
Int. J. Bio-Inspired Computation, Vol. 3, No. 1, 2011 1

Copyright © 2011 Inderscience Enterprises Ltd.

New inspirations in swarm intelligence: a survey

R.S. Parpinelli*
Bioinformatics Laboratory,
Federal University of Technology – Paraná (UTFPR),
Curitiba (PR), 80230-901, Brazil
and
Applied Cognitive Computing Group,
Santa Catarina State University (UDESC),
Joinville (SC), 89223-100, Brazil
E-mail: parpinelli@joinville.udesc.br
*Corresponding author

H.S. Lopes
Bioinformatics Laboratory,
Federal University of Technology – Paraná (UTFPR),
Curitiba (PR), 80230-901, Brazil
E-mail: hslopes@utfpr.edu.br

Abstract: The growing complexity of real-world problems has motivated computer scientists to
search for efficient problem-solving methods. Evolutionary computation and swarm intelligence
meta-heuristics are outstanding examples that nature has been an unending source of inspiration.
The behaviour of bees, bacteria, glow-worms, fireflies, slime moulds, cockroaches, mosquitoes
and other organisms have inspired swarm intelligence researchers to devise new optimisation
algorithms. This tutorial highlights the most recent nature-based inspirations as metaphors for
swarm intelligence meta-heuristics. We describe the biological behaviours from which a number
of computational algorithms were developed. Also, the most recent and important applications
and the main features of such meta-heuristics are reported.

Keywords: swarm intelligence; new meta-heuristics; bio-inspired algorithms; problem solving
methods; biological behaviours; social living beings.

Reference to this paper should be made as follows: Parpinelli, R.S. and Lopes, H.S. (2011) ‘New
inspirations in swarm intelligence: a survey’, Int. J. Bio-Inspired Computation, Vol. 3, No. 1,
pp.1–16.

Biographical notes: R.S. Parpinelli received his BSc in Computer Science (2000) from the
Maringá State University (UEM), and MSc in Computer Science (2001) from the Federal
University of Technology – Paraná (UTFPR). Currently, he is a PhD candidate in Computer
Science at UTFPR. He is also a Professor in the Computer Science Department of the Santa
Catarina State University (UDESC). His main areas of interest are data mining, bioinformatics
and all kinds of bio-inspired algorithms.

H.S. Lopes received his degrees in Electrical Engineering (1984) and MSc in Biomedical
Engineering (1990) from the Federal University of Technology – Paraná – UTFPR, and PhD in
Electrical Engineering (1996) from the Federal University of Santa Catarina. He is presently
working as an Associate Professor in the Department of Electronics of UTFPR. He is the Head of
the Bioinformatics Laboratory of UTFPR, since its foundation in 1997. He is also a Researcher of
the Brazilian National Research Council. His current research interests are evolutionary
computation applications, data mining and bioinformatics.

1 Introduction

Swarm-based systems are inspired by the behaviour of some
social living beings, such as ants, termites, birds, and fishes.
Self-organisation and decentralised control are remarkable
features of swarm-based systems that, such as in nature,
leads to an emergent behaviour. Emergent behaviour is a

property that emerges through local interactions among
system components and it is not possible to be achieved by
any of the components of the system acting alone
(Bonabeau et al., 1999; Garnier et al., 2007).

In the beginning, the two mainstreams of the swarm
intelligence area were: ant colony optimisation (Dorigo and

2 R.S. Parpinelli and H.S. Lopes

Stützle, 2004) and particle swarm optimisation (Kennedy
and Eberhart, 2001; Poli et al., 2007).

The ACO meta-heuristics is inspired by the foraging
behaviour of ants. The ants’ goal is to find the shortest
path between a food source and the nest. Each path
constructed by the ants represents a potential solution to the
problem being solved. When foraging for food, ants lay
down a chemical substance called pheromone. Ants can
locally communicate to each other by means of the
pheromone trails deposited in the environment. This indirect
communication system is called stigmergy. When an ant
finds a path from a food source to the nest, it deposits
certain amount of pheromone in the path biasing other ants
to follow that path. This is known as positive feedback and
it is the result of successive deposits of pheromone on the
same path: as more ants use a path, more pheromone will be
present, and consequently, more ants will be attracted to it.
As a chemical substance, the pheromone evaporates along
time, therefore, reducing attractiveness strength of the trail.
From the combination of stigmergy, positive feedback and
evaporation an emergent behaviour takes place in the ant
colony, leading them to find the shortest path between a
food source and the colony.1

The PSO meta-heuristics2 is motivated by the coordinate
movement of fish schools and bird flocks. The PSO is
compounded by a swarm of particles. Each particle
represents a potential solution to the problem being solved
and the position of a particle is determined by the solution it
currently represents. In PSO, particles are ‘flown’ through
hyperdimensional search space. Changes to the position of
the particles within the search space are based on the
socio-cognitive tendency of individuals to emulate the
success of other individuals. Each individual of a population
has its own life experience and is able to evaluate the
quality of its experience. As social individuals they also
have knowledge about how well their neighbours have
behaved. These two kind of information corresponds to the
cognitive component (individual learning) and social
component (cultural transmission), respectively. Hence, an
individual decision is taken considering both the cognitive
and the social components, thus, leading the population to
an emergent behaviour of forage for food or escape from a
predator.

Both methods above cited have been applied
successfully in a vast range of problems (Clerc, 2006). In
recent years, new swarm intelligence algorithms have
appeared, inspired by bacterial foraging (BFO) (Passino,
2002), fireflies bioluminescense (Krishnanand and Ghose,
2009; Yang, 2008), slime moulds life cycle (Monismith and
Mayfield, 2008), cockroaches infestation (Havens et al.,
2008), mosquitoes host-seeking (Feng et al., 2009), bats
echolocation (Yang, 2010a), and various bees algorithms
(BAs), i.e., inspired by bees foraging (Karaboga, 2005;
Pham et al., 2006a) and bees mating (Haddad and Afshar,
2004) (for a comprehensive review about algorithms
inspired by only bee swarms (see Karaboga and Akay,
2009b). In spite of the swarm inspiration common to these

approaches they have their own particular way to exploit
and explore the search space of the problem.

This work aims at surveying the most recent inspirations
in the field of swarm intelligence, reporting them in a
concise way. The way each approach search the space of
solutions and other features (i.e., biological inspiration,
communication model) are presented in the paper.

The following section describes these new approaches,
from the inspirative nature phenomenon to the
corresponding meta-heuristics. Section 3 shows applications
of these algorithms in the most different domains.
Some important features concerning all algorithms are
summarised and discussed in Section 4. Later, some general
conclusions are presented.

2 New inspirations and meta-heuristics

The careful observation of the behaviour of some living
beings can give us insights on how to map their natural
behaviour into algorithmic routines. That is why the new
meta-heuristics discussed in this work are nature-inspired
algorithms. These new approaches are global optimisation
meta-heuristics and they are basically composed by a
selection of the best scheme and by a randomisation
scheme. The former guides, the algorithm convergence to
the optimality (exploitation) and the later avoids both the
loss of diversity and the algorithm to get trapped in local
optima (exploration). A good balance between exploitation
and exploration may lead to the global optimality
achievement.

Sections 2.1 to 2.8 present some natural or behavioural
phenomena in specific living beings that inspired
computational models for problem solving.

2.1 Bee foraging

Many social insects, such as ants and bees, spend most of
their life in foraging for food. Honey bee colonies have a
decentralised system to collect the food and can adjust the
searching pattern precisely in order to enhance the
collection of nectar (Seeley, 1995).

Bees can estimate the distance from the hive to food
sources by measuring the amount of energy consumed when
they fly, besides the direction and the quality of the food
source. This information is shared with their nestmates by
performing a waggle dance and trophallaxis (direct contact).
The dance floor is the place in the hive where the coming
back forager bees perform the waggle dance to recruit more
foragers. Bees that decide foraging without any guidance
from other bees are called scouts. Bees that attend to the
waggle dance at the dance floor can decide which food
source to go based on his its quality. The quality of a food
source is proportional to the quantity of nectar found there,
and this information is transmitted by changing the intensity
of the waggle dance and through antennae contacts. The
better the food source, the most intense is the dance and the
contacts (Reinhard and Srinivasan, 2009).

 New inspirations in swarm intelligence: a survey 3

Each forager bee can behave in three different ways
after unloading the food: it can perform the waggle dance to
recruit more foragers to the same food source; it can
abandon the food source due to loss of available resources;
or it can directly return to foraging.

The basic idea concerning the algorithms based on the
bee foraging behaviour is that foraging bees have a potential
solution to an optimisation problem in their memory (i.e., a
configuration for the problem decision variables). This
potential solution corresponds to the location of a food
source and has an aggregated quality measure (i.e., value of
the objective function). The food source quality information
is exchanged through the waggle dance that probabilistically
biases other bees to exploit food sources with higher
quality.

Some algorithms inspired by bee foraging behaviour
have been found in literature including bee system (Sato and
Hagiwara, 1997), honey bee algorithm (Nakrani and Tovey,
2003), BeeHive (Wedde et al., 2004), virtual bee algorithm
(Yang, 2005), bee colony optimisation (Teodorovic and
Dell’Orco, 2005), bees swarm optimisation (Drias et al.,
2005), artificial bee colony (ABC) algorithm (Karaboga,
2005), BA (Pham et al., 2006a), honey bee foraging (Baig
and Rashid, 2007). The two most widely used bee foraging
inspired algorithms are described next.

2.1.1 Bees algorithm

The BA was first introduced by Pham et al. (2005) applied
to a benchmark of mathematical functions. In this seminal
work, the comparison with other meta-heuristics (simplex
method, stochastic simulated annealing, genetic algorithm
and ant colony system) showed that BA outperformed them,
regarding processing speed and accuracy of results, thus,
suggesting that BA is a powerful optimisation approach.

In this algorithm, a bee is a d-dimensional vector
containing the problem variables and represents a possible
solution to an optimisation problem. Moreover, a solution
represents a visited site (i.e., food source) and has a fitness
value assigned. The fitness is computed according to the
objective function being optimised. The algorithm balances
exploration and exploitation by using scout bees that
randomly search for new sites and use recruitment for
neighbourhood search in sites with the higher fitness,
respectively (Pham et al., 2006a).

The algorithm starts with n scout bees randomly placed
in the search space of dimension d. Each solution

1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is evaluated by a fitness function

() , 1,..., .if x i n= Bees that have the highest fitnesses are
chosen as ‘selected bees’ and sites visited by them (elite
sites) are chosen for neighbourhood search. The algorithm
conducts searches in the neighbourhood of the selected
sites, assigning more bees to search near to the best sites
(recruitment). The BA parameters are: number of scout bees
(n); number of selected sites (m), out of the n bees; number
of elite sites (e), out from the m selected sites; number of
bees recruited for the best e elite sites (nep); number of bees
recruited for the other (m – e) selected sites (nsp); and the

radius for neighbourhood search (ngh). The BA is shown in
Algorithm 1. Further information about BA can be found in
its repository.3

Algorithm 1 Bees algorithm (BA)

1 Parameters: n, m, e, nep, nsp, ngh

2 Initialise the bees population ix randomly

3 Evaluate fitness ()if x of the population

4 while stop condition not met do

5 Select m sites from n

6 for each m do

7 Select nsp sites from m

8 for each nsp do

9 Perform neighbourhood search with radius ngh

10 Update bee position according to f()

11 end for

12 end for

13 Select e elite sites from m

14 for each e do

15 for each nep do

16 Perform neighbourhood search with radius ngh

17 Update bee position according to f()

18 end for

19 end for

20 Assign remaining (m – e) bees to search randomly and
evaluate their fitness

21 Rank all the bees and find the current best

22 end while

23 Postprocess results and visualisation

2.1.2 ABC algorithm

The ABC algorithm was first proposed by Karaboga (2005)
for solving multidimensional and multimodal optimisation
problems. A recent work (Karaboga and Akay, 2009a)
compared the ABC algorithm performance against other
population-based algorithms (genetic algorithm, particle
swarm optimisation, differential evolution and evolution
strategies) upon several benchmark functions. Results
showed that the performance of the ABC was better than or
similar to those of the other algorithms. Another relevant
work concerning the ABC algorithm analysed the tuning of
control parameters (Akay and Karaboga, 2009a).

Algorithm 2 Artificial bee colony (ABC) algorithm

1 Parameters: n, limit
2 Initialise the food sources ix randomly

3 Evaluate fitness ()if x of the population

4 while stop condition not met do

4 R.S. Parpinelli and H.S. Lopes

5 for i = 1 to n / 2 do {Employed phase}
6 Select k, j and r at random such that

k ∈ {1, 2, …, n}, j ∈ {1, 2, …, d},
7 r ∈ [0, 1]
8 ()ij ij kjv x r x x= + ⋅ −

9 Evaluate solutions v and ix

10 if ()f v is better than ()f x then

11 Greedy selection
12 else
13 counti = counti + 1
14 end if
15 end for
16 for i = n / 2 + 1 to n do {Onlooker phase}
17 Calculate selection probability
18 () ()

()
k

n
kk i

f x
k

f x
P x

−

=
∑

19 Select a bee using the selection probability
20 Produce a new solution v from the selected bee

21 Evaluate solutions v and ix

22 if ()f v is better than ()f x then

23 Greedy selection
24 else
25 counti = counti + 1
26 end if
27 end for
28 for i = 1 to n do {Scout phase}
29 if counti > limit then
30 randomix =

31 end if
32 end for
33 Memorise the best solution achieved so far
34 end while
35 Postprocess results and visualisation

The ABC algorithm begins with n solutions (food sources)
of dimension d that are modified by the artificial bees.
Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is evaluated by a fitness

function () , 1,..., .if x i n= The bees aim at discovering
places of food sources (regions in the search space) with
high amount of nectar (good fitness). There are three types
of bees: the scout bees that randomly fly in the search space
without guidance; the employed bees that exploit the
neighbourhood of their locations selecting a random
solution to be perturbed; and the onlooker bees that use the
population fitness to select probabilistically a guiding
solution to exploit its neighbourhood. If the nectar amount
of a new source is higher than that of the previous one in
their memory, they update the new position and forget the
previous one (greedy selection). If a solution is not

improved by a predetermined number of trials, controlled by
the parameter limit, then the food source is abandoned by
the corresponding employed bee and it becomes a scout bee.
The ABC is shown in Algorithm 2. More about the ABC
algorithm can be found in the repository.4

The ABC algorithm attempts to balance exploration and
exploitation using the employed and onlooker bees to
perform local search, and the scout bees to perform global
search, respectively.

2.2 Bee mating

The honey bee mating process is started when the queen
flies in a journey called mating flight. The queen is the only
sexually productive female in the colony. Hence, it is the
mother of all future queens, drones and workers. The
lifetime of the queen is around one to three years, in average
(Winston, 1991).

The drones follow the queen and the mating takes place
in the air during seven or more days. The sperm of the
drones are stored into a small organ called spermatheca in
the queen’s abdomen. The queen uses this random mix of
accumulated sperm to fertilise its eggs during its whole live
(Winston, 1991).

The basic idea concerning the algorithms based on bee
mating behaviour is that the queen is considered the best
solution to an optimisation problem and during the mating
flight, it selects drones probabilistically for reproduction so
as to form the spermatheca. The spermatheca is, then, a pool
of selected solutions. New broods are created by
crossovering the genotypes of drones and the queen. Natural
selection takes place by replacing weaker queens by fitter
broods. The algorithm inspired by the bee mating behaviour
is described in details next.

2.2.1 Marriage in MBO algorithm

The first bee mating algorithm, called marriage in
honey-bees optimisation (MBO) algorithm, was presented
by (Abbass, 2001), and was applied to propositional
satisfiability problems, known as 3-SAT problems.

In the MBO the mating flight can be seen as a set of
transitions in a state space (fitness landscape), where queens
(solutions) moves between different states and mates
probabilistically with the drone encountered at each state.
The probability of mating depends on the queen’s energy
and speed, and the fitness of the drone. The workers are
heuristics, such as local search, used to improve the
solutions. Each queen 1 2, ,...,i i i idq q q q= ⎡ ⎤⎣ ⎦ is characterised
by a genotype of dimension d, a speed at instant t(Si(t)), an
energy at instant t(Ei(t)), and a spermatheca with a defined
capacity. The MBO algorithm has some user-defined
parameters: the number of queens (Q); the queen’s
spermatheca size (M), representing the maximum number of
matings in a single mating flight; the number of broods (B)
that will be born from the queen; and a speed reduction
factor (α). The MBO is shown in Algorithm 3 and it can be
summarised in five main steps:

 New inspirations in swarm intelligence: a survey 5

1 Mating flight, where a queen selects drones
probabilistically to form the spermatheca. A drone is
randomly selected from the spermatheca for the
creation of broods.

2 Creation of new broods (trial solutions) by
crossoverring genotypes of drones and the queen.

3 Use of workers (heuristics) to conduct local search on
broods (trial solutions).

4 Adaptation of workers’ fitness based on the amount of
improvement achieved on broods.

5 Replacement of weaker queens by fitter broods.

Algorithm 3 Marriage in honey-bees optimisation algorithm
(MBO)

1 Parameters: Q, M, B, α

2 Initialise the population of queens iq randomly

3 for each queen iq do

4 Use the workers to improve the queens’ genotype

5 Initialise spermathecai as empty

6 end for

7 for j = 1 to M do {mating-flight loop}

8 t = 0

9 for i = 1 to Q do

10 Initialise Ei(t) and Si(t) at random

11 Initialise energy reduction step 0.5 ()iE t
M=γ

12 Generate a drone D of dimension d at random

13 while E(t) > 0 do

14 Evaluate drone’s genotype ()f D and queen’s

genotype ()if q

15
if

() ()
()

f q f Di
S tirand e
−

−⎛ ⎞
<⎜ ⎟⎜ ⎟

⎝ ⎠
 and spermathecai < M

then

16 Add drone’s sperm to spermathecai

17 end if

18 t = t + 1

19 Update queen’s internal energy:
Ei(t + 1) = Ei(t) – γ

20 Update queen’s speed: Si(t + 1) = αSi(t)

21 if rand < Si(t) then

22 Perturbate drone’s genotype

23 end if

24 end while

25 end for

26 Generate B broods by crossover and mutation

27 Use workers to improve the broods

28 while the best brood is better than the worst queen do

29 Replace the least-fittest queen with the best brood

30 Remove the best brood from the brood list

31 end while

32 end for

33 Postprocess results and visualisation

2.3 Bacterial chemotaxis

An Escherichia coli bacterium can move itself by rotating
its flagella distributed around the cell body. When all
flagella rotate counterclockwise they propel the bacterium
along a trajectory, which is called run (or swim). When the
flagella rotate clockwise, they pull on the bacterium in
different directions and make the bacterium to tumble
(Berg, 2003). The bacterium alternates between these two
modes to search for nutrients in random directions. A proper
combination of running and tumbling keeps the bacteria in
places of higher concentration of nutrients. This foraging
activity is called bacterial chemotaxis. This behaviour can
be considered as an optimisation process that includes the
exploitation of known resources and the exploration for
new, potentially more valuable resources. The algorithm
inspired by BFO is described next.

2.3.1 BFO algorithm

The BFO algorithm was first reported by Passino (2002)
that applied the algorithm to the optimisation of a
benchmark function.

Possible solutions to an optimisation problem are
represented in the BFO algorithm by a colony of n bacteria
of dimension d. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is

evaluated by a fitness function () , 1,..., .if x i n= The BFO
consists of three main routines: chemotaxis, reproduction,
and elimination-dispersal. In chemotaxis, a bacterium with
random direction represents a tumble and a bacterium with
the same direction of the previous step indicates a run. In
reproduction, the health of each bacterium represents its
fitness value. All bacteria are sorted according to their
health status and only the first half of population survives.
The surviving bacteria are split into two identical ones in
order to form a new population. Thus, the population of
bacteria is kept constant. The elimination-dispersal process
is responsible for increasing the diversity of the population.
The dispersion happens after a certain number of
reproduction steps, when some bacteria are chosen
according to a preset probability. Such bacteria are killed
and new ones are randomly generated in another position
within the search space. The exploitation of the search space
is accomplished by both chemotaxis and reproduction steps,
while the exploration is done by the elimination-dispersal
step.

6 R.S. Parpinelli and H.S. Lopes

Algorithm 4 Bacterial foraging algorithm (BFO)

1 Parameters: n, Nc, Ns, Nre, Ned, Ped, C(i) (i = 1, 2, …, n)

2 Initialise randomly the bacterial colony ix

3 for l = 1 to Ned do {Elimination-dispersal loop}

4 for k = 1 to Nre do {Reproduction loop}

5 for j = 1 to Nc do {Chemotaxis loop}

6 for i = 1 to n do

7 Compute fitness (), ,j k l
if x

8 Tumble: Generate random vector
Δ(i) ∈ [–1, 1]d

9 Move: (), , , ,

[()] ()
()

T

ij k l j k l
i i i i

x C iθ Δ

Δ ⋅Δ
= +

10 Compute (), ,j k l
if θ

11 m = 0

12 while m < Ns do {Run loop}

13 if () (), , , ,j k l j k l
i if f xθ < then

14 Update solution

15 Move again

16 else

17 m = Ns

18 end if

19 end while

20 end for

21 end for

22 for i = 1 to n do

23 ()()1 , ,
1

cNi j k l
health ij

J f x
+

=
=∑

24 Sort bacteria by ascending values

25 Best half of the colony duplicates and replaces
the worst part

26 end for

27 end for

28 for i = 1 to n do

29 if rand < Ped then

30 Generate a new random bacterium i

31 end if

32 end for

33 end for

34 Postprocess results and visualisation

The parameters involved in the BFO algorithm are: the
number of chemotactic steps (Nc); the number of run steps
(Ns); the number of reproductive steps (Nre); the number of
elimination-dispersal steps (Ned); the probability of
elimination (Ped); and the size of the step taken in each run

or tumble (C(i), for each bacterium i). The BFO is shown in
Algorithm 4.

2.4 Lampyridae bioluminescense

Lampyridae is a family of insects (order Coleoptera) that
are capable to produce natural light (bioluminescense) to
attract a mate or a prey. They are commonly called fireflies
or lightning bugs. In the species Lampyris noctiluca the
fireflies are also known as glow-worms and, despite of the
name, they are not worms. In this species, it is always the
female who glows, and only the male has wings. In other
species, Luciola lusitanica, both male and female
firefly may emit light and both have wings (Fraga, 2008;
Shimomura, 2006).

If a firefly is hungry or looks for a mate its light glows
brighter in order to make the attraction of insects or mates
more effective. The brightness of the bioluminescent light
depends on the available quantity of a pigment called
luciferin, and more pigment means more light (Tyler, 2002).

Two optimisation algorithms were inspired by the
bioluminescent behaviour and are described next.

2.4.1 Glow-worm swarm optimisation (GSO)
algorithm

The GSO algorithm was first presented by Krishnanand and
Ghose (2005) as an application to collective robotics.

In this algorithm, each glow-worm uses a probabilistic
mechanism to select a neighbour that has a luciferin value
associated with him and moves towards it. Glow-worms are
attracted to neighbours that glow brighter. The movements
are based only on local information and selective neighbour
interactions. This enables the swarm to divide into disjoint
subgroups that can converge to multiple optima of a given
multimodal function.

The GSO is shown in Algorithm 5. It starts by placing a
population of n glow-worms of dimension d randomly in the
search space. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is

evaluated by a fitness function () , 1,..., .if x i n= At the
beginning, all the glow-worms contain an equal quantity of
luciferin l0 and the same neighbourhood range decision r0.
Each iteration consists of a luciferin update phase followed
by a movement phase based on a transition rule. Other
involved parameters are the luciferin decay constant (ρ), the
luciferin enhancement constant (γ), the step size (s), the
number of neighbours (nt), the sensor range (rs) and a
constant value (β). The authors observed that the only two
parameters that influences the algorithm behaviour are n
and rs.

Algorithm 5 Glow-worm swarm optimisation algorithm (GSO)

1 Parameters: n, l0, r0, ρ, γ, β, s, rs, nt

2 Generate the glow-worms population ix randomly

3 for i = 1 to n do

 New inspirations in swarm intelligence: a survey 7

4 Initialise luciferin li(0) = l0
5 Initialise neighbourhood range 0(0)i

dr r=

6 end for
7 t = 1
8 while stop condition not met do
9 for each glow-worm i do {update luciferin}
10 li(t + 1) = (1 – ρ) ⋅ li(t) + γ ⋅ f(xi(t))
11 end for
12 for each glow-worm i do {movement phase}
13 Find neighbours Ni(t)
14 for each glow-worm j ∈ Ni(t) do
15 Find probability

()

() ()

() ()
() j i

k ik N ti

l t l t
ij l t l t

P t
∈

−

−
=
∑

16 end for
17 Select glow-worm j using Pij
18 Update glow-worm position with

() ()

() ()
(1) () j i

j i

x t x t
i i x t x t

x t x t s −

−

⎛ ⎞+ = + ⎜ ⎟
⎝ ⎠

19 Update decision range:
20 (){ }{ }(1) min ,max 0, () ()i i

d s d t ir t r r t n N tβ+ = + ⋅ −

21 end for
22 t = t + 1
23 end while
24 Postprocess results and visualisation

2.4.2 Firefly algorithm

The firefly algorithm (FA) was proposed by Yang (2008)
and the algorithm was applied to the optimisation of
benchmark functions. The FA uses three main basic rules:

1 a firefly will be attracted by other fireflies regardless
their sex

2 attractiveness is proportional to their brightness and
decreases as the distance among them increases

3 the landscape of the objective function determines the
brightness of a firefly.

This algorithm assumes that a population of n candidate
solutions for an optimisation problem are agents of type
firefly. These agents are vectors of dimension d representing
the problem variables. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is

evaluated by a fitness function () , 1,...,if x i n= that
represents his quality. Each agent glows proportionally to its
quality which, together with his attractiveness (β), dictate
how strong it attracts other members of the swarm.
Two other user-defined parameters are the maximum
attractiveness value (β0) and the absorption coefficient (γ)
that determines the variation of attractiveness with
increasing distance from communicated firefly. The FA is
summarised in Algorithm 6.

Algorithm 6 Firefly algorithm (FA)

1 Parameters: n, β0, γ
2 Initialise the fireflies population ix randomly

3 Compute ()f x

4 while stop condition not met do
5 (){ }min arg mini ii f x=

6 (){ }min arg min
ii x ix f x=

7 for i = 1 to n do
8 for j = 1 to n do
9 if () ()j if x f x< then {Move firefly i towards

j}
10 Calculate distance rj
11 Obtain attractiveness: 0

jreβ β −← γ

12 Generate a random solution iu

13 for k = 1 to d do
14 xi,k = (1 – β)xi,k + βxj,k + ui,k
15 end for
16 end if
17 end for
18 end for
19 Generate a random solution u

20 for k = 1 to d do {Best firefly moves randomly}
21 min min, , ki k i kx x u= +

22 end for
23 Compute ()f x

24 Find the current best
25 end while
26 Postprocess results and visualisation

2.5 Slime mould life cycle

The cells of a slime mould are known to biologists as the
amoeba Dictyostelium discoideum – Dd. Amoebae perform
a random search for food and move using their
pseudopodia5 as sensors to detect nearby food sources. The
pseudopod is not always completely accurate, but they
work, most time, to direct the amoebae towards food when
it is available (Kessin, 2001). Dd cells move independently
until starvation, emitting a chemical substance known as
cyclic adenosine monophosphate (cAMP). The last form
that Dd undergo during starvation is a period of grouping
together (aggregation). Thereafter, cells group together in
streams and eventually form a mound. The mound forms a
slime sheath about itself to protect from predatory
multicellular organisms and to forage new regions. Once the
mound is complete, cells orient themselves to form a head
and a tail. At this point, the slug is not a multicellular
organism, but a group of single-cell organisms working

8 R.S. Parpinelli and H.S. Lopes

towards a common goal (find food). This process continues
until the slug reaches a location with resources or until
resources have been depleted. If all resources have been
depleted, the amoeba dies. However, if a source is available,
culmination occurs and a fruiting body is formed. During
culmination and formation of the fruiting body, spores are
created and are dispersed by wind, birds or invertebrates.
When spores arrive at another location, they may lie
dormant for some time. After a period of dormancy, spores
form new amoebae, and the life cycle of Dd begins again.

Some algorithms that are inspired by this behaviour
have been found in literature including cell-based
optimisation algorithm (Rothermich et al., 2003) that uses
only a portion of the Dd life cycle and the slime mould
optimisation algorithm (SMOA) (Monismith and Mayfield,
2008) that uses the life cycle as a whole. Next section
describes the SMOA.

2.5.1 Slime mould optimisation algorithm

The SMOA was introduced by Monismith and Mayfield
(2008), and was applied to the optimisation of benchmark
functions. Although authors achieved good results
compared to the known optimum values of the benchmarks,
no comparisons were done with other algorithms.

The SMOA consists of an amoebae population of size n
representing possible solutions for an optimisation problem
of dimension d. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is

evaluated by a fitness function () , 1,..., .if x i n= In the
algorithm, amoebae may take a number of states:
vegetative amoeba, aggregating amoeba, mound, slug,
fruiting body, and dispersal. In the algorithm, amoebae
begin in the vegetative state, and are assigned to random
positions in the search space. They are given time to
search for local optima (i.e., food). Based on their initial
positions, a mesh is formed using the approximate nearest
neighbour algorithm (ε-ANN, where ε is the number of
neighbours being considered) (Arya et al., 1998). In the
vegetative state, amoebae perform a semi-random search.
This is accomplished by the ability of amoebae to extend
their pseudopodia towards multiple directions and, so,
perform a local search. A parameter k represents the number
of pseudopodia (and the number of directions explored by
each amoeba). A simulation of starvation is necessary to
start an aggregative state for the amoebae. This change is
controlled by two parameters: tunimproved iterations without
improving the best solution of an amoeba; and tlifetime, the
number of time steps since its last dispersal event. As the
number of starving amoebae in one distinct lattice point
increases above some preset threshold (A), the probability of
forming a mound also increases. Once there is no more
improvement in the slug movement, it must be dispersed to
continue searching for new locations with better results.
Through the algorithm, the communication is performed
using cAMP trails. A high-level view of SMOA is shown in
Algorithm 7. For a complete description (see Monismith
and Mayfield, 2008).

Algorithm 7 Slime mould optimisation algorithm (SMOA)

1 Parameters: n, k, ε, A
2 Generate the amoeba population ix randomly

3 Evaluate fitness ()if x

4 To all amoeba set the state to VEGETATIVE
5 Archive the best objective function value from the

amoebae
6 Input the locations of each amoeba to ε-ANN
7 Create a mesh based on the results of ε-ANN
8 for each amoeba i do
9 switch amoebae state
10 case VEGETATIVE: Vegetative movement
11 case AGGREGATIVE: Aggregation
12 case MOUD: Moud formation
13 case DISPERSAL: Dispersal
14 end switch
15 end for
16 Postprocess results and visualisation

2.6 Cockroaches infestation

Cockroaches are insects of the order Blattodea and are one
of the most ancient animals on earth, having appeared
around for 350 million years.

Communication between cockroaches occurs mainly
through chemical trails in their feces as well as emitting
airborne pheromone for swarming and mating. Using these
signs other cockroaches can follow the trails to discover
sources of food and water, and places where other
cockroaches are hiding (Bell et al., 2007). Cockroaches are
mainly nocturnal insects and will run away when exposed to
light. To decide which path to follow cockroaches basically
use two pieces of information: how dark is the environment,
and how many other cockroaches are there (Halloy et al.,
2007). In other words, in an infestation the cockroaches will
prefer to group themselves in darker places with other
cockroaches.

Next section describes the cockroaches infestation
algorithm.

2.6.1 Roach infestation optimisation

The roach infestation optimisation (RIO) was introduced by
Havens et al. (2008). They applied RIO to benchmark
functions and achieved competitive results compared to a
standard PSO. Actually, RIO has some elements that
resemble the traditional PSO algorithm.

In RIO algorithm, cockroaches agents are defined using
three simple behaviours:

• cockroaches search for the darkest location in the
search space and the fitness value is directly
proportional to the level of darkness (find darkness
phase)

 New inspirations in swarm intelligence: a survey 9

• cockroaches socialise with nearby cockroaches (find
friend phase)

• cockroaches periodically become hungry and leave the
friendship to search for food (find food phase).

Algorithm 8 Roach infestation optimisation algorithm (RIO)

1 Parameters: n, tmax, C0, Cmax, A, thunger
2 Initialise the roaches population ix and iv randomly

3 for i = 1 to n do
4 Set ip as ix

5 Initialise hungeri randomly between {0, thunger – 1}
6 end for
7 for t = 1 to tmax do
8 M = distances from one roach to each other
9 dg = average distance from M
10 for i = 1 to n do
11 if () ()i if x f p< then {Find darkness phase :

Update best roach location}
12 i ip x=

13 end if
14 Compute the neighbours of roach i:
15 {j} = {k: 1 ≤ k ≤ n, k ≠ I, Mik < dg}
16 Ni = number of neighbours | {j} |
17 for q = 1 to Ni do {Choose a neighbour}
18 if rand < A then
19 (){ }arg min , { , }i k kl f p k i q= =

20 end if
21 end for
22 if hungeri < thunger then {Find friend phase}
23 () ()0 max 1 max 2i i i i i iv C v C R p x C R l x= + − + −

24 i i ix x v= +

25 Increment hungeri
26 else {Find food phase}
27 xi = random food location. Random position.
28 hungeri = 0
29 end if
30 end for
31 end for
32 Postprocess results and visualisation

In fact, RIO is a cockroach-inspired PSO in which a
population of n cockroaches (possible solutions) of
dimension d use darkness sense (fitness function evaluation)
and neighbourhood communication to move through a
search space updating their positions ix and velocities .iv
Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is evaluated by a fitness

function () , 1,..., .if x i n= Each roach keeps its best

location pi found so far. The other tunable parameters
involved are tmax that is the maximum number of iteration of
the algorithm, C0 that ponderates the relative velocity
importance, Cmax that ponderates the relative importance of
both roach personal best and roach neighbour position, A
that influences the neighbour choice, and thunger that defines
the hunger interval. The RIO is shown in Algorithm 8.

2.7 Mosquito host-seeking

Mosquitoes are insects from the family Culicidae. Both
male and female mosquitoes feed on nectar (or other sugar
source). However, only the female of many species is also
capable of taking blood. A blood meal is necessary to
develop and nourish the eggs. To do so, female mosquitoes
have to seek for animals or humans as possible sources of
blood. This is known as host-seeking behaviour.

To find its blood host the female mosquito receives
external environmental information from its sensory
receptors. These sensory receptors respond to varying
concentrations of attractants such as carbon dioxide (CO2)
and L-lactic acid in the air. A mosquito, upon a host,
chooses a specific body region for feeding according to the
skin temperature and humidity (Mehlhorn, 2001).

A swarm of mosquitoes randomly searches a host to
attack. The host-seeking behaviour of a mosquito can be
summarised in three main steps:

1 it looks randomly for CO2 or a smelling substance

2 once identified the smell, it seeks towards a place of
high-concentration of this smell

3 it lands when it feels the radiated heat of the host.

2.7.1 Mosquito host-seeking algorithm

The MHSA treats every entry of the TSP matrix as an
artificial mosquito mij. Hence, the n-city TSP is transformed
into host-seeking behaviour of a swarm of n × n artificial
mosquitoes. A host is considered as an edge between cities
for the TSP. Each entry mij of the TSP matrix (a mosquito)
is a triple composed by dij (distance between cities i and j),
xij (mosquito sex: 0 for male and 1 for female), and rij
(distance between mij and the host). Each rij ranges from 0
to 1 as the artificial mosquito moves, and rij = 1 represents
that the artificial mosquito mij is attacking the host and the
shortest path passes through this host.

When all mosquitoes are in a state of equilibrium, all rij
will be 1 or 0. The equilibrium state indicates that the
swarm have found a possible solution for the problem.
Hence, a solution for the TSP using the MHSA is the set of
mosquitoes that have successfully attacked a host (rij = 1).
For an extended description of the mosquito host-seeking
algorithm (see Feng et al., 2009).

2.8 Bat echolocation

Several animals such as dolphins, shrews, most bats, and
most whales use echolocation (also called as biosonar) for

10 R.S. Parpinelli and H.S. Lopes

navigation, communication and foraging. Most bats use
echolocation at a certain degree and, among all the
species, microbats use echolocation extensively. In
microbats, echolocation is a type of sonar used to avoid
close obstacles in the dark, detect prey, and locate roosting
crevices (places to sleep over) (Altringham et al., 1998).
During echolocation these microbats emit a series of short,
high-frequency sounds and listen for the echo that bounces
back from the surrounding objects. With this echo a bat can
determine an object’s size, shape, direction, distance, and
motion. When hunting for a prey, the rate of pulse emission
can be speed up to about 200 pulses per second when they
fly near their prey and every pulse has a constant frequency.
Moreover, the wavelengths of a pulse are in the same order
(is proportional) of their prey sizes. The loudness also varies
from the loudest when searching for prey and to a quieter
base when homing towards the prey (Altringham et al.,
1998). Next section describes the bat echolocation
algorithm.

2.8.1 Bat algorithm

The bat algorithm (BA) was first presented in Yang
(2010b). They applied to benchmark functions, and
achieved better results compared to genetic algorithms and
PSO. To date, no other application to real-world problems
was found using the BA.

The basic idea behind the BA is that a population of n
bats (possible solutions) of dimension d use echolocation to
sense distance and fly randomly through a search space
updating their positions ix and velocities .iv Each solution

1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦ is evaluated by a fitness function

() , 1,..., .if x i n= The bats’ flight aims at finding food/prey
(best solutions). Two other parameters are: the loudness
decay factor (α) that acts in a similar role as the cooling
schedule in the traditional simulated annealing optimisation
method, and the pulse increase factor (γ) that regulates the
pulse frequency. The properly update for the pulse rate (ri)
and the loudness (Ai) balances the exploitation and
exploration behaviour of each bat, respectively. As the
loudness usually decrease once a bat has found its
prey/solution (in order to do not loss the prey), the rate of
pulse emission increases in order to raise the attack
accuracy. The BA pseudo-code is shown in Algorithm 9.

The BA is shown in Algorithm 9.

Algorithm 9 Bat algorithm (BA)

1 Parameters: n, α,γ

2 Initialise the bats population ix and iv randomly

3 Define pulse frequency if at ix

4 for i = 1 to n do

5 Initialise pulse rates ri and loudness Ai

6 end for

7 Compute ()if x

8 Find the current best x∗

9 while stop condition not met do

10 for i = 1 to n do

11 Generate new solutions by adjusting:

12 Frequency:

()min max min , [0,1]if f f f β β= + − ∈

13 Velocity: ()1t t t t
i i iv v x x f−

∗= + −

14 Location: 1t t t
i ix x v−= +

15 if rand > ri then

16 Select a solution among the best solutions

17 Generate a local solution around the selected
best solution

18 end if

19 Generate a new solution by flying randomly

20 if rand < Ai & () ()if x f x∗< then

21 Accept the new solutions

22 Increase 1 0: [1 exp()]t
i i ir r r t+ = − −γ

23 Decrease: 1: t
i i iA A Aα+ =

24 end if

25 end for

26 Find the current best x*

27 end while

28 Postprocess results and visualisation

3 Applications

For all the algorithms mentioned in the previous sections, a
search in the literature was done to find applications in the
most different domains. Although this search is not
exhaustive, it covers the most relevant applications, and
emphasises the applicability of those algorithms.

The BA (Section 2.1.1) was applied with success
in some problems including training of multi-layered
perceptron neural networks (Pham et al., 2006b), job shop
scheduling optimisation (Pham et al., 2007a), data
clustering (Pham et al., 2007b), multi-objective optimisation
(Pham and Ghanbarzadeh, 2007), protein folding
optimisation using the torsion angles model (Bahamish et
al., 2008), optimisation of fuzzy logic controller parameters
(Pham and Kalyoncu, 2009), peer-to-peer file sharing in
mobile ad-hoc networks (Dhurandher et al., 2009), and
interference suppression of linear antenna arrays (Guney
and Onay, 2010).

 New inspirations in swarm intelligence: a survey 11

Applications found in the literature using the ABC
algorithm (Section 2.1.2) include: the generalised
assignment problem optimisation (Baykasoğlu et al., 2007),
energy distribution network configuration (Srinivasa et al.,
2008; Linh and Anh, 2010), neural network training
(Karaboga and Ozturk, 2009), multi-objective optimisation
(Pawar et al., 2008), data clustering (Marinakis et al., 2009),
solving integer programming benchmarks (Akay and
Karaboga, 2009b), template matching in digital images
(Chidambaram and Lopes, 2009), and signal model
parameter extraction (Sabata et al., 2010).

The Marriage in MBO algorithm (Section 2.2.1), was
applied to several problems in the literature, for instance:
three-SAT problem optimisation (Abbass, 2001; Teo
and Abbass, 2003), MAX-SAT problem optimisation
(Benatchba et al., 2005), water resources management
(Haddad and Afshar, 2004), non-linear constrained and
unconstrained optimisation (with an updated version called
honey bee mating optimisation algorithm – HBMO)
(Haddad et al., 2006), stochastic dynamic programming
(Chang, 2006), continuous optimisation (with an improved
version of HBMO) (Afshar et al., 2007), data clustering
(Fathian et al., 2007), stepped spillway optimum design
(Haddad et al., 2008), and reconfiguration of multi-
objective distribution feeder (Taher, 2009).

The BFO algorithm (Section 2.3.1) has been used for
some applications such as multivariate PID controller tuning
(Kim and Cho, 2005a; Luo and Chen, 2010), power systems
harmonic estimation (Mishra, 2005), power transmission
loss optimisation (Tripathy et al., 2006), machine learning
(Kim and Cho, 2005b), multi-objective optimisation (Hazra
and Sinha, 2008), prediction of stock market indexes (Majhi
et al., 2009), identification of dynamic and non-linear
systems (Majhi and Panda, 2008, 2009), and optimisation of
fuzzy controller (Alavandar et al., 2010). Some other
applications are summarised in Das et al. (2009). Recently,
an updated version of the algorithm named self-adaptive
bacterial foraging optimisation (SABFO) was proposed by
Chen et al. (2008). Results obtained upon several
benchmark functions showed a significant improvement in
performance over the original BFO, whilst similar or even
superior performance compared to PSO and GA.

The GSO algorithm (Section 2.4.1) was applied in
Krishnanand and Ghose (2009) to find multiple optima of
multimodal benchmark functions. This work also conducted
detailed parameter tuning experiments. The comparison
with a Niched-PSO showed better results concerning the
number of peaks found in almost all test functions. Another
application using GSO is for hazard sensing in ubiquitous
environments (Krishnanand and Ghose, 2008).

For the FA (Section 2.4.2), a recent work done by
Lukasik and Zak (2009) performed an extensive set of
empirical tests for parameter tuning, and proposed some
extensions to the algorithm. Some comparisons against PSO
on benchmark functions showed competitive results,
suggesting that the FA is a powerful optimisation approach.
Some extensions in the algorithm was proposed in Yang

(2010a) combining Lévy flights with the FA search strategy.
Since FA is a very recent meta-heuristic, to date no other
application to real-world problems was found.

Concerning the SMOA (Section 2.5.1) no other
applications to problem solving were found to date, besides
that of the original paper (Monismith and Mayfield, 2008).

A single application of the RIO algorithm (Section
2.6.1) was found: it was used for pattern recognition in
images, checking the posture and stability of elders while
they are performing exercises (Havens et al., 2009).

Concerning the mosquito host-seeking algorithm
(MHSA, Section 2.7.1) and the BA (Section 2.8.1), to date,
no other application to real world problems was found,
besides the original works for solving the symmetric
travelling salesman problem (TSP) (Feng et al., 2009), and
for solving benchmark functions (Yang, 2010b),
respectively.

Most of the above-mentioned algorithms are very
recent. Although few applications have appeared to date, we
can notice a growing interest in bio-inspired computation.

4 Discussion

Table 1 summarises all algorithms in terms of
biological inspiration, optimisation domain, mechanisms of
exploitation and exploration, and the communication model
for each approach.

The second column of Table 1 indicates the biological
inspiration behind of each algorithm. All the inspiring
behaviours have in common two facts: they are
compounded by a distributed society/population of
individuals where the control is also distributed among the
individuals (there is no centralised control); and the
individuals’ decision-making is stochastic and based only
on local information, without knowledge of the global
pattern/solution (communications among them are
localised). Moreover, the society-level behaviour transcends
the behaviour of a single individual, leading to an emergent
behaviour through self-organisation.

The third column of Table 1 classifies the algorithms
according to the domain they were first applied, either
continuous or discrete optimisation. This classification was
done concerning the algorithms only in their first canonical
publication. An approach inserted in the continuous domain
is characterised by solving problems where the variables to
be optimised in the objective function can assume only real
values. On the other hand, the discrete domain is
characterised by solving problems where the variables to be
optimised in the objective function are restricted to assume
only discrete values, such as integers. Moreover, some
algorithms were further adapted to handle the other
optimisation domain, different from the original. It is the
case, e.g., of BA in Pham et al. (2007a), ABC in Akay and
Karaboga (2009b), and MBO in Afshar et al. (2007).

12 R.S. Parpinelli and H.S. Lopes

Table 1 Meta-heuristics summary

Algorithm Inspiration First applied to… Mechanism of exploitation Mechanism of exploration Communication model

BA Bee foraging Continuous
optimisation

Neighbourhood search in
good food sources

Random search of scout
bees

Broadcast-like

ABC Bee foraging Continuous
optimisation

Neighbourhood search
carried by employed and

onlooker bees

Random search of scout
bees

Broadcast-like

MBO Bee mating Discrete
optimisation

Neighbourhood search in
queens and broods carried

by workers

Spermatheca creation Direct

BFO Bacterial
foraging

Continuous
optimisation

Chemotaxis and
reproduction steps

Elimination-dispersal step Direct

GSO Firefly
bioluminescense

Continuous
optimisation

Glow-worm position
update

Find neighbour phase
dictated by sensor range

Broadcast-like

FA Firefly
bioluminescense

Continuous
optimisation

Firefly movement
according to attractiveness

Random move of the best
firefly

Broadcast-like

SMOA Amoebae
foraging

Continuous
optimisation

Vegetative state Dispersal state Stigmergic

RIO Cockroaches
infestation

Continuous
optimisation

Find friend phase Find food phase Broadcast-like

MHSA Mosquito
foraging

Discrete
optimisation

Host attraction Mosquitoes interaction Broadcast-like

BA Bat
echolocation

Continuous
Optimisation

Low loudness and high
pulse rate values

High loudness and low
pulse rate values

Broadcast-like

An interesting fact about the third column is that most
approaches can be applied to continuous optimisation. This
gives us an insight that they could be applied together to the
same problem, without major modifications, in order to
promote co-evolution. The co-evolution can occur when
migrations of individuals from one population biases
positively the evolution of another population that receives
the individuals. Hence, each approach can be viewed as an
island evolving with its own strategies upon a migration
topology.

The fourth and fifth columns of Table 1 show
the exploitation and exploration mechanisms for each
approach, respectively. All the mentioned algorithms
use exploration and exploitation procedures in their
own particular way to seek for the global optimum value
of an optimisation problem. According to the no
free-lunch theorem (Wolpert and Macready, 1997), it is
not possible to point which is the best approach
without considering a specific problem. At a higher
level, currently it is not possible to point which
algorithms are more efficient for generic classes of
problems, such as continuous optimisation or discrete
optimisation. Therefore, systematic studies comparing the
performance of the swarm intelligence algorithms presented
here are still missing and this will be a future research
direction.

The communication model (sixth column of Table 1)
classifies the approaches regarding how their individuals
communicate to each other. The communication can be:

1 Broadcast-like: The information propagates throughout
the environment to some limited extent and/or is made
available for a short time such as the bees waggle
dance, and the fireflies glow intensity.

2 Direct: The communication is done through
antennation, reproduction, trophallaxis (food or liquid
exchange), and mandibular contact.

3 Stigmergic/indirect: Occurs when one individual
modifies the environment and other individual responds
asynchronously to the changes in the environment at a
later time.

The communication models for the well-known ACO and
PSO meta-heuritics are indirect through pheromone trails in
the environment and broadcast-like through the social
component of particles, respectively. In the BA approach,
best sites are broadcasted and recruitment takes place. The
ABC algorithm uses the waggle dance to disseminate the
information. The MBO algorithm uses the spermatheca
formation as a direct communication strategy. The BFO
algorithm uses the reproduction phase to propagate the
information. Both GSO and FA approaches use the glow
intensity as broadcast-like communication strategy. The
SMOA uses indirect communication through cAMP trails in
the environment. The RIO algorithm broadcasts the
information using the find friend phase. In the MHSA,
broadcast-like communication occurs through the radiated
heat of the host. Finally, the BA approach uses the same
PSO strategy that is based on a social component.

 New inspirations in swarm intelligence: a survey 13

5 Conclusions and future work

This work presented a review of the most recent
developments in the field of swarm intelligence. Going
beyond the traditional ACO and PSO meta-heuristics, we
focused on emergent works that take inspiration from the
behaviour of social organisms, but are not much explored,
to date.

In the same way as in ACO and PSO, nature observation
has lead to these new algorithms. This highlights the fact
that the nature is an unending source of inspiration for
computer scientists, and many other approaches will appear
in the future.

The computer science community have already learned
about the importance of emergent behaviours for complex
problem solving. As shown in this work, learning about the
collective behaviour of living beings can provide interesting
and useful swarm-based meta-heuristics. The studies that
have been done to date show the potential of these new
approaches to effectively find good solutions to many types
of practical optimisation problems.

In fact, there is no ‘best’ approach, independently of
specific context (Wolpert and Macready, 1997). Different
implementations will be more adequate for different
problems, either leading to better solutions, or improved
speed. Moreover, the convenience of a particular approach
does not depend only on the problem: different methods will
be more useful for different people, depending on their
experience and expertise.

A straightforward future research is the comparison of
performance of these approaches upon a specific problem
in a specific domain, such as numerical optimisation
of mathematical functions (continuous optimisation),
combinatorial optimisation (discrete optimisation), or
multi-objective optimisation (either continuous or discrete
optimisation). Such work will focus on unveiling the
strengths and weakness of the several algorithms, as well as
trying to point out their applicability for different classes of
problems, from the user viewpoint.

In evolutionary computation in general, and in swarm
intelligence, in particular, the use of mechanisms for
self-adaptation of parameters is scarce, but a subject of
current research. Self-adaptation of parameters could be
useful, e.g., for the BFO algorithm that has seven
parameters, and for the GSO algorithm that has nine
parameters to be tuned by the user. It is not a trivial task to
set all these parameters to achieve the best performance for
a specific problem. Hence, the design of strategies to
fine-tune or to reduce the number of parameters of the
swarm intelligence algorithms presented in this paper is
another topic pointed for future research in this area.

Another two trends of research could be either to
explore the concept of co-evolution using these new
approaches working as islands upon a migratory topology,
or to explore the development of hybrid systems where
some properties of one approach are combined with those of
another one.

Hopefully, plenty of other collective behaviours remain
in the shadow waiting to be investigated, such as

dragonflies hunting, bees pollination, butterflies mating,
ants nest building, locusts collective motion, and others. In
the near future, these research opportunities will, possibly,
lead to novel algorithms and problem-solving
methodologies.

Acknowledgements

The authors would like to thank UDESC (Santa Catarina
State University) and FUMDES program for the financial
support to R.S. Parpinelli; as well as to the Brazilian
National Research Council (CNPq) for the Research Grant
No. 309262/2007-0 to H.S. Lopes.

References
Abbass, H. (2001) ‘MBO: marriage in honey bees optimization – a

haplometrosis polygynous swarming approach’, in
Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001, IEEE Press, pp.207–214.

Afshar, A., Haddad, O., Marino, M. and Adams, B. (2007)
‘Honey-bee mating optimization (HBMO) algorithm for
optimal reservoir operation’, Journal of the Franklin Institute,
pp.452–462.

Akay, B. and Karaboga, D. (2009a) ‘Parameter tuning for the
artificial bee colony algorithm’, in 1st International
Conference on Computational Collective Intelligence –
Semantic Web, Social Networks & Multiagent Systems,
October.

Akay, B. and Karaboga, D. (2009b) ‘Solving integer programming
problems by using artificial bee colony algorithm’, XI.
Conferences on Advances in Artificial Intelligence by the
Italian Association for Artificial Intelligence, December.

Alavandar, S., Jain, T. and Nigam, M.J. (2010) ‘Hybrid
bacterial foraging and particle swarm optimisation for
fuzzy precompensated control of flexible manipulator’,
International Journal of Automation and Control, Vol. 4, No.
2, pp.234–251.

Altringham, J., McOwat, T. and Hammond, L. (1998) Bats:
Biology and Behaviour, Oxford Univesity Press.

Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R. and
Wu, A. (1998) ‘An optimal algorithm for approximate
nearest neighbor searching’, in Journal of the ACM, Vol. 45,
pp.891–923.

Bahamish, H., Abdullah, R. and Salam, R. (2008) ‘Protein
conformational search using bees algorithm’, in Proceedings
of the 2008 Second Asia international Conference on
Modelling & Simulation, IEEE Computer Society.

Baig, A. and Rashid, M. (2007) ‘Honey bee foraging algorithm
for multimodal & dynamic optimization problems’, in
GECCO’07: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, pp.169–169.

Baykasoğlu, A., Ozbakir, L. and Tapkan, P. (2007) ‘Artificial bee
colony algorithm and its application to generalized
assignment problem’, in Chan, F.T.S. and Tiwari, M.K.
(Eds.): Swarm Intelligence: Focus on Ant and Particle Swarm
Optimization, Itech Education and Publishing, December,
pp.532–564.

Bell, W.J., Roth, L. and Nalepa, C. (2007) Cockroaches: Ecology,
Behavior, and Natural History, The Johns Hopkins
University Press.

14 R.S. Parpinelli and H.S. Lopes

Benatchba, K., Admane, L. and Koudil, M. (2005) ‘Using bees to
solve a data mining problem expressed as a maxsat one’,
in Proceedings of IWINAC’2005, International Work
Conference on the Interplay between Natural and Artificial
Computation, pp.212–220.

Berg, H. (2003) E. Coli in Motion, Springer-Verlag, NY.
Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999) Swarm

Intelligence: From Natural to Artificial Systems, Oxford
University Press.

Chang, H. (2006) ‘Converging marriage in honey-bees
optimization and application to stochastic dynamic
programming’, Journal of Global Optimization, Vol. 35,
pp.423–441.

Chen, H., Zhu, Y. and Hu, K. (2008) ‘Self-adaptation in bacterial
foraging optimization algorithm’, in Proceedings of 2008
3rd International Conference on Intelligent System and
Knowledge Engineering, pp.1026–1031.

Chidambaram, C. and Lopes, H. (2009) ‘A new approach for
template matching in digital images using an artificial bee
colony algorithm’, in World Congress on Nature and
Biologically Inspired Computing (NaBIC 2009).

Clerc, M. (2006) Particle Swarm Optimization, ISTE Press.
Das, S., Biswas, A., Dasgupta, S. and Abraham, A. (2009)

Bacterial Foraging Optimization Algorithm: Theoretical
Foundations, Analysis, and Applications, Volume 203/2009
of Studies in Computational Intelligence, Springer
Berlin/Heidelberg, pp.23–55.

Dhurandher, S., Singhal, S., Aggarwal, S., Pruthi, P., Misra, S. and
Woungang, I. (2009) ‘A swarm intelligence-based p2p file
sharing protocol using bee algorithm’, in International
Conference on Computer Systems and Applications, May,
pp.690–696.

Dorigo, M. and Stützle, T. (2004) Ant Colony Optimization, MIT
Press.

Drias, H., Sadeg, S. and Yahi, S. (2005) ‘Cooperative bees swarm
for solving the maximum weighted satisfiability problem’, in
IWAAN International Work Conference on Artificial and
Natural Neural Networks, pp.318–325.

Fathian, M., Amiri, B. and Maroosi, A. (2007) ‘Application of
honey-bee mating optimization algorithm on clustering’,
Applied Mathematics and Computation, Vol. 190, No. 2,
pp.1502–1513.

Feng, X., Lau, F.C.M. and Gao, D. (2009) ‘A new bio-inspired
approach to the traveling salesman problem’, in Complex
Sciences, Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications
Engineering, February, Vol. 5, pp.1310–1321, Springer
Berlin Heidelberg.

Fraga, H. (2008) ‘Firefly luminescence: a historical perspective
and recent developments’, Journal of Photochemical &
Photobiological Sciences, Vol. 7, pp.146–158.

Garnier, S., Gautrais, J. and Theraulaz, G. (2007) ‘The biological
principles of swarm intelligence’, Swarm Intelligence, June,
Vol. 1, No. 1, pp.3–31.

Guney, K. and Onay, M. (2010) ‘Bees algorithm for interference
suppression of linear antenna arrays by controlling the
phase-only and both the amplitude and phase’, Expert
Systems with Applications: An International Journal, Vol. 37,
No. 4, pp.3129–3135.

Haddad, O. and Afshar, A. (2004) ‘MBO algorithm, a new
heuristic approach in hydrosystems design and operation’, in
1st International Conference on Managing Rivers in the 21st
Century, pp.499–504.

Haddad, O., Afshar, A. and Mariño, M. (2006) ‘Honeybees mating
optimization (HBMO) algorithm: a new heuristic approach
for water resources optimization’, Water Resources
Management, Vol. 20, No. 5, pp.661–680.

Haddad, O., Mirmomeni, M. and Mariño, M. (2008) ‘Optimal
design of stepped spillways using the HBMO algorithm’,
Civil Engineering and Environmental Systems.

Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M.,
Tache, F., Said, I., Durier, V., Canonge, S., Amé, J.M.,
Detrain, C., Correll, N., Martinoli, A., Mondada, F.,
Siegwart, R. and Deneubourg, J.L. (2007) ‘Social integration
of robots into groups of cockroaches to control self-organized
choices’, Science, November, Vol. 318, No. 5853,
pp.1155–1158.

Havens, T., Alexander, G., Abbott, C., Keller, J., Skubic, M. and
Rantz, M. (2009) ‘Contour tracking of human exercises’, in
IEEE Workshop on Computational Intelligence for Visual
Intelligence, April, pp.22–28.

Havens, T., Spain, C., Salmon, N. and Keller, J. (2008) ‘Roach
infestation optimization’, IEEE Swarm Intelligence
Symposium, September, pp.1–7.

Hazra, J. and Sinha, A. (2008) ‘Environmental constrained
economic dispatch using bacteria foraging optimization’, in
Joint International Conference on Power System Technology
and IEEE Power India Conference, 2008. POWERCON 2008,
pp.1–6.

Karaboga, D. (2005) ‘An idea based on honey bee swarm for
numerical optimization’, Technical report, Erciyes University,
Engineering Faculty, Computer Engineering Department.

Karaboga, D. and Akay, B. (2009a) ‘A comparative study of
artificial bee colony algorithm’, Applied Mathematics and
Computation, Vol. 214, pp.108–132.

Karaboga, D. and Akay, B. (2009b) ‘A survey: algorithms
simulating bee swarm intelligence’, Artificial Intelligence
Review, October.

Karaboga, D. and Ozturk, C. (2009) ‘Neural networks training by
artificial bee colony algorithm on pattern classification’,
Neural Network World, Vol. 19, No. 3, pp.279–292.

Kennedy, J. and Eberhart, R. (2001) Swarm Intelligence, Morgan
Kaufmann.

Kessin, R. (2001) Dictyostelium: Evolution, Cell Biology, and the
Development of Multicellularity, Cambridge University Press,
Cambridge, UK.

Kim, D. and Cho, C. (2005a) ‘Adaptive tuning of PID controller
for multivariable system using bacterial foraging based
optimization’, in AWIC 2005, pp.231–235.

Kim, D. and Cho, C. (2005b) ‘Bacterial foraging based neural
network fuzzy learning’, in Proceedings of the 2005
Indian International Conference on Artificial Intelligence,
pp.2030–2036.

Krishnanand, K. and Ghose, D. (2005) ‘Detection of multiple
source locations using a glowworm metaphor with
applications to collective robotics’, in Proceedings of the
IEEE Swarm Intelligence Symposium, pp.84–91.

Krishnanand, K. and Ghose, D. (2008) ‘Glowworm swarm
optimization algorithm for hazard sensing in ubiquitous
environments using heterogeneous agent swarms’, in Soft
Computing Applications in Industry, Vol. 226, pp.165–187,
Springer-Verlag.

Krishnanand, K. and Ghose, D. (2009) ‘Glowworm swarm
optimization for simulataneous capture of multiple local
optima of multimodal functions’, Swarm Intelligence, Vol. 3,
No. 2, pp.87–124.

 New inspirations in swarm intelligence: a survey 15

Linh, N. and Anh, N. (2010) ‘Application artificial bee colony
algorithm (ABC) for reconfiguring distribution network’,
Second International Conference on Computer Modeling and
Simulation, January, Vol. 1, pp.102–106.

Lukasik, S. and Zak, S. (2009) ‘Firefly algorithm for continuous
constrained optimization tasks’, in 1st International
Conference on Computational Collective Intelligence.

Luo, Y. and Chen, Z. (2010) ‘Optimization for pid control
parameters on hydraulic servo control system based
on the novel compound evolutionary algorithm’, Second
International Conference on Computer Modeling and
Simulation, January, Vol. 1, pp.40–43.

Majhi, B. and Panda, G. (2008) ‘Nonlinear system identification
based on bacterial foraging optimization technique’,
International Journal of Systemics, Cybernetics and
Informatics, April, pp.44–50.

Majhi, B. and Panda, G. (2009) ‘A hybrid functional link neural
network and bacterial foraging approach for efficient
identification of dynamic systems’, International Journal of
Applied Artificial Intelligence in Engineering Systems,
January, Vol. 1, No. 1, pp.91–104.

Majhi, R., Panda, G., Majhi, B. and Sahoo, G. (2009) ‘Efficient
prediction of stock market indices using adaptive bacterial
foraging optimization (ABFO) and BFO based techniques’,
Expert Systems with Applications, August, Vol. 36, No. 6,
pp.10097–10104.

Marinakis, Y., Marinaki, M. and Matsatsinis, N. (2009) ‘A hybrid
discrete artificial bee colony – GRASP algorithm for
clustering’, International Conference on Computers and
Industrial Engineering, pp.548–553.

Mehlhorn, H. (2001) ‘Mosquitoes’, in Encyclopedic Reference of
Parasitology, Biology, Structure, Function, 2nd ed.,
pp.378–384, Springer Verlag.

Mishra, S. (2005) ‘A hybrid least square-fuzzy bacterial foraging
strategy for harmonic estimation’, IEEE Trans. Evolutionary
Computation, Vol. 9, No. 1, pp.61–73.

Monismith, D. and Mayfield, B. (2008) ‘Slime mold as a model
for numerical optimization’, in IEEE Swarm Intelligence
Symposium, pp.1–8.

Nakrani, S. and Tovey, C. (2003) ‘On honey bees and dynamic
allocation in an internet server colony’, in Proceedings of 2nd
International Workshop on the Mathematics and Algorithms
of Social Insects.

Passino, K. (2002) ‘Biomimicry of bacterial foraging for
distributed optimization and control’, IEEE Control Systems
Magazine, pp.52–67.

Pawar, P., Rao, R. and Shankar, R. (2008) ‘Multiobjective
optimization of electro-chemical machining process
parameters using artificial bee colony (ABC) algorithm’, in
Advances in Mechanical Engineering (AME-2008),
December.

Pham, D. and Ghanbarzadeh, A. (2007) ‘Multiobjective
optimisation using the bees algorithm’, in 3rd International
Virtual Conference on Intelligent Production Machines and
Systems (IPROMS 2007).

Pham, D. and Kalyoncu, M. (2009) ‘Optimisation of a fuzzy logic
controller for a flexible single-link robot arm using the bees
algorithm’, 7th IEEE International Conference on Industrial
Informatics, pp.475–480.

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and
Zaidi, M. (2005) ‘The bees algorithm’, Technical report,
Cardiff University, UK.

Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and
Zaidi, M. (2006a) ‘The bees algorithm – a novel tool for
complex optimisation problems’, in Proceedings of IPROMS,
pp.454–461.

Pham, D., Koc, E., Ghanbarzadeh, A. and Otri, S. (2006b)
‘Optimisation of the weights of multi-layered perceptrons
using the bees algorithm’, in Proc 5th International
Symposium on Intelligent Manufacturing Systems.

Pham, D., Koc, E., Lee, J. and Phrueksanant, J. (2007a) ‘Using the
bees algorithm to schedule jobs for a machine’, in Proc
Eighth International Conference on Laser Metrology, CMM
and Machine Tool Performance, pp.430–439.

Pham, D., Otri, S., Afify, A., Mahmuddin, M. and Al-Jabbouli, H.
(2007b) ‘Data clustering using the bees algorithm’, in Proc.
40th CIRP Int. Manufacturing Systems Seminar.

Poli, R., Kennedy, J. and Blackwell, T. (2007) ‘Particle swarm
optimization: an overview’, Swarm Intelligence, June, Vol. 1,
No. 1, pp.33–57.

Reinhard, J. and Srinivasan, S. (2009) ‘The role of scents in honey
bee foraging and recruitment’, Food Exploitation by Social
Insects: Ecological, Behavioral, and Theoretical Approaches,
CRC Press, 1st ed., pp.165–182.

Rothermich, J.A., Wang, F. and Miller, J.F. (2003) ‘Adaptivity
in cell based optimization for information ecosystems’, in
The Congress on Evolutionary Computation, Vol. 1,
pp.490–497.

Sabata, S.L., Udgatab, S.K. and Abraham, A. (2010) ‘Artificial
bee colony algorithm for small signal model parameter
extraction of mesfet’, Engineering Applications of Artificial
Intelligence.

Sato, T. and Hagiwara, M. (1997) ‘Bee system: finding solution by
a concentrated search’, in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics,
Vol. 4(C), pp.3954–3959.

Seeley, T. (1995) The Wisdom of the Hive, Harvard University
Press.

Shimomura, O. (2006) Bioluminescense: Chemical Principles and
Methods, World Scientific Publishing.

Srinivasa, R., Narasimham, S. and Ramalingaraju, M. (2008)
‘Optimization of distribution network configuration for loss
reduction using artificial bee colony algorithm’, International
Journal of Electrical Power and Energy Systems Engineering
(IJEPESE), Vol. 1, No. 2.

Taher, N. (2009) ‘An efficient hybrid evolutionary algorithm based
on PSO and HBMO algorithms for multi-objective
distribution feeder reconfiguration’, Energy Conversion and
Management, Vol. 50, No. 8, pp.2074–2082.

Teo, J. and Abbass, H. (2003) ‘A true annealing approach to the
marriage in honey-bees optimization algorithm’, International
Journal of Computational Intelligence and Applications,
Vol. 3, No. 2, pp.199–211.

Teodorovic, D. and Dell’Orco, M. (2005) ‘Bee colony
optimization – a cooperative learning approach to complex
transportation problems’, Advanced OR and AI Methods in
Transportation, pp.51–60.

Tripathy, M., Mishra, S., Lai, L. and Zhang, Q. (2006)
‘Transmission loss reduction based on FACTS and
bacteria foraging algorithm’, in Proceedings of the 2006
Parallel Problem Solving from Nature, Vol. 4139,
pp.222–231.

16 R.S. Parpinelli and H.S. Lopes

Tyler, J. (2002) The Glow-worm, Privately published.
Wedde, H., Farooq, M. and Zhang, Y. (2004) ‘Beehive: an

efficient fault-tolerant routing algorithm inspired by honey
bee behavior’, in Dorigo, M. (Ed.): Ant Colony Optimization
and Swarm Intelligence, pp.83–94, Springer Berlin.

Winston, M. (1991) The Biology of the Honey Bee, Harvard
University Press.

Wolpert, D. and Macready, W. (1997) ‘No free lunch theorems
for optimization’, IEEE Trans. Evolutionary Computation,
Vol. 1, No. 1, pp.67–82.

Yang, X. (2005) ‘Engineering optimizations via nature-inspired
virtual bee algorithms’, in Yang, J. and Alvarez, J. (Eds.):
IWINAC 2005, LNCS, pp.317–323, Springer-Verlag.

Yang, X. (2008) Firefly Algorithm, Chapter 8. Natureinspired
Metaheuristic Algorithms. Luniver Press.

Yang, X. (2010a) Firefly Algorithm, Lévy Flights and Global
Optimization, Research and Development in Intelligent
Systems XXVI, pp.209–218, Springer, London.

Yang, X. (2010b) ‘A new metaheuristic bat-inspired algorithm’, in
Nature Inspired Cooerative Strategies for Optimization
(NISCO 2010), Studies in Computational Intelligence,
Vol. 284, pp.65–74, Springer Berlin.

Notes

1 ACO Repository: available at
http://iridia.ulb.ac.be/~mdorigo/ACO/.

2 PSO Repository: available at http://www.particleswarm.info.
3 BA Repository: available at http://www.bees-algorithm.com.
4 ABC Repository: available at http://mf.erciyes.edu.tr/abc/.
5 A pseudopod is an extension of the cytoplasm of unicellular

organisms that imitates a foot and is used to move the cell.

