buffers. PRADA is organised as a cluster, in
which several independent dataflow modules are interconnected together. PRADA was
developed in VHDL and implemented in reconfigurable hardware using a FPGA device.
Therefore, it can offer high performance, scalability and customised solutions for engineering
problems. Results of the application of PRADA to the computation of a digital filter and a
cryptography algorithm are presented. Results are also compared with other different
architectures, such as microprocessors, ASICs, DSPs, reconfigurable architectures and dataflow
architectures. In most cases, PRADA achieved either competitive or higher performance than the
other architectures, regarding the measures used. Overall results suggest that this architecture can
be applied to several classes of problems that may require a high throughput, such as
cryptography, optimisation and scientific computing.

Keywords: parallel architecture; reconfigurable computing; dataflow.

Reference to this paper should be made as follows: Ferlin, E.P., Lopes, H.S., Erig Lima, C.R.
and Perretto, M. (2011) ‘PRADA: a high-performance reconfigurable parallel architecture based
on the dataflow model’, Int. J. High Performance Systems Architecture, Vol. 3, No. 1,
pp.41–55.

Biographical notes: Edson Pedro Ferlin is with the Computer Engineering Department of
Positivo University, Curitiba, Brazil.

Maurício Perretto is with the Computer Engineering Department of Positivo University, Curitiba,
Brazil.

Heitor Silvério Lopes is with the Electronics Department of Federal University of Technology
Paraná, Curitiba, Brazil.

Carlos Raimundo Erig Lima is with the Electronics Department of Federal University of
Technology Paraná, Curitiba, Brazil.

42 E.P. Ferlin et al.

1 Introduction

Parallel computing is presented as a promising option to
face the growing demand for computational power of
scientific computing. For instance, computational systems
named petascale have thousands of processing elements
(PEs) capable of performing 1 × 1015 operations per second
(Bell et al., 2006). Those architectures exploit parallel
computing, aiming at reducing the overall processing time
of a given task, by executing many concurrent operations
(Hennessy and Patterson, 2006).

Parallel computer architectures known as dataflow were
first proposed by the end of the 1970s. These architectures
exploit naturally the intrinsic parallelism of the instructions
of a program (Arvind and Nikhil, 1990; Šilc et al., 1999;
Veen, 1986). These architectures are characterised by
having a single memory for both, data and instructions, no
program counter and no program variables. Values of
variables are treated as packages that are transmitted
between PEs. Associated to each processor, there is a
template, which has all the necessary information for that
processor to its job. A dataflow program is organised as a
directed graph, where nodes represent instructions and
edges represent the dataflow between nodes. A given node
is activated, then the instruction is executed, as soon as the
input data to that node is available.

Using the dataflow model, the possible parallelism
among instructions can be conveniently accessed. For
instance, in the computation of the differential equation
shown in equation (1), several operations can be done in
parallel.

2

2 2 2 0, (0) 1, 0d y dyx y y y
dxdx

′+ ⋅ + = = = (1)

The numerical solution to equation (1) has 16 operations: 6
multiplication, 2 sum , 2 subtraction, 3 duplication ‘D’, 1
conditional ‘IF’, 1 relational ‘<’, and 1 stop ‘S’. Figure 1
shows the dataflow graph for the computation of this
differential equation, and the corresponding C-like program.
Initially, there are five independent nodes that can be
executed in parallel. Next, other five, and so on, following
the dataflow graph.

Reconfigurable computing is a computational model
developed to join the performance of hardware-based
solutions with the flexibility of software-based solutions, by
using programmable devices (Becker and Hartenstein,
2003). The central idea of reconfigurable computing came
up in the 1960s. However, it was materialised only after the
1980s, when powerful reconfigurable devices became
available, such as the field-programmable gate arrays
(FPGAs). Reconfigurable computer architecture gives great
flexibility to the system, since it fits the hardware to the
application, allowing the exploration of different strategies
according to the task to be executed (Lysaght and
Rosenstiel, 2005). In this work is used the definition of
reconfigurability based on Adario et al. (1999).

Figure 1 Example of a dataflow graph (see online version for
colours)

This work reports the development of a new architecture,
especially devised for scientific computing, named parallel
reconfigurable architecture using dataflow (PRADA)
(Ferlin, 2008). This architecture is based on the dataflow
model, in which the sequence of execution of operations is
determined by the availability of data for processing.
Another relevant feature of the architecture is that it
explores the implicit parallelism of the applications and is it
is fully implemented in reconfigurable hardware.

2 Related work

In the recent literature, several dataflow-based parallel
architectures are reported. Amongst them, the following can
be cited:

The functional computer (Quenot et al., 1993) is a
mixed architecture, based on transputers and PEs known as
dataflow processors. Such architecture was created for
specific applications, such as real-time image processing.
Besides using an outdated technological component, it has
restricted applicability.

The KressArray (Hartenstein and Kress, 1995) has a
matrix architecture in which the PEs are called datapath
units (DPUs). The control is centralised and each DPU is
composed by a floating-point arithmetic and logic unit
(ALU). Operations can be done with a single data type, thus
imposing limitations in the type of applications that can be
run in this architecture.

The COLT (Bittner et al., 1996) architecture has a
matrix of PEs named interconnected functional units (IFUs)
that operate as stages of a pipeline. In order to implement
the desired functions, the matrix of PEs has to be configured
using a crossbar commuter. This is the main drawback of
the architecture because it demands a large amount of
resources.

WASMII and HOSMII (Shibata et al., 1998) are virtual
data-driven hardware systems based on multiple
configuration sets. The nodes and edges of a dataflow graph
are directly represented in a specific FPGA configuration,

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 43

like a specific application. Consequently, this method of
configuration limits the flexibility of the architecture and
the number of possible configurations for a given device.

The WaveScalar (Swanson et al., 2003) is a matrix
structure of PEs called WaveCache, organised as clusters.
Operations are mapped into these clusters and this makes
difficult the overall distribution of tasks. Additionally, the
control is decentralised, causing a large consumption of
resources of the programmable device for the control logic.

The asynchronous dataflow (Teifel and Manohar, 2004)
is an architecture based on logic blocks that can be coupled
together following a dataflow to accomplish the desired
function. The standardised logic blocks operate
asynchronously and the communication between them takes
place by means of specific message-passing channels. The
main drawback of this architecture is the several logic
blocks have to be configured by means of the
communication channels to implement the desired
processing. This fact affects the versatility of the
architecture, besides having a strong impact in the amount
of resources spent.

Liu and Furber (2005) proposed a coprocessor
architecture to work together with a common RISC
processor. This architecture implements tasks using the
dataflow model, but depends on the regular processor for
general processing.

The extreme processing plataform (XPP) (PACT
Technologies Inc., 2006) is a commercial architecture from
PACT XPP Technologies (Los Gatos, CA, USA) that
operates in a matrix structure of PEs named Processing
array elements (PAE). The PAEs are configured and
explicitly mapped to express the desired processing task.
This feature limits the flexibility of the system, because it
has to be reconfigured to be used in other subsequent tasks.

Architectures known as coarse-grained reconfigurable
architecture (CGRA) usually consist of a matrix structure
with a large number of functional elements, interconnected
as a mesh (Galanis et al., 2007; Park et al., 2008). The
reconfigurability in such architectures is at the functional
level, thus assuring a flexibility and low reconfiguration
overhead. Some examples of these architectures are:
MorphoSys (Singh et al., 2000), PipeRench (Goldstein et
al., 2000), XiRisc (Lodi et al., 2003), programmable
hardware cellular automaton (PHCA) (Charbouillot et al.,
2008) and DART (Pillement et al., 2008).

Additionally, other class of architectures can be also
cited: those known as polymorphous computing
architectures (PCAs). These architectures are mainly
developed for embedded systems and can be configured
either dynamically or statically to meet the computational
requirements of a given application (Cavin et al., 2008;
Hardnett et al., 2003). In this category it is also included the
architecture TRIPS (Sankaralingam et al., 2003) and
MONARCH (Vahey et al., 2006).

3 The proposed architecture

The PRADA architecture presents four basic features

1 it allows the parallel execution of algorithms

2 it allows several PEs working in parallel with a central
controller

3 the control is based in the specific dataflow of the
application

4 it can be semi-statically adapted to other applications.

PRADA architecture explores spatial parallelism, in which
concurrency takes place due to the independency of
operations, and instruction-level parallelism (ILP), where
parallelism occurs as function of the instructions. However,
achieving parallelism here is more complex, and requests a
specialised methodology. The PRADA architecture is based
on the dataflow concept. Therefore, there is no program
counter, such as in other von Neumann architectures of
ordinary processors, since the order of execution of
instructions is determined only by the availability of the
templates. There is no supervisory control over the sequence
of execution besides the own template. This is important,
since each template can be processed independently of the
other, if the necessary data and free PEs are available for
processing.

The PRADA architecture is composed by a single
control block and several PEs, as shown in Figure 2.
Therefore, considering the control system, the proposed
architecture is different from WaveScalar (Swanson et al.,
2003) that has a decentralised control, and similar to
KressArray (Hartenstein and Kress, 1995), i.e., the control
is also centralised. The control block is responsible for
managing the architecture and communication, receiving
data and sending results. This block also manages the
transmission of templates (operations) to the PEs, by means
of parallel buses. It also is responsible for the storage of
processing.

Figure 2 PRADA architecture (see online version for colours)

The PRADA system is connected to a desktop computer
used as host that is responsible for providing an interface for
the user. The communication between PRADA and the host
is done by means of a Universal Serial Bus (USB) interface
and software for transmitting templates and receiving
results. USB is a standard interface that al lows the
connection with many systems, it is easy to implement and
facilitates the reproduction of the work. An interesting

44 E.P. Ferlin et al.

alternative would be the PCI/PCIex interface that would
improve significantly the communication between host and
the architecture. However, the development kit available for
this work is external and do not provide a PCI/PCIe
connection. This alternative interfacing will be explored in
future work. In the FPGA, the communication is done using
the NIOS II embedded processor. Besides providing an
interface to the user, the host also is responsible for sending
templates to PRADA and receiving back the results. In the
host, there is also the development environment as well as
the software for manually generating the templates, where
the user is requested to fill all fields of the templates.
Complex applications may require the use of programming
languages that are compiled to dataflow graphs (Šilc et al.,
1999), although manual construction of the templates, when
possible, allows a deeper insight in the process.

As mentioned before, the template corresponds to the
instructions each PE executes. Each template has all the
information necessary for its execution and it is organised in
five fields: Operation, Operand 1, Operand 2, Destination 1
and Destination 2, as shown in Figure 3. The field operation
has the opcode that identifies the logical operation to be
done with operands. Operand 1 and 2 store the data that will
be manipulated by the PE. Fields Destination 1 and
Destination 2 have the information to where the result of the
operation will be sent. The template width is 66 bits
because, besides the fields mentioned, it also have ten extra
bits used for internal control (origin of data, validity of
operand, destination port, and other). It is worth to mention
that, in this model, there are no subsequent readings from
memory to operands, as in the von Neumann model.

Figure 3 Basic structure of a template

The execution cycle of a program is done by the control
block of Figure 2 following the application dataflow. A
more detailed view of the control block is provided in
Figure 4, and its five main components are:

• Interface: Provides the communication channel with the
host by means of an embedded processor using memory
buffer and an USB interface.

• Template memory (TM): This is where the templates
are stored for further processing. From the logical point
of view, the TM is a single memory that can store the
maximum amount of templates. Physically, this
memory is divided into several separated modules,
allowing other modules to access the templates in
parallel. The memory segmentation method is based on
the principle of locality: references to the memory in a
given time interval tend to access a specific region of
memory (Tanenbaum, 2005). Therefore, the probability
of consecutive templates being executed
simultaneously is high or, at least, reasonably higher
than other cases. The TM is capable of storing up to 1

K templates, 66 bits-long. It is segmented in four parts
of the same size, in which positions are interleaved.

• Data memory (DM): This is where data are stored,
basically, data structures such as vectors and matrices.
It is structured as 1 K words, 16 bits-long. There is a
single DM for the whole system and PEs are not
allowed to access it, since they receive the necessary
data already incorporated in the templates.

• Dispatch unit (DU): This block continuously verifies if
there are templates to be executed and send them to the
available PEs. The DU is composed by three blocks:
fetch – responsible for seeking for templates in the TM
and data in the DM, and ensemble the templates to be
processed; buffer – stores the templates ready to be
dispatched to PEs; dispatch – effectively dispatches
templates for PEs.

• Storage unit (SU): This block receives the processing
results from PEs and updates the appropriate templates
in the DM. It is composed by three blocks: store –
controls the update of templates with data resulting
from processing; snoop – responsible for updating the
status of templates when DM is updated; update –
receives the new requests from DM. It preserves the
consistence of memory assuring that data will be
updated in the DM.

The PEs, shown at the top of Figure 4, are the core of
PRADA. The PEs are identical and they are composed by
ALUs capable of performing addition, subtraction,
multiplication, division, logical operations, relational and
conditional operations. This feature is different from most
of the previously mentioned architectures, such as: XPP,
WaveScalar, KressArray, WASMII, HOSMIII and COLT,
in which the operations are mapped directly into PEs.
Besides, each PE also has its own set of input and output
buffers to facilitate synchronisation with the associated DU
and SU. The structure of a PE allows the execution of the
above mentioned operations with two operands (monadic or
dyadic) and produces as output a single result that can be
forwarded to two destinations. In PRADA, 16 PEs were
implemented, all identical and grouped into four sets, i.e., a
4 × 4 processing cluster. The cluster structure was used in
PRADA in order to minimise the bottleneck for accessing
the TM, in such a way that even if a cluster is sequentially
accessing a TM, the remaining clusters can operate in
parallel the remaining TM modules.

The logical structure of PRADA recalls a multiprocessor
cluster with four nodes, each one with four processors.
There is also a shared DM that is not directly accessed by
the PEs. Each node of the cluster is composed by four PEs,
two SUs, one DU and one TM. The whole ensemble forms a
dataflow machine with four functional units. In Figure 5 the
logical structure of the parallel architecture of PRADA is
represented, detailing a node of the cluster. In this
configuration, there is a homogeneous parallel environment
with two memory access models (Pfister, 1998): uniform
memory access (UMA) for the DM; and non-uniform

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 45

memory access (NUMA) for the TM. Such duality is aimed
at taking advantage of the best for both cases. The use of the
UMA model guarantees the coherence of data in the DM.

On the other hand, the use of the NUMA model for TM
minimises the bottleneck of memory access, since each
cluster (DF – dataflow) accesses directly one TM module.

Figure 4 Detailed view of the physical organisation of PRADA

46 E.P. Ferlin et al.

Figure 5 Logical structure of PRADA

The processing cycle of PRADA architecture is detailed
algorithmically in Figure 6, and explained as follows.
Initially, the host sends to PRADA the program to be
executed in the form of a set of templates, which are stored
in the TM. It also sends all data structures to be loaded in
DM. A signal from host starts processing. After, the DU
enquires the TM and forwards to the PEs the templates to be
executed, as soon as they become available. The PEs, once
receiving, perform the operation described by each template
and produce results that are stored in TM by SU. This
process is repeated until the TM is empty.

Figure 6 Processing cycle in the PRADA architecture

The scheduling of operations is automatically done by
PRADA. This is due to the central idea of executing an
instruction (template) as soon as the necessary data is
available and there is an idle PE to process such instruction.

4 Implementation

PRADA was developed to be implemented without the need
of any other additional component (for instance,
microprocessors, external memories, etc), as in other
architectures [for instance, in Liu and Furber (2005),
Quenot et al. (1993)]. This feature makes PRADA as
device-independent as possible, avoiding to be
technologically outdated.

PRADA was implemented using reconfigurable logic,
using high-density FPGA devices. By using
reconfigurability the logic blocks of the FPGA are
reconstructed to implement the necessary logical functions.
The reconfiguration of this architecture is semi-static. That
is, it occurs immediately before the execution of the
application.

The physical implementation was done in a FPGA
device of the Stratix II family from Altera
(http://www.altera.com), namely, the EP2S60F672C3
device. The implementation reported in this paper was done
with 16 PEs. The amount of resources required for such
implementation was: 28,348 logic elements and 132,160
memory bits, corresponding, respectively, to 59% and 5%
of the available resources of the device. Each PE needs 535
logic elements – less than 2% of the device. We used the
Quartus II development system from Altera and all blocks
were developed in standard very-high-speed-integrated-
circuit hardware description language (VHDL) (Pedroni,
2004).

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 47

The implementation runs at 50 MHz and, with this 20ns
clock cycle it is possible to execute 13 × 106 operations per
second using a single PE. Using 16 PEs, the maximum
attainable performance is approximately 65 MIPS. This is
obtained considering a best-case algorithm, in which all
instructions are independent.

PRADA has the following features showing in Table 1.
These features can be modified for meeting the
requirements of a given application, by means of
reconfigurability. Such parameters can be changed in the
project of the architecture, before running the application,
by sending a new configuration to the device.

Table 1 Features of the PRADA architecture

Feature Value

Number of PEs 16
Operating frequency 50 MHz
DU -PE bus width 4 × 66 bits
DU -PE bus bandwidth 13.2 Gbps
PE -SU bus width 8 × 27 bits
PE -SU bus bandwidth 10.8 Gbps
Number of instructions 16
Data size 16 bits (integer)
Maximum number of templates 1 K
DM 1 K words (16 bits)
TM 1 K long word (66 bits)
Template size 66 bits

The number of PEs and the operating frequency depend on
the constructive limitations of the device used in the
implementation. These features of PRADA are a direct
function of the technological advance of FPGA devices. On
the other hand, the width of the buses and data, the size of
internal memories and the number of instructions are
defined by the design of the architecture.

The PRADA architecture has a superscalar structure
(Tanenbaum, 2005), basically, with a three-stage pipeline
(dispatch, processing and storage) that divides the execution
of instructions in several parts, shown in Figure 7. These
parts are executed in parallel, each one being processed by a
dedicated hardware with a specific function. A superscalar
structure requests the use of a dedicated pipeline for each
functional structure in the architecture (Stallings, 2009).
Due to the pipeline, there is an overlap in the execution time
of the instructions within the several units, in such a way
that all these units will explore time parallelism. Therefore,
pipelining is an important intrinsic feature of the
architecture that leads to the improvement of the overall
performance. This instruction overlap is known as ILP, and
corresponds to the lowest possible level of parallelism that
can be explored in computer architecture (Hennessy and
Patterson, 2006).

The instructions set of PRADA has 16 basic
instructions, grouped as: arithmetic (sum, subtraction,
multiplication and division), logical (AND, OR, NOT,
XOR, NOR), conditional (If), relational (=, <>, >=, <) and

miscellaneous (duplication, stop). Such instructions set were
chosen taking into consideration the nature of the numerical
processing of scientific applications, the primary focus of
the PRADA architecture. The instruction set is summarised
in Table 2. The execution time for most of instructions is
11 clock cycles, with exception to division and conditional
that takes 12 clock cycles. In the case of instructions that
have two destinations, an extra clock is necessary for the
additional destination. The STOP instruction is executed
automatically by DU and takes only one clock cycle, the
time necessary for finishing the fetch for new templates.

Figure 7 Pipeline associated with the PRADA architecture

Table 2 Instruction set of PRADA

Mnemonic Operation Opcode #Clock

ADD Sum 0000 11
SUB Subtraction 0001 11
MUL Multiplication 0010 11
DIV Division 0011 12
AND Logical AND 0100 11
OR Logical OR 0101 11
NOT Logical NOT 0110 11
XOR Logical EXCLUSIVE-OR 0111 11
NOR Logical NOT-OR 1000 11
CEQ Compare equal 1001 11
CNE Compare not equal 1010 11
CGE Compare greater or equal 1011 11
CLT Compare less than 1100 11
IF Conditional 1101 12
DUP Duplication 1110 11
STOP Stop 1111 1

A simple example of dataflow program that can be run in
PRADA is shown in Table 3 for the numerical solution of
the ordinary differential equation [equation (1)], subject to
y(0) = 1 and y’(0) = 0. This dataflow program, shown as
pseudo-templates, corresponds to the dataflow graph of
Figure 1. In Table 3, Op. 1, Op. 2, Dest. 1 and Dest. 2,
mean, respectively, the two operands and the two
destinations of the operations’ result.

48 E.P. Ferlin et al.

Table 3 Templates of a dataflow program corresponding to
the graph of Figure 1

Node Mnemonic Op. 1 Op. 2 Dest. 1 Dest. 2

1 MUL u dx 6 0
2 MUL 2 x 6 0
3 MUL 2 y 7 0
4 MUL u dx 8 0
5 ADD dx y 9 10
6 MUL 0 0 11 0
7 MUL dx 0 13 0
8 ADD 0 0 12 0
9 CLT 0 a 12 0
10 DUP 0 0 2 5
11 SUB 0 0 13 0
12 IF 0 0 14 15
13 SUB 0 0 1 16
14 DUP 0 0 8 9
15 STOP 0 0 0 0
16 DUP 0 0 11 4

5 Computational experiments

For testing the performance of PRADA, three problems
were used: best-case (BC), finite impulse response (FIR),
and international data encryption algorithm (IDEA).

The first is a toy problem composed of 192 independent
operations with 16 bits words and fixed-point arithmetics.
The objective of this problem is to allow PRADA to
demonstrate its maximum performance in an idealised
situation, where there is no data dependence between
templates.

The second problem is a scientific computation. It is
related to the computation of a five-tap digital filter. This is
real-world problem in which the application imposes
limitations to the performance of the architecture due to the
data dependency between operations. In this problem, in the
same way, we used fixed-point arithmetic with 16 bits
resolution. The main reason for choosing this problem is
that it has been used as benchmark for testing several
architectures reported in the literature. Therefore, it can be
used as a basis for comparison. A FIR digital filter is
characterised by a response to the unity impulse that
becomes null after a finite time. Figure 8 presents the
algorithm for computing the FIR filter, written in C
programming language.

Figure 8 Algorithm for computing a five-tap FIR filter, in C
language

The IDEA is a cryptography algorithm created in the
1990s (Lai and Massey, 1990). The algorithm operates on
64 bits-wide in-formation blocks, using a key of 128 bits.
IDEA is considered to be immune to differential
cryptanalysis, and there is no known algebraic weakness in
it (Schneier, 1996). Although IDEA has been patented in a
number of countries, it is freely available for
non-commercial use. This algorithm was chosen for
experiments with PRADA not only due to its simplicity, but
also due to the fact that some operations can be done in
parallel. Basically the algorithm uses three operations:
bitwise exclusive-OR, modulo 216 addition, and modulo
216 + 1 multiplication. Both encryption and decryption
procedures are similar. A total of eight identical
transformations, plus an output transformation, are done.

Figure 9 shows the dataflow graph of the IDEA. It is
possible to observe that some operations can be executed in
parallel (at most, four), and some must be done sequentially,
a constraint inherent to the algorithm. In this algorithm,
variables P1 to P4 represent each one a 16-bit block of
information, which, together, yields a 64-bit ciphertext.
Variables S1 to S6 are 16-bits cryptography sub-keys. The
encryption process need eight iterations of the algorithm
shown, using a total of 52 sub-keys generated from a key of
128 bits.

Figure 9 Dataflow graph for the IDEA algorithm (see online
version for colours)

For all problems, the pseudo-templates were manually
constructed, based on the algorithm and/or dataflow graph
for the applications.

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 49

6 Results

In the following sections, the results of the experiments for
the above mentioned problems are reported and grouped
according to the nature of the experiments:

1 Scalability experiments (Section 6.1), in which the
objective is to verify the behaviour of PRADA, based
on the maximum attainable performance with an
idealised problem and a real-world problem, in
comparison with the ideal response as function of the
number of PEs.

2 Comparison experiments (Section 6.2), in which the
main objective is to compare the performance of
PRADA with other architectures, some of them
somewhat similar and other quite different. Such
comparison was done based on experiments and
reported results found in the literature, using the FIR
and IDEA problems.

6.1 Scalability experiments

Experiments of this category were done using PRADA in
two configurations:

a with 4 PEs and a single TM module

b with PEs and the TM segmented in four modules.

6.1.1 PRADA with four PEs and a single TM module

Experiments done with BC and FIR algorithms, using a
single memory (like a single DF module), considering one,
two and four PEs, indicate that the execution time were
above the ideal processing time. The ideal processing time
is obtained by dividing the number of machine cycles spent
with a single PE (that is, sequential processing), by the
amount of PEs. For instance, using four PEs, the ideal
processing time should be 1/4 the time of a single PE. The
difference of time between the ideal and the time taken by
BC algorithm is 36.41%. Similarly, the difference between
the ideal time and the FIR algorithm is 45.85%, as shown in
the graph of Figure 10. The difference of 9.44% between
the execution time is mainly due to the data dependencies
inherent to the FIR algorithm presented before.

Figure 10 Execution time for BC and FIR algorithms, using a
single memory

The curve corresponding to the BC represents the best
possible result that can be attained by the execution of an
application using PRADA. The ideal curve represents
idealised hypothetical values when considering that the
architecture does not present any limitation and the
application takes the maximum advantage of available
resources.

A usual measure of performance in parallel architectures
is speedup (Murdocca and Heuring, 2007), that is, the ratio
between the execution time with a single PE and the
execution time with two or more PEs in parallel. For the BC
algorithm, the speedup achieved 63.59% of the ideal value,
running with two and four PEs. Similarly, for the FIR
algorithm, the speedup achieved 54.15%, as shown in
Figure 11. For both cases, PRADA was run using a single
memory (TM) module. Therefore, there is coherence in the
access to the TM, causing the system to spend extra time
due to the serialisation of the access. Obviously, this is a
problem that negatively affects the overall performance of
the system. For this specific analysis, we consider that the
ideal value for speedup is the number of PEs in the
architecture, for instance, using two PEs, the ideal speedup
would be 2.

Figure 11 Speedup curves for BC and FIR algorithms, using
single memory

6.1.2 PRADA with 16 PEs and TM segmented in four
modules

The same experiments reported before were done,
reconfiguring PRADA for using the TM divided into four
modules, using 4, 8 and 16 PEs. Results, regarding
processing time, are shown in Figure 12. It can be observed
that, using four PEs, the processing time for the BC
algorithm was the same as the ideal processing time. This is
due to the optimisation of the instructions, since the
templates were constructed in such a way to obtain the
maximum possible parallelism of operations. On the other
hand, the average processing time for BC algorithm was
34.17% above the ideal time. For the FIR algorithm,
PRADA achieved a processing time 41.84% above the ideal
time. The difference of execution time between algorithms
BC and FIR was 7.67%, except when using 16 PEs, when
the difference was 11.58%. This difference represents the
percentage of serial part of the FIR algorithm, considering
that the BC algorithm is the performance reference that can
be achievable in the architecture. This fact indicates a

50 E.P. Ferlin et al.

limitation of the architecture when running the FIR
algorithm and it is due to the many memory accesses caused
by the data dependencies of the application.

Figure 12 Running time for BC and FIR algorithms with
segmented memory

Regarding the speedup, PRADA with TM segmented into
four modules achieved an average of 49% of the ideal value
for the BC algorithm, except when using four PEs, because
the speedup obtained is equal to the ideal. These results are
shown in Figure 13. The same experiment with the FIR
algorithm showed that PRADA achieved 74.28% of the
ideal value, in average. Again, when using four PEs, the
speedup was very close to the ideal value.

Figure 13 Speedup curves for BC and FIR algorithms using
segmented memory

The PRADA architecture is scalable, since we can use a
larger number of PEs for both models (single and
segmented memory), other than those presented in this
work. However, we used a configuration that included a
maximum of 16 PEs, aimed only to demonstrate the validity
of the underlying concepts, not for achieving the maximum
performance. Consequently, it is possible to use a larger
number of PEs, but with some modifications in the
architecture. On the other hand, it is possible to achieve
higher scalability using the concept of cluster, in which each
node is a PRADA machine.

6.2 Comparison experiments

Another set of experiments was done aimed at comparing
PRADA with other architectures found in the literature. The
first is the FIR filter mentioned before in Section 5 and the
second is the IDEA algorithm for cryptography. These two

problems were chosen due to the availability of comparison
data in the literature.

6.2.1 FIR algorithm

Table 4 shows several important information for comparing
performance of different architectures: operating frequency,
in MHz (Freq.); execution time, in clock cycles (#Clock);
number of instructions executed (#Instr.); throughput; CPI
and MIPS. Throughput, in this case, is defined as the ratio
between the number of operations of the tap by the number
of clock cycles. In this case, the throughput represents a rate
of the overall processing that is executed taking into
consideration a time interval of a single clock pulse. CPI
(Clock Per Instruction) is defined as the average number of
clock cycles spent per instruction executed, for a given
problem. IPC, on the other hand, is the inverse of CPI. IPC
is used to compare architectures considering the number of
instructions executed each PE. MIPS (Millions of
Instructions per Second) is a common measure of computer
speed, and it is a measure strongly influenced by the
application. Consequently, it can be used with care, since
different values can be obtained for the same architecture,
but running different applications. In that table, we also
provide the ratio IPC per processing element (IPC/PE) and
number of clock cycles necessary per filter tap (cycles/tap).

For this experiment, PRADA was configured with a
single PE, and was compared it with a general-purpose
desktop computer (PC). The PC used for comparison had a
AMD Athlon XP64 3000+ processor, running at 2.17GHz,
with 512 MBytes of RAM and Microsoft Windows XP
operating system and using Borland C++ Builder 6
(standard configuration without optimisation). In the PC, the
algorithm took 0.358 μs (that is, 777 cycles × 1/2170 MHz),
far below from the time taken by the proposed architecture
with 1 PE (9.04 μs) (452 cycles × 1/50 MHz). However, it
should be noted that the clock of the PC is around 43 times
faster than that used in the reconfigurable architecture. A
more fair comparison is considering the number of clock
cycles. For this case, the PC needed 777 clock cycles and
the one-PE-architecture needed only 452 clock cycles. On
the other hand, the relative PRADA low clock operation is a
technological limitation. New FP-GAs families will enable
higher clock rates, improving the PRADA performance.

We compared the values obtained in these experiments
with other similar results running in different architectures,
but for the same algorithm: ROCCC – reconfigurable
Computing Compiler System, OGMS – optimisation
generation memory structure for window operations – see
Dong et al. (2007), AMD Athlon processor in a PC, Intel
8051-microcontroller and Altera NIOS II/e embedded
microprocessor. Recall that the ROCC and OGMS
architectures are specifically designed for digital filtering.

PRADA, with 16 PEs needed a number of clock cycles
around 2.4 times smaller than the specialised architectures,
i.e., 18.2, 78.5 and 7.1 times smaller than NIOS II/e, 8051
and PC, respectively.

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 51

Table 4 Comparison of the performance of several architectures for the FIR filter

Architecture #PEs Freq. #Clock #Instr. Throughput MIPS CPI IPC
1 PC / PE
2

&&ı¿ Cycles/tap

PRADA

1 PE 1 50 452 122 0.56 13 3.70 0.27 0.25 7
4 PEs 4 50 122 122 2.07 49 1.00 1.00 0.15 2
8 PEs 8 50 101 122 2.50 60 0.83 1.20 0.11 2
12 PEs 12 50 94 122 2.68 65 0.77 1.30 0.07 2
16 PEs 16 50 109 122 2.31 56 0.89 1.12 2

Application specific using Xilinx FPGA

ROCCC 94 262 0.96 4
OGMS 239 263 0.96 4

Soft processors

NIOS II/e 1 50 1986 841 0.13 45 2.36 0.42 32
SPREE 1 80 1145 822 0.22 53 1.36 0.74 18

Microprocessors

AMD Athlon (PC) 1 2170 777 2158 0.32 5935 13
8051 1 12 8559 713 0.03 1 12.00 0.08 138

Digital signal processors (DSP)

BF 533 1 750 186 500 3
TMS 320C2 1 300 248 12 4
TMS 320C5X 1 29 434 50 7
TMS 320C55X 1 200 504 400 4

Reconfigurable architectures

KressArray 24 25 558 9
COLT 16 50 496 8
Wavescalar 512 0.01 71.4 0.14
TRIPS 256 0.09 11.00 0.04

Dataflow architectures

Manchester 20 15 6 2.50 0.40 0.02

Based on the results shown in Table 4 for the FIR
algorithm, it is observed that PRADA presented better
performance, regarding clock cycles, when compared with
dedicated architectures (ROCCC and OGMS) (Dong et al.,
2007), digital signal processors (BF 533, TMS 320C2, TMS
320C5x, TMS 320C55x) (Myjak and Delgado-Frias, 2008;
Petersen, 1995; Varnagiryte et al., 2002), embedded
processors [Altera’s NIOS II and SPREE (Yiannacouras et
al., 2007)], general-purpose processors (AMD Athlon and
8051), as well as reconfigurable architectures [KressArray
with 24 PEs (Hartenstein et al., 1994), COLT with 16 PEs
(Cherbaka, 1996), Wavescalar (Swanson et al., 2003) and
TRIPS (Sankaralingam et al., 2003) and a Manchester
dataflow architecture (Šilc et al, 1999)].

This can be also verified if considering cycles per tap
that measures objectively the performance for the specific
application. Regarding this measure, PRADA obtained the
highest performance, thus indicating its efficiency for this
kind of scientific computing. PRADA achieved, for

instance, a value twice smaller than other dedicated
architectures and 4.5 times smaller than reconfigurable
architectures.

Notice the small number of instructions executed by
PRADA to accomplish the task, when compared with the
other approaches. PRADA needed only 122 instructions,
while other architectures a much larger number of
instructions was needed: 17.7 times more in a PC Athlon,
5.8 times more in a 8051 and 6.9 times more in the NIOS II
embedded processor. It is also important to recall at this
point that PRADA has a reduced set of instructions, as
shown in Table 2, when compared with the other
architectures.

Comparing PRADA with Wavescalar (Swanson et al.,
2003), we observe that the latter achieves an IPC per PE of
0.14, while PRADA achieves an average value of 0.15. This
represents an improvement of around 8.5%, meaning that
PRADA is more efficient than Wavescalar regarding the
real parallelism that takes place in the execution of

52 E.P. Ferlin et al.

instructions, measured as the number of instructions
executed per clock cycle. The very same analysis is true
when comparing PRADA with TRIPS (Sankaralingam et
al., 2003), in which the difference is 3.75 times higher, since
the IPC of TRIPS is 0.04.

The simulation of the FIR algorithm was done in the
Simulator software of Quartus-II (Altera Inc.) environment.
For this experiment, PRADA was configured with 16 PEs
and memory split in 4 modules. The overall processing time
took 2.18 μs, that is, 109 clock cycles (20ns each), resulting
in a speedup of 4.15 relative to a sequential execution.

6.2.2 IDEA algorithm

The implementation of PRADA architecture using 16 PEs
was done with a EP2S60F672C3 device from Altera, and
needed 28,348 logic elements and 132,160 bits of memory.
We also implemented IDEA in a software version, in C++,
to run in two PC’s, one with a Pentium II processor and
other with a Pentium IV processor. We compared results
found in the literature for other dedicated architectures,
namely, Morphosys (Singh et al., 2000) and HiPCrypto
(Salomão et al., 1998). Morphosys is an architecture with
single instruction multiple data (SIMD) coprocessors, in
which operations are mapped into PEs. It was specifically
adapted for running IDEA. HiPCrypto is a specialised
hardware implementation for IDEA, based on ASIC.

PRADA produced ten ciphertext blocks in 245 cycles,
although this number could be reduced if more were PEs
were used in parallel. The only limitation is the size of the
TM, necessary to store parts of templates of the algorithm.
Only for comparison purposes, authors of Morphosys and
HiPCrypto report that the first needed 73 cycles to produce
16 ciphertext blocks, and the second produced seven in 56
cycles. To produce a single ciphertext block, the software
version needed 357 and 335 cycles, respectively, when
running in a Pentiun II and a Pentium IV. The overall
relative amount of clock cycles per ciphertext block is
represented in Figure 14. Consequently, the proposed
architecture achieved a significant gain compared with the
Pentium architectures, and a performance small behind
Morphosys and HiPCrypto.

Figure 14 Number of cycles for one ciphertext block in different
architectures (see online version for colours)

7 Conclusions

This work presented PRADA, a new parallel dataflow
architecture implemented in reconfigurable logic. Several
experiments were done with three algorithms: a set of
instruction without data dependence (best case – BC), a
scientific application (finite impulse response digital filter –
FIR) and a cryptography application (IDEA). The
comparison of PRADA with other architectures focused on
performance. Results showed a significant reduction of
processing time with PRADA. Even comparing PRADA
with architectures of higher MIPS (due to higher clock
frequency), we observed that PRADA is more efficient
regarding the number of clock cycles necessary to carry out
the FIR algorithm.

Finished the experiments, we observed that the
processing time decreases as more PEs are added to the
architecture (see Table 4). This expected result can be also
checked in the graphics previously shown (Figures 10 to
13), where the curves for real and ideal processing time are
close each other. However, the visible difference between
these curves is due to limitations of the architecture, such as
memory access latency time, as well as application-
dependent dependencies.

Results indicate that PRADA needs a small number of
operations to carry out a given task, as in the case of the FIR
algorithm (only 122 operations). This value is significantly
smaller when compared with other architectures, such as the
PC Athlon, 8051 and NIOS II. Analysing an application-
dependent metric, the number of cycles per tap (of the FIR
filter algorithm), PRADA had the smallest value (2),
comparing with the other architectures. This is another
interesting indication of the suitability of the proposed
architecture for such kind of numerical computation.
Regarding IPC, the absolute value for PRADA is small, but
considering the ratio IPC/PE, the value is above all other
architectures, indicating that more instructions are executed
per clock cycle than in the other implementations. A similar
analysis of CPI can be done, but, in this case, the small, the
better. Comparing the throughput the other architectures,
PRADA achieved the best performance, again supporting
the assertion that PRADA is suitable for numerical
computation. The number of clock cycles spent by PRADA
with 16 PEs is smaller than any other architecture, including
those specialised in numerical computation.

Several architectures previously mentioned, namely,
XPP, WaveScalar, KressArray, WASMII, HOSMII and
COLT have their operations mapped in the PEs. Differently
from them, PRADA has identical PEs with a predefined set
of operations, selected by programming as function of the
application. In the current experiments, the instructions set
were restricted to only 16 basic operations.
Notwithstanding, such instructions set was adequate and
enough to cope with a large range of applications, especially
those related to fixed-point numerical computation.

For the IDEA algorithm, we observed that PRADA was
15 times faster than the software versions running in PC.
However, PRADA was slower than Morphosys (five times)
and HiPCrypto (three times). It is important to recall that

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 53

these two architectures are either designed or optimised for
cryptography, while PRADA is generic, not specific for this
problem. This experiment showed again the flexibility of
the proposed architecture to adapt to a real-world problem.

Architectures that map directly the operations into PEs
are usually arranged in a matrix structure. Such models are
naturally less flexible than other approaches, and demands
more resources from a reconfigurable logic device. Besides,
such architectures have PEs with predefined functions.
Therefore, they cannot be reused in other applications which
operations were not previously defined in the FPGA
configuration. Depending on the way operations are mapped
in the matrix structure, a large idleness of PEs may take
place. As a consequence, most of architectures that use a
matrix structure have a large number of PEs (see Table 4).
This is because the number of PEs must be equal of larger
than the number of different operations required by the
application, thus establishing bounds in the applicability of
the architecture.

The problems mentioned before were circumvented in
PRADA, thanks to the way its architecture was devised.
Recall that PRADA has identical PEs with predefined
operations that can be reused during processing for different
functions, without limiting the number of operations of the
application.

Although not new, the concept of dataflow is a great
idea that takes several advantages for computer
architectures. Mainly, the scheduling of operations is
naturally performed following the dataflow graph of the
application, thus reducing the control logic. As a side effect,
this philosophy explores the intrinsic parallelism inherent to
the program.

Another important issue in this work is how parallelism
was explored, not only in the operations/instructions, but
also in the functional blocks of the architecture. PRADA
explores naturally the functional parallelism by using
several PEs. This is the most evident level of (spatial)
parallelism in the proposed architecture. The pipeline
structure present in PRADA enables another level of
parallelism. This is a temporal parallelism, because
simultaneous operations can be started even before the
current operations have finished. Besides, there is also the
parallelism resulting from the fact that multiple functional
blocks (such as DU and SU, for instance) are independent
each other and work based on events. Therefore, one can
have, in a given moment, all those blocks working
simultaneously. Another interesting point is that PRADA
adjusts itself to the number of available PEs for the current
execution, thus avoiding the need of changing the
application code. This is due to the logic of the DU that
directs the templates ready to run straight to the PEs, as
soon they are available. Therefore, there is a relationship
between the operations and the PEs, allowing the amount of
PEs to be modified according to the availability of resources
in the FPGA device, thus making PRADA fully scalable.

It is important to point that a parallel architecture
implemented in FPGA is a viable approach over traditional
hardware design: it allows a fast reconfiguration of the

project to adequate to other applications, better adequacy of
the hardware to the application, reuse of resources and
shorter development cycle. Also, the design flexibility of
reconfigurable computing allows the functional features of
the architecture to be expanded so as to meet the processing
requirements of the application, for instance, increasing the
number of PEs. In the case of PRADA, the internal structure
was limited to 16 PEs for the experiments reported here. To
increase its processing capacity, it would be enough to turn
to a more powerful FPGA.

PRADA was fully developed using VHDL, a standard
hardware description language. Therefore, the project is
platform-independent, facilitating the migration to other
development environments and reconfigurable devices.
However, a known drawback of this approach is the
difficulty of development, when compared with a software
project, for instance. Several complex issues emerge in the
development of reconfigurable systems, such as the
limitation of resources of the FPGA and difficulty in
debugging and testing the system. Besides, there is a
technological limitation regarding the clock rate. However,
more recent FPGAs devices certainly will be faster.

Finally, the proposed architecture can be applied to
many different applications, mainly those where implicit
parallelism can be identified (such as in numerical
computation). An outstanding feature of PRADA is its
scalability that allows achieving growing performances by
increasing the number of PEs.

8 Future work

The features of PRADA indicate that this architecture is a
viable alternative for problems that include a large amount
of processing over a small amount of data. Problems of this
category are found, for instance, in numerical computing,
cryptography and optimisation.

Based on the performance obtained by PRADA, there
are some points for future improvement, for instance:

• improve of the connectivity between the functional
blocks to increase speedup and reduce possible idle
time for accessing PEs

• increase the width of internal buses and registers to
allow PRADA deal with words of 64 or 128 bits

• increase the number of PEs, and thus, obtain more
performance by exploring further the parallelism

• extent the number and type of instructions,
incorporating more complex operations, specific for
scientific computation

• adapt the system to allow dynamical reconfiguration

• implement applications in more recent and faster FPGA
devices

• develop a programming environment enabling the use
of a high-level language for complex applications.

54 E.P. Ferlin et al.

Acknowledgements

The authors would like to thank Eng. Maurício Cúnico for
his collaboration in this work, and the Brazilian National
Research Council – CNPQ for the research grant
309262/2007-0 to H.S. Lopes.

References
Adario, A.M.S., Roehe, E.L. and Bampi, S. (1999) ‘Dynamically

reconfigurable architecture for image processor applications’,
Proceedings of Design Automation Conference, New York,
NY, USA, pp.623–628.

Arvind, M. and Nikhil, R.S. (1990) ‘Executing a program on the
MIT togged-token dataflow architecture’, IEEE Transactions
on Computers, Vol. 39, No. 3, pp.300–318.

Becker, J. and Hartenstein, R. (2003) ‘Configware and morphware
going mainstream’, Journal of Systems Architecture, Vol. 49,
pp.127–142.

Bell, G., Gray, J. and Szalay, A. (2006) ‘Petascale computational
systems’, IEEE Computer, Vol. 39, No. 1, pp.110–112.

Bittner Jr., R.A., Athanas, P.M. and Musgrove, M.D. (1996)
‘COLT an experiment in wormhole run-time reconfiguration’,
Proceedings of SPIE Photonics East, Boston, MA, USA,
pp.187–195.

Cavin, R., Hutchby, J.A., Zhirnov, V., Brewer, J.E. and
Bourianoff, G. (2008) ‘Emerging research architectures’,
IEEE Computer, Vol. 41, No. 5, pp.33–37.

Charbouillot, S., Pérez, A. and Fronte, D. (2008) ‘A programmable
hardware cellular automaton: example of data flow
transformation’, VLSI Design, Vol. 2008, Article id160728,
pp.1–7.

Cherbaka, M.F. (1996) ‘Verification and configuration of a run-
time reconfigurable custom computing integrated circuit for
DSP applications’, MSc thesis, Virginia Polytechnic Institute
and State University, USA.

Dong, Y., Dou, J. and Zhou, J. (2007) ‘Optimized generation of
memory structure in compiling window operations onto
reconfigurable hardware’, Lecture Notes in Computer
Science, Vol. 4419, pp.110–121.

Ferlin, E.P. (2008) ‘A reconfigurable parallel architecture based on
dataflow implemented in FPGA’, PhD thesis, Federal
University of Technology Paraná, Curitiba, Paraná, Brazil.

Galanis, M.D., Dimitroulakos, G. and Goutis, C.E. (2007)
‘Speedups and energy reductions from mapping DSP
applications on an embedded reconfigurable system’, IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 15, No. 12, pp.1362–1366.

Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M. and
Taylor, R.R. (2000) ‘Piperench: a reconfigurable architecture
and compiler’, IEEE Computer, Vol. 33, No. 4, pp.70–77.

Hardnett, C.R., Jayaraj, A., Palem, K.V. and Yalamanchili, S.
(2003) ‘Compiling stream kernels for polymorphous
computing architectures’, Proceedings of 12th International
Conference on Parallel Architectures and Compilation
Tecniques, New Orleans, LA, USA, pp.CDROM.

Hartenstein, R. and Kress, R. (1995) ‘A datapath synthesis system
for the reconfigurable datapath architecture’, Proceedings of
Asia and South Pacific Design Automation Conference,
Chiba, Japan, pp.479–484.

Hartenstein, R., Kress, R. and Reining, H. (1994) ‘A
reconfigurable data-driven ALU for Xputers’, IEEE
Workshop on FPGAs for Custom Computing Machines, Napa,
USA, pp.CDROM.

Hennessy, J.L. and Patterson, D.A. (2006) Computer Architecture:
A Quantitative Approach, 4th ed., Morgan Kaufmann, San
Francisco.

Lai, X. and Massey, J.L. (1990) ‘A proposal for a new block
encryption standard’, Proceedings of EUROCRYPT,
pp.389–404.

Liu, Y. and Furber, S. (2005) ‘A low power embedded dataflow
coprocessor’, Proceedings of IEEE Computer Society Annual
Symposium on New Frontiers in VLSI Design, pp.246–247.

Lodi, A., Toma, M., Campi, F., Cappelli, A., Canegallo, R. and
Guerrieri, R. (2003) ‘A VLIW processor with reconfigurable
instruction set for embedded applications’, IEEE Journal of
Solid-State Circuits, Vol. 38, No. 11, pp.1876–1886.

Lysaght, P. and Rosenstiel, W. (2005) New Algorithms,
Architectures and Applications of Reconfigurable Computing,
Springer, New York.

Murdocca, M.J. and Heuring, V.P. (2007) Computer Architecture
and Organization, John Wiley & Sons, New York.

Myjak, M.J. and Delgado-Frias, J.G. (2008) ‘A medium-grain
reconfigurable architecture for DSP: VLSI design, benchmark
mapping and performance’, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol. 16, No. 1,
pp.14–23.

PACT XPP Technologies Inc. (2006) ‘XPP-III processor
overview’, White paper, Version 2.0.1, July 2006, available at
http://www.pactxpp.com.

Park, H., Fan, K., Mahlke, S., Oh, T., Kim, H. and Kim, H.S.
(2008) ‘Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures’, Proceedings of PACT, Toronto,
Canada, pp.633–637.

Pedroni, V.A. (2004) Circuit Design with VHDL, MIT Press,
Cambridge.

Petersen, R.J. (1995) ‘An assessment of the suitability of
reconfigurable systems for digital signal processing’, MSc
thesis, Brighan Young University, Electrical and Computer
Engineering Department, USA.

Pfister, G.F. (1998) In Search of Clusters, 2nd ed., Prentice Hall,
Upper Saddle River, NJ, USA.

Pillement, S., Sentieys, O. and David, R. (2008) ‘DART: a
functional-level reconfigurable architecture for high energy
efficiency’, EUROSIP Journal on Embedded Systems,
Vol. 2008, p.13, Article ID 562326.

Quenot, G., Coutelle, C., Serot, J., Zavidovique, B. (1993)
‘Implementing image processing applications on a real-time
architecture’, Proceedings of IEEE Workshop on Computer
Architectures for Machine Perception, New Orleans, MI,
USA, pp.34–42.

Salomão, C., Alves, V. and Chaves-Filho, E.C. (1998) ‘HiPCrypto:
a high performance VLSI cryptographic chip’, Proceedings of
IEEE ASIC Conference, Rochester, NY, USA, pp.7–13.

Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J.,
Burger, D., Kecler, S.W. and Moore, C.R. (2003) ‘Exploiting
ILP, TLP, and DLP with polymorphous TRIPS architecture’,
Proceedings of 30th Annual International Symposium on
Computer Architecture, San Diego, CA, USA, pp.422–433.

Shibata, Y., Miyazaki, H., Ling, X. and Amano, H. (1998)
‘HOSMII: a virtual hardware integrated with DRAM’,
Proceedings of 5th Reconfigurable Architectures Workshop,
Orlando, FL, USA, pp.85–90.

 PRADA: a high-performance reconfigurable parallel architecture based on the dataflow model 55

Schneier, B. (1996) Applied Cryptography, 2nd edition, John
Wiley, New York.

Šilc, J., Robič, B. and Ungerer, T. (1999) Processor Architecture:
from Dataflow to Superscalar and Beyound, Springer-Verlag,
Berlin-Heidelberg.

Singh, H.S., Lee, M.H., Lu, G., Kurdahi, F.J., Bagherzadeh, N. and
Chaves Filho, E.M. (2000) ‘MorphoSys: an integrated
reconfigurable system for data-parallel computation-intensive
applications’, IEEE Transactions on Computers, Vol. 49,
No. 5, pp.465–481.

Stallings, W. (2009) Computer Organization and Architecture,
8th ed., Prentice Hall, Upper Siddle River.

Swanson, S., Michelson, K., Schwerin, A. and Oscin, M. (2003)
‘WaveScalar’, Proceedings of 36th IEEE/ACM International
Symposium on Microarchitecture, pp.291–302.

Tanenbaum, A.S. (2005) Structured Computer Organization,
5th edition. Prentice Hall, Upper Saddle River.

Teifel, J. and Manohar, R. (2004) ‘An asynchronous dataflow
FPGA architecture’, IEEE Transactions on Computers,
Vol. 53, No. 11, pp.1376–1392.

Vahey, M., Granacki, J., Lewins, L., Davidoff, D., Draper, J.,
Steele, C., Groves, G., Kramer, M., Lacoss, J., Prager, K.,
Kulp, J. and Channell, C. (2006) ‘MONARCH: a first
generation polymorphic computing processor’, Proceedings
of 10th Annual Workshop on High Performance Embedded
Computing, Boston, MA, USA, pp.CDROM.

Varnagiryte, B. Zamelis, A., Olsen, O., Koch, P., Wolf, O. and
Kazanavicius, E. (2002) ‘A practical approach to DSP code
optimization using compiler/architecture’, Ultragarsas,
Vol. 43, No. 2, pp.28–33.

Veen, A.H. (1986) ‘Dataflow machine architecture’, ACM
Computing Surveys, Vol. 18, No. 4, pp.365–398.

Yiannacouras, P., Steffan, J.G. and Rose, J. (2007) ‘Exploration
and customization of FPGA-based soft processors’, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 26, No. 2, pp.266–277.

