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1 Introduction 

Swarm-based systems are inspired by the behaviour of some 
social living beings, such as ants, termites, birds, and fishes. 
Self-organisation and decentralised control are remarkable 
features of swarm-based systems that, such as in nature, 
leads to an emergent behaviour. Emergent behaviour is a 

property that emerges through local interactions among 
system components and it is not possible to be achieved by 
any of the components of the system acting alone 
(Bonabeau et al., 1999; Garnier et al., 2007). 

In the beginning, the two mainstreams of the swarm 
intelligence area were: ant colony optimisation (Dorigo and 
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Stützle, 2004) and particle swarm optimisation (Kennedy 
and Eberhart, 2001; Poli et al., 2007). 

The ACO meta-heuristics is inspired by the foraging 
behaviour of ants. The ants’ goal is to find the shortest  
path between a food source and the nest. Each path 
constructed by the ants represents a potential solution to the 
problem being solved. When foraging for food, ants lay 
down a chemical substance called pheromone. Ants can 
locally communicate to each other by means of the 
pheromone trails deposited in the environment. This indirect 
communication system is called stigmergy. When an ant 
finds a path from a food source to the nest, it deposits 
certain amount of pheromone in the path biasing other ants 
to follow that path. This is known as positive feedback and 
it is the result of successive deposits of pheromone on the 
same path: as more ants use a path, more pheromone will be 
present, and consequently, more ants will be attracted to it. 
As a chemical substance, the pheromone evaporates along 
time, therefore, reducing attractiveness strength of the trail. 
From the combination of stigmergy, positive feedback and 
evaporation an emergent behaviour takes place in the ant 
colony, leading them to find the shortest path between a 
food source and the colony.1 

The PSO meta-heuristics2 is motivated by the coordinate 
movement of fish schools and bird flocks. The PSO is 
compounded by a swarm of particles. Each particle 
represents a potential solution to the problem being solved 
and the position of a particle is determined by the solution it 
currently represents. In PSO, particles are ‘flown’ through 
hyperdimensional search space. Changes to the position of 
the particles within the search space are based on the  
socio-cognitive tendency of individuals to emulate the 
success of other individuals. Each individual of a population 
has its own life experience and is able to evaluate the 
quality of its experience. As social individuals they also 
have knowledge about how well their neighbours have 
behaved. These two kind of information corresponds to the 
cognitive component (individual learning) and social 
component (cultural transmission), respectively. Hence, an 
individual decision is taken considering both the cognitive 
and the social components, thus, leading the population to 
an emergent behaviour of forage for food or escape from a 
predator. 

Both methods above cited have been applied 
successfully in a vast range of problems (Clerc, 2006). In 
recent years, new swarm intelligence algorithms have 
appeared, inspired by bacterial foraging (BFO) (Passino, 
2002), fireflies bioluminescense (Krishnanand and Ghose, 
2009; Yang, 2008), slime moulds life cycle (Monismith and 
Mayfield, 2008), cockroaches infestation (Havens et al., 
2008), mosquitoes host-seeking (Feng et al., 2009), bats 
echolocation (Yang, 2010a), and various bees algorithms 
(BAs), i.e., inspired by bees foraging (Karaboga, 2005; 
Pham et al., 2006a) and bees mating (Haddad and Afshar, 
2004) (for a comprehensive review about algorithms 
inspired by only bee swarms (see Karaboga and Akay, 
2009b). In spite of the swarm inspiration common to these 

approaches they have their own particular way to exploit 
and explore the search space of the problem. 

This work aims at surveying the most recent inspirations 
in the field of swarm intelligence, reporting them in a 
concise way. The way each approach search the space of 
solutions and other features (i.e., biological inspiration, 
communication model) are presented in the paper. 

The following section describes these new approaches, 
from the inspirative nature phenomenon to the 
corresponding meta-heuristics. Section 3 shows applications 
of these algorithms in the most different domains.  
Some important features concerning all algorithms are 
summarised and discussed in Section 4. Later, some general 
conclusions are presented. 

2 New inspirations and meta-heuristics 

The careful observation of the behaviour of some living 
beings can give us insights on how to map their natural 
behaviour into algorithmic routines. That is why the new 
meta-heuristics discussed in this work are nature-inspired 
algorithms. These new approaches are global optimisation 
meta-heuristics and they are basically composed by a 
selection of the best scheme and by a randomisation 
scheme. The former guides, the algorithm convergence to 
the optimality (exploitation) and the later avoids both the 
loss of diversity and the algorithm to get trapped in local 
optima (exploration). A good balance between exploitation 
and exploration may lead to the global optimality 
achievement. 

Sections 2.1 to 2.8 present some natural or behavioural 
phenomena in specific living beings that inspired 
computational models for problem solving. 

2.1 Bee foraging 

Many social insects, such as ants and bees, spend most of 
their life in foraging for food. Honey bee colonies have a 
decentralised system to collect the food and can adjust the 
searching pattern precisely in order to enhance the 
collection of nectar (Seeley, 1995). 

Bees can estimate the distance from the hive to food 
sources by measuring the amount of energy consumed when 
they fly, besides the direction and the quality of the food 
source. This information is shared with their nestmates by 
performing a waggle dance and trophallaxis (direct contact). 
The dance floor is the place in the hive where the coming 
back forager bees perform the waggle dance to recruit more 
foragers. Bees that decide foraging without any guidance 
from other bees are called scouts. Bees that attend to the 
waggle dance at the dance floor can decide which food 
source to go based on his its quality. The quality of a food 
source is proportional to the quantity of nectar found there, 
and this information is transmitted by changing the intensity 
of the waggle dance and through antennae contacts. The 
better the food source, the most intense is the dance and the 
contacts (Reinhard and Srinivasan, 2009). 
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Each forager bee can behave in three different ways 
after unloading the food: it can perform the waggle dance to 
recruit more foragers to the same food source; it can 
abandon the food source due to loss of available resources; 
or it can directly return to foraging. 

The basic idea concerning the algorithms based on the 
bee foraging behaviour is that foraging bees have a potential 
solution to an optimisation problem in their memory (i.e., a 
configuration for the problem decision variables). This 
potential solution corresponds to the location of a food 
source and has an aggregated quality measure (i.e., value of 
the objective function). The food source quality information 
is exchanged through the waggle dance that probabilistically 
biases other bees to exploit food sources with higher 
quality. 

Some algorithms inspired by bee foraging behaviour 
have been found in literature including bee system (Sato and 
Hagiwara, 1997), honey bee algorithm (Nakrani and Tovey, 
2003), BeeHive (Wedde et al., 2004), virtual bee algorithm 
(Yang, 2005), bee colony optimisation (Teodorovic and 
Dell’Orco, 2005), bees swarm optimisation (Drias et al., 
2005), artificial bee colony (ABC) algorithm (Karaboga, 
2005), BA (Pham et al., 2006a), honey bee foraging (Baig 
and Rashid, 2007). The two most widely used bee foraging 
inspired algorithms are described next. 

2.1.1 Bees algorithm 

The BA was first introduced by Pham et al. (2005) applied 
to a benchmark of mathematical functions. In this seminal 
work, the comparison with other meta-heuristics (simplex 
method, stochastic simulated annealing, genetic algorithm 
and ant colony system) showed that BA outperformed them, 
regarding processing speed and accuracy of results, thus, 
suggesting that BA is a powerful optimisation approach. 

In this algorithm, a bee is a d-dimensional vector 
containing the problem variables and represents a possible 
solution to an optimisation problem. Moreover, a solution 
represents a visited site (i.e., food source) and has a fitness 
value assigned. The fitness is computed according to the 
objective function being optimised. The algorithm balances 
exploration and exploitation by using scout bees that 
randomly search for new sites and use recruitment for 
neighbourhood search in sites with the higher fitness, 
respectively (Pham et al., 2006a). 

The algorithm starts with n scout bees randomly placed 
in the search space of dimension d. Each solution 

1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is evaluated by a fitness function 

( ) , 1,..., .if x i n=  Bees that have the highest fitnesses are 
chosen as ‘selected bees’ and sites visited by them (elite 
sites) are chosen for neighbourhood search. The algorithm 
conducts searches in the neighbourhood of the selected 
sites, assigning more bees to search near to the best sites 
(recruitment). The BA parameters are: number of scout bees 
(n); number of selected sites (m), out of the n bees; number 
of elite sites (e), out from the m selected sites; number of 
bees recruited for the best e elite sites (nep); number of bees 
recruited for the other (m – e) selected sites (nsp); and the 

radius for neighbourhood search (ngh). The BA is shown in 
Algorithm 1. Further information about BA can be found in 
its repository.3 

Algorithm 1 Bees algorithm (BA) 

1 Parameters: n, m, e, nep, nsp, ngh 

2 Initialise the bees population ix  randomly 

3 Evaluate fitness ( )if x  of the population 

4 while stop condition not met do 

5  Select m sites from n 

6  for each m do 

7   Select nsp sites from m 

8   for each nsp do 

9    Perform neighbourhood search with radius ngh 

10    Update bee position according to f() 

11   end for 

12  end for 

13  Select e elite sites from m 

14  for each e do 

15   for each nep do 

16    Perform neighbourhood search with radius ngh 

17    Update bee position according to f() 

18   end for 

19  end for 

20  Assign remaining (m – e) bees to search randomly and 
evaluate their fitness 

21  Rank all the bees and find the current best 

22 end while 

23 Postprocess results and visualisation 

2.1.2 ABC algorithm 

The ABC algorithm was first proposed by Karaboga (2005) 
for solving multidimensional and multimodal optimisation 
problems. A recent work (Karaboga and Akay, 2009a) 
compared the ABC algorithm performance against other 
population-based algorithms (genetic algorithm, particle 
swarm optimisation, differential evolution and evolution 
strategies) upon several benchmark functions. Results 
showed that the performance of the ABC was better than or 
similar to those of the other algorithms. Another relevant 
work concerning the ABC algorithm analysed the tuning of 
control parameters (Akay and Karaboga, 2009a). 

Algorithm 2 Artificial bee colony (ABC) algorithm 

1 Parameters: n, limit 
2 Initialise the food sources ix  randomly 

3 Evaluate fitness ( )if x  of the population 

4 while stop condition not met do 
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5  for i = 1 to n / 2 do {Employed phase} 
6   Select k, j and r at random such that  

k ∈ {1, 2, …, n}, j ∈ {1, 2, …, d}, 
7   r ∈ [0, 1] 
8   ( )ij ij kjv x r x x= + ⋅ −  

9   Evaluate solutions v  and ix  

10   if ( )f v  is better than ( )f x  then 

11    Greedy selection 
12   else 
13    counti = counti + 1 
14   end if 
15  end for 
16  for i = n / 2 + 1 to n do {Onlooker phase} 
17   Calculate selection probability 
18    ( ) ( )

( )
k

n
kk i

f x
k

f x
P x

−

=
∑

 

19   Select a bee using the selection probability 
20   Produce a new solution v  from the selected bee 

21   Evaluate solutions v  and ix  

22   if ( )f v  is better than ( )f x  then 

23    Greedy selection 
24   else 
25    counti = counti + 1 
26   end if 
27  end for 
28  for i = 1 to n do {Scout phase} 
29   if counti > limit then 
30    randomix =  

31   end if 
32  end for 
33  Memorise the best solution achieved so far 
34 end while 
35 Postprocess results and visualisation 

The ABC algorithm begins with n solutions (food sources) 
of dimension d that are modified by the artificial bees.  
Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is evaluated by a fitness 

function ( ) , 1,..., .if x i n=  The bees aim at discovering 
places of food sources (regions in the search space) with 
high amount of nectar (good fitness). There are three types 
of bees: the scout bees that randomly fly in the search space 
without guidance; the employed bees that exploit the 
neighbourhood of their locations selecting a random 
solution to be perturbed; and the onlooker bees that use the 
population fitness to select probabilistically a guiding 
solution to exploit its neighbourhood. If the nectar amount 
of a new source is higher than that of the previous one in 
their memory, they update the new position and forget the 
previous one (greedy selection). If a solution is not 

improved by a predetermined number of trials, controlled by 
the parameter limit, then the food source is abandoned by 
the corresponding employed bee and it becomes a scout bee. 
The ABC is shown in Algorithm 2. More about the ABC 
algorithm can be found in the repository.4 

The ABC algorithm attempts to balance exploration and 
exploitation using the employed and onlooker bees to 
perform local search, and the scout bees to perform global 
search, respectively. 

2.2 Bee mating 

The honey bee mating process is started when the queen 
flies in a journey called mating flight. The queen is the only 
sexually productive female in the colony. Hence, it is the 
mother of all future queens, drones and workers. The 
lifetime of the queen is around one to three years, in average 
(Winston, 1991). 

The drones follow the queen and the mating takes place 
in the air during seven or more days. The sperm of the 
drones are stored into a small organ called spermatheca in 
the queen’s abdomen. The queen uses this random mix of 
accumulated sperm to fertilise its eggs during its whole live 
(Winston, 1991). 

The basic idea concerning the algorithms based on bee 
mating behaviour is that the queen is considered the best 
solution to an optimisation problem and during the mating 
flight, it selects drones probabilistically for reproduction so 
as to form the spermatheca. The spermatheca is, then, a pool 
of selected solutions. New broods are created by  
crossovering the genotypes of drones and the queen. Natural 
selection takes place by replacing weaker queens by fitter 
broods. The algorithm inspired by the bee mating behaviour 
is described in details next. 

2.2.1 Marriage in MBO algorithm 

The first bee mating algorithm, called marriage in  
honey-bees optimisation (MBO) algorithm, was presented 
by (Abbass, 2001), and was applied to propositional 
satisfiability problems, known as 3-SAT problems. 

In the MBO the mating flight can be seen as a set of 
transitions in a state space (fitness landscape), where queens 
(solutions) moves between different states and mates 
probabilistically with the drone encountered at each state. 
The probability of mating depends on the queen’s energy 
and speed, and the fitness of the drone. The workers are 
heuristics, such as local search, used to improve the 
solutions. Each queen 1 2, ,...,i i i idq q q q= ⎡ ⎤⎣ ⎦  is characterised 
by a genotype of dimension d, a speed at instant t(Si(t)), an 
energy at instant t(Ei(t)), and a spermatheca with a defined 
capacity. The MBO algorithm has some user-defined 
parameters: the number of queens (Q); the queen’s 
spermatheca size (M), representing the maximum number of 
matings in a single mating flight; the number of broods (B) 
that will be born from the queen; and a speed reduction 
factor (α). The MBO is shown in Algorithm 3 and it can be 
summarised in five main steps: 



 New inspirations in swarm intelligence: a survey 5 

1 Mating flight, where a queen selects drones 
probabilistically to form the spermatheca. A drone is 
randomly selected from the spermatheca for the 
creation of broods. 

2 Creation of new broods (trial solutions) by 
crossoverring genotypes of drones and the queen. 

3 Use of workers (heuristics) to conduct local search on 
broods (trial solutions). 

4 Adaptation of workers’ fitness based on the amount of 
improvement achieved on broods. 

5 Replacement of weaker queens by fitter broods. 

Algorithm 3 Marriage in honey-bees optimisation algorithm 
(MBO) 

1 Parameters: Q, M, B, α 

2 Initialise the population of queens iq  randomly 

3 for each queen iq  do 

4  Use the workers to improve the queens’ genotype 

5  Initialise spermathecai as empty 

6 end for 

7 for j = 1 to M do {mating-flight loop} 

8  t = 0 

9  for i = 1 to Q do 

10   Initialise Ei(t) and Si(t) at random 

11   Initialise energy reduction step 0.5 ( )iE t
M=γ  

12   Generate a drone D  of dimension d at random 

13   while E(t) > 0 do 

14    Evaluate drone’s genotype ( )f D  and queen’s 

genotype ( )if q  

15    
if 

( ) ( )
( )

f q f Di
S tirand e
−

−⎛ ⎞
<⎜ ⎟⎜ ⎟

⎝ ⎠
 and spermathecai < M 

then 

16     Add drone’s sperm to spermathecai 

17    end if 

18    t = t + 1 

19    Update queen’s internal energy:  
Ei(t + 1) = Ei(t) – γ 

20    Update queen’s speed: Si(t + 1) = αSi(t) 

21    if rand < Si(t) then 

22     Perturbate drone’s genotype 

23    end if 

24   end while 

25  end for 

26  Generate B broods by crossover and mutation 

27  Use workers to improve the broods 

28  while the best brood is better than the worst queen do 

29   Replace the least-fittest queen with the best brood 

30   Remove the best brood from the brood list 

31  end while 

32 end for 

33 Postprocess results and visualisation 

2.3 Bacterial chemotaxis 

An Escherichia coli bacterium can move itself by rotating 
its flagella distributed around the cell body. When all 
flagella rotate counterclockwise they propel the bacterium 
along a trajectory, which is called run (or swim). When the 
flagella rotate clockwise, they pull on the bacterium in 
different directions and make the bacterium to tumble 
(Berg, 2003). The bacterium alternates between these two 
modes to search for nutrients in random directions. A proper 
combination of running and tumbling keeps the bacteria in 
places of higher concentration of nutrients. This foraging 
activity is called bacterial chemotaxis. This behaviour can 
be considered as an optimisation process that includes the 
exploitation of known resources and the exploration for 
new, potentially more valuable resources. The algorithm 
inspired by BFO is described next. 

2.3.1 BFO algorithm 

The BFO algorithm was first reported by Passino (2002) 
that applied the algorithm to the optimisation of a 
benchmark function. 

Possible solutions to an optimisation problem are 
represented in the BFO algorithm by a colony of n bacteria 
of dimension d. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is 

evaluated by a fitness function ( ) , 1,..., .if x i n=  The BFO 
consists of three main routines: chemotaxis, reproduction, 
and elimination-dispersal. In chemotaxis, a bacterium with 
random direction represents a tumble and a bacterium with 
the same direction of the previous step indicates a run. In 
reproduction, the health of each bacterium represents its 
fitness value. All bacteria are sorted according to their 
health status and only the first half of population survives. 
The surviving bacteria are split into two identical ones in 
order to form a new population. Thus, the population of 
bacteria is kept constant. The elimination-dispersal process 
is responsible for increasing the diversity of the population. 
The dispersion happens after a certain number of 
reproduction steps, when some bacteria are chosen 
according to a preset probability. Such bacteria are killed 
and new ones are randomly generated in another position 
within the search space. The exploitation of the search space 
is accomplished by both chemotaxis and reproduction steps, 
while the exploration is done by the elimination-dispersal 
step. 
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Algorithm 4 Bacterial foraging algorithm (BFO) 

1 Parameters: n, Nc, Ns, Nre, Ned, Ped, C(i) (i = 1, 2, …, n) 

2 Initialise randomly the bacterial colony ix  

3 for l = 1 to Ned do {Elimination-dispersal loop} 

4  for k = 1 to Nre do {Reproduction loop} 

5   for j = 1 to Nc do {Chemotaxis loop} 

6    for i = 1 to n do 

7     Compute fitness ( ), ,j k l
if x  

8     Tumble: Generate random vector  
Δ(i) ∈ [–1, 1]d 

9     Move: ( ), , , ,

[ ( )] ( )
( )

T

ij k l j k l
i i i i

x C iθ Δ

Δ ⋅Δ
= +  

10     Compute ( ), ,j k l
if θ  

11     m = 0 

12     while m < Ns do {Run loop} 

13      if ( ) ( ), , , ,j k l j k l
i if f xθ <  then 

14       Update solution 

15       Move again 

16      else 

17       m = Ns 

18      end if 

19     end while 

20    end for 

21   end for 

22   for i = 1 to n do 

23    ( )( )1 , ,
1

cNi j k l
health ij

J f x
+

=
=∑  

24    Sort bacteria by ascending values 

25    Best half of the colony duplicates and replaces 
the worst part 

26   end for 

27  end for 

28  for i = 1 to n do 

29   if rand < Ped then 

30    Generate a new random bacterium i 

31   end if 

32  end for 

33 end for 

34 Postprocess results and visualisation 

The parameters involved in the BFO algorithm are: the 
number of chemotactic steps (Nc); the number of run steps 
(Ns); the number of reproductive steps (Nre); the number of 
elimination-dispersal steps (Ned); the probability of 
elimination (Ped); and the size of the step taken in each run 

or tumble (C(i), for each bacterium i). The BFO is shown in 
Algorithm 4. 

2.4 Lampyridae bioluminescense 

Lampyridae is a family of insects (order Coleoptera) that 
are capable to produce natural light (bioluminescense) to 
attract a mate or a prey. They are commonly called fireflies 
or lightning bugs. In the species Lampyris noctiluca the 
fireflies are also known as glow-worms and, despite of the 
name, they are not worms. In this species, it is always the 
female who glows, and only the male has wings. In other 
species, Luciola lusitanica, both male and female  
firefly may emit light and both have wings (Fraga, 2008; 
Shimomura, 2006). 

If a firefly is hungry or looks for a mate its light glows 
brighter in order to make the attraction of insects or mates 
more effective. The brightness of the bioluminescent light 
depends on the available quantity of a pigment called 
luciferin, and more pigment means more light (Tyler, 2002). 

Two optimisation algorithms were inspired by the 
bioluminescent behaviour and are described next. 

2.4.1 Glow-worm swarm optimisation (GSO) 
algorithm 

The GSO algorithm was first presented by Krishnanand and 
Ghose (2005) as an application to collective robotics. 

In this algorithm, each glow-worm uses a probabilistic 
mechanism to select a neighbour that has a luciferin value 
associated with him and moves towards it. Glow-worms are 
attracted to neighbours that glow brighter. The movements 
are based only on local information and selective neighbour 
interactions. This enables the swarm to divide into disjoint 
subgroups that can converge to multiple optima of a given 
multimodal function. 

The GSO is shown in Algorithm 5. It starts by placing a 
population of n glow-worms of dimension d randomly in the 
search space. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is 

evaluated by a fitness function ( ) , 1,..., .if x i n=  At the 
beginning, all the glow-worms contain an equal quantity of 
luciferin l0 and the same neighbourhood range decision r0. 
Each iteration consists of a luciferin update phase followed 
by a movement phase based on a transition rule. Other 
involved parameters are the luciferin decay constant (ρ), the 
luciferin enhancement constant (γ), the step size (s), the 
number of neighbours (nt), the sensor range (rs) and a 
constant value (β). The authors observed that the only two 
parameters that influences the algorithm behaviour are n 
and rs. 

Algorithm 5 Glow-worm swarm optimisation algorithm (GSO) 

1 Parameters: n, l0, r0, ρ, γ, β, s, rs, nt 

2 Generate the glow-worms population ix  randomly 

3 for i = 1 to n do 



 New inspirations in swarm intelligence: a survey 7 

4  Initialise luciferin li(0) = l0 
5  Initialise neighbourhood range 0(0)i

dr r=  

6 end for 
7 t = 1 
8 while stop condition not met do 
9  for each glow-worm i do {update luciferin} 
10   li(t + 1) = (1 – ρ) ⋅ li(t) + γ ⋅ f(xi(t)) 
11  end for 
12  for each glow-worm i do {movement phase} 
13   Find neighbours Ni(t) 
14   for each glow-worm j ∈ Ni(t) do 
15    Find probability 

( )

( ) ( )

( ) ( )
( ) j i

k ik N ti

l t l t
ij l t l t

P t
∈

−

−
=
∑

 

16   end for 
17   Select glow-worm j using Pij 
18   Update glow-worm position with 

( ) ( )

( ) ( )
( 1) ( ) j i

j i

x t x t
i i x t x t

x t x t s −

−

⎛ ⎞+ = + ⎜ ⎟
⎝ ⎠

 

19   Update decision range: 
20    ( ){ }{ }( 1) min ,max 0, ( ) ( )i i

d s d t ir t r r t n N tβ+ = + ⋅ −  

21  end for 
22  t = t + 1 
23 end while 
24 Postprocess results and visualisation 

2.4.2 Firefly algorithm 

The firefly algorithm (FA) was proposed by Yang (2008) 
and the algorithm was applied to the optimisation of 
benchmark functions. The FA uses three main basic rules: 

1 a firefly will be attracted by other fireflies regardless 
their sex 

2 attractiveness is proportional to their brightness and 
decreases as the distance among them increases 

3 the landscape of the objective function determines the 
brightness of a firefly. 

This algorithm assumes that a population of n candidate 
solutions for an optimisation problem are agents of type 
firefly. These agents are vectors of dimension d representing 
the problem variables. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is 

evaluated by a fitness function ( ) , 1,...,if x i n=  that 
represents his quality. Each agent glows proportionally to its 
quality which, together with his attractiveness (β), dictate 
how strong it attracts other members of the swarm.  
Two other user-defined parameters are the maximum 
attractiveness value (β0) and the absorption coefficient (γ) 
that determines the variation of attractiveness with 
increasing distance from communicated firefly. The FA is 
summarised in Algorithm 6. 

Algorithm 6 Firefly algorithm (FA) 

1 Parameters: n, β0, γ 
2 Initialise the fireflies population ix  randomly 

3 Compute ( )f x  

4 while stop condition not met do 
5  ( ){ }min arg mini ii f x=  

6  ( ){ }min arg min
ii x ix f x=  

7  for i = 1 to n do 
8   for j = 1 to n do 
9    if ( ) ( )j if x f x<  then {Move firefly i towards 

j} 
10     Calculate distance rj 
11     Obtain attractiveness: 0

jreβ β −← γ  

12     Generate a random solution iu  

13     for k = 1 to d do 
14      xi,k = (1 – β)xi,k + βxj,k + ui,k 
15     end for 
16    end if 
17   end for 
18  end for 
19  Generate a random solution u  

20  for k = 1 to d do {Best firefly moves randomly} 
21   min min, , ki k i kx x u= +  

22  end for 
23  Compute ( )f x  

24  Find the current best 
25 end while 
26 Postprocess results and visualisation 

2.5 Slime mould life cycle 

The cells of a slime mould are known to biologists as the 
amoeba Dictyostelium discoideum – Dd. Amoebae perform 
a random search for food and move using their 
pseudopodia5 as sensors to detect nearby food sources. The 
pseudopod is not always completely accurate, but they 
work, most time, to direct the amoebae towards food when 
it is available (Kessin, 2001). Dd cells move independently 
until starvation, emitting a chemical substance known as 
cyclic adenosine monophosphate (cAMP). The last form 
that Dd undergo during starvation is a period of grouping 
together (aggregation). Thereafter, cells group together in 
streams and eventually form a mound. The mound forms a 
slime sheath about itself to protect from predatory 
multicellular organisms and to forage new regions. Once the 
mound is complete, cells orient themselves to form a head 
and a tail. At this point, the slug is not a multicellular 
organism, but a group of single-cell organisms working 
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towards a common goal (find food). This process continues 
until the slug reaches a location with resources or until 
resources have been depleted. If all resources have been 
depleted, the amoeba dies. However, if a source is available, 
culmination occurs and a fruiting body is formed. During 
culmination and formation of the fruiting body, spores are 
created and are dispersed by wind, birds or invertebrates. 
When spores arrive at another location, they may lie 
dormant for some time. After a period of dormancy, spores 
form new amoebae, and the life cycle of Dd begins again. 

Some algorithms that are inspired by this behaviour 
have been found in literature including cell-based 
optimisation algorithm (Rothermich et al., 2003) that uses 
only a portion of the Dd life cycle and the slime mould 
optimisation algorithm (SMOA) (Monismith and Mayfield, 
2008) that uses the life cycle as a whole. Next section 
describes the SMOA. 

2.5.1 Slime mould optimisation algorithm 

The SMOA was introduced by Monismith and Mayfield 
(2008), and was applied to the optimisation of benchmark 
functions. Although authors achieved good results 
compared to the known optimum values of the benchmarks, 
no comparisons were done with other algorithms. 

The SMOA consists of an amoebae population of size n 
representing possible solutions for an optimisation problem 
of dimension d. Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is 

evaluated by a fitness function ( ) , 1,..., .if x i n=  In the 
algorithm, amoebae may take a number of states:  
vegetative amoeba, aggregating amoeba, mound, slug, 
fruiting body, and dispersal. In the algorithm, amoebae 
begin in the vegetative state, and are assigned to random 
positions in the search space. They are given time to  
search for local optima (i.e., food). Based on their initial 
positions, a mesh is formed using the approximate nearest  
neighbour algorithm (ε-ANN, where ε is the number of 
neighbours being considered) (Arya et al., 1998). In the 
vegetative state, amoebae perform a semi-random search. 
This is accomplished by the ability of amoebae to extend 
their pseudopodia towards multiple directions and, so, 
perform a local search. A parameter k represents the number 
of pseudopodia (and the number of directions explored by 
each amoeba). A simulation of starvation is necessary to 
start an aggregative state for the amoebae. This change is 
controlled by two parameters: tunimproved iterations without 
improving the best solution of an amoeba; and tlifetime, the 
number of time steps since its last dispersal event. As the 
number of starving amoebae in one distinct lattice point 
increases above some preset threshold (A), the probability of 
forming a mound also increases. Once there is no more 
improvement in the slug movement, it must be dispersed to 
continue searching for new locations with better results. 
Through the algorithm, the communication is performed 
using cAMP trails. A high-level view of SMOA is shown in 
Algorithm 7. For a complete description (see Monismith 
and Mayfield, 2008). 

Algorithm 7 Slime mould optimisation algorithm (SMOA) 

1 Parameters: n, k, ε, A 
2 Generate the amoeba population ix  randomly 

3 Evaluate fitness ( )if x  

4 To all amoeba set the state to VEGETATIVE 
5 Archive the best objective function value from the 

amoebae 
6 Input the locations of each amoeba to ε-ANN 
7 Create a mesh based on the results of ε-ANN 
8 for each amoeba i do 
9   switch amoebae state 
10    case VEGETATIVE: Vegetative movement 
11    case AGGREGATIVE: Aggregation 
12    case MOUD: Moud formation 
13    case DISPERSAL: Dispersal 
14   end switch 
15 end for 
16 Postprocess results and visualisation 

2.6 Cockroaches infestation 

Cockroaches are insects of the order Blattodea and are one 
of the most ancient animals on earth, having appeared 
around for 350 million years. 

Communication between cockroaches occurs mainly 
through chemical trails in their feces as well as emitting 
airborne pheromone for swarming and mating. Using these 
signs other cockroaches can follow the trails to discover 
sources of food and water, and places where other 
cockroaches are hiding (Bell et al., 2007). Cockroaches are 
mainly nocturnal insects and will run away when exposed to 
light. To decide which path to follow cockroaches basically 
use two pieces of information: how dark is the environment, 
and how many other cockroaches are there (Halloy et al., 
2007). In other words, in an infestation the cockroaches will 
prefer to group themselves in darker places with other 
cockroaches. 

Next section describes the cockroaches infestation 
algorithm. 

2.6.1 Roach infestation optimisation 

The roach infestation optimisation (RIO) was introduced by 
Havens et al. (2008). They applied RIO to benchmark 
functions and achieved competitive results compared to a 
standard PSO. Actually, RIO has some elements that 
resemble the traditional PSO algorithm. 

In RIO algorithm, cockroaches agents are defined using 
three simple behaviours: 

• cockroaches search for the darkest location in the 
search space and the fitness value is directly 
proportional to the level of darkness (find darkness 
phase) 
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• cockroaches socialise with nearby cockroaches (find 
friend phase) 

• cockroaches periodically become hungry and leave the 
friendship to search for food (find food phase). 

Algorithm 8 Roach infestation optimisation algorithm (RIO) 

1 Parameters: n, tmax, C0, Cmax, A, thunger 
2 Initialise the roaches population ix  and iv  randomly 

3 for i = 1 to n do 
4  Set ip  as ix  

5  Initialise hungeri randomly between {0, thunger – 1} 
6 end for 
7 for t = 1 to tmax do 
8  M = distances from one roach to each other 
9  dg = average distance from M 
10  for i = 1 to n do 
11   if ( ) ( )i if x f p<  then {Find darkness phase : 

Update best roach location} 
12    i ip x=  

13   end if 
14   Compute the neighbours of roach i: 
15    {j} = {k: 1 ≤ k ≤ n, k ≠ I, Mik < dg} 
16   Ni = number of neighbours | {j} | 
17   for q = 1 to Ni do {Choose a neighbour} 
18    if rand < A then 
19     ( ){ }arg min , { , }i k kl f p k i q= =  

20    end if 
21   end for 
22   if hungeri < thunger then {Find friend phase} 
23    ( ) ( )0 max 1 max 2i i i i i iv C v C R p x C R l x= + − + −  

24    i i ix x v= +  

25    Increment hungeri 
26   else {Find food phase} 
27    xi = random food location. Random position. 
28    hungeri = 0 
29   end if 
30  end for 
31 end for 
32 Postprocess results and visualisation 

In fact, RIO is a cockroach-inspired PSO in which a 
population of n cockroaches (possible solutions) of 
dimension d use darkness sense (fitness function evaluation) 
and neighbourhood communication to move through a 
search space updating their positions ix  and velocities .iv  
Each solution 1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is evaluated by a fitness 

function ( ) , 1,..., .if x i n=  Each roach keeps its best 

location pi found so far. The other tunable parameters 
involved are tmax that is the maximum number of iteration of 
the algorithm, C0 that ponderates the relative velocity 
importance, Cmax that ponderates the relative importance of 
both roach personal best and roach neighbour position, A 
that influences the neighbour choice, and thunger that defines 
the hunger interval. The RIO is shown in Algorithm 8. 

2.7 Mosquito host-seeking 

Mosquitoes are insects from the family Culicidae. Both 
male and female mosquitoes feed on nectar (or other sugar 
source). However, only the female of many species is also 
capable of taking blood. A blood meal is necessary to 
develop and nourish the eggs. To do so, female mosquitoes 
have to seek for animals or humans as possible sources of 
blood. This is known as host-seeking behaviour. 

To find its blood host the female mosquito receives 
external environmental information from its sensory 
receptors. These sensory receptors respond to varying 
concentrations of attractants such as carbon dioxide (CO2) 
and L-lactic acid in the air. A mosquito, upon a host, 
chooses a specific body region for feeding according to the 
skin temperature and humidity (Mehlhorn, 2001). 

A swarm of mosquitoes randomly searches a host to 
attack. The host-seeking behaviour of a mosquito can be 
summarised in three main steps: 

1 it looks randomly for CO2 or a smelling substance 

2 once identified the smell, it seeks towards a place of 
high-concentration of this smell 

3 it lands when it feels the radiated heat of the host. 

2.7.1 Mosquito host-seeking algorithm 

The MHSA treats every entry of the TSP matrix as an 
artificial mosquito mij. Hence, the n-city TSP is transformed 
into host-seeking behaviour of a swarm of n × n artificial 
mosquitoes. A host is considered as an edge between cities 
for the TSP. Each entry mij of the TSP matrix (a mosquito) 
is a triple composed by dij (distance between cities i and j), 
xij (mosquito sex: 0 for male and 1 for female), and rij 
(distance between mij and the host). Each rij ranges from 0 
to 1 as the artificial mosquito moves, and rij = 1 represents 
that the artificial mosquito mij is attacking the host and the 
shortest path passes through this host. 

When all mosquitoes are in a state of equilibrium, all rij 
will be 1 or 0. The equilibrium state indicates that the 
swarm have found a possible solution for the problem. 
Hence, a solution for the TSP using the MHSA is the set of 
mosquitoes that have successfully attacked a host (rij = 1). 
For an extended description of the mosquito host-seeking 
algorithm (see Feng et al., 2009). 

2.8 Bat echolocation 

Several animals such as dolphins, shrews, most bats, and 
most whales use echolocation (also called as biosonar) for 
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navigation, communication and foraging. Most bats use 
echolocation at a certain degree and, among all the  
species, microbats use echolocation extensively. In 
microbats, echolocation is a type of sonar used to avoid 
close obstacles in the dark, detect prey, and locate roosting 
crevices (places to sleep over) (Altringham et al., 1998). 
During echolocation these microbats emit a series of short, 
high-frequency sounds and listen for the echo that bounces 
back from the surrounding objects. With this echo a bat can 
determine an object’s size, shape, direction, distance, and 
motion. When hunting for a prey, the rate of pulse emission 
can be speed up to about 200 pulses per second when they 
fly near their prey and every pulse has a constant frequency. 
Moreover, the wavelengths of a pulse are in the same order 
(is proportional) of their prey sizes. The loudness also varies 
from the loudest when searching for prey and to a quieter 
base when homing towards the prey (Altringham et al., 
1998). Next section describes the bat echolocation 
algorithm. 

2.8.1 Bat algorithm 

The bat algorithm (BA) was first presented in Yang 
(2010b). They applied to benchmark functions, and 
achieved better results compared to genetic algorithms and 
PSO. To date, no other application to real-world problems 
was found using the BA. 

The basic idea behind the BA is that a population of n 
bats (possible solutions) of dimension d use echolocation to 
sense distance and fly randomly through a search space 
updating their positions ix  and velocities .iv  Each solution 

1 2, ,...,i i i idx x x x= ⎡ ⎤⎣ ⎦  is evaluated by a fitness function 

( ) , 1,..., .if x i n=  The bats’ flight aims at finding food/prey 
(best solutions). Two other parameters are: the loudness 
decay factor (α) that acts in a similar role as the cooling 
schedule in the traditional simulated annealing optimisation 
method, and the pulse increase factor (γ) that regulates the 
pulse frequency. The properly update for the pulse rate (ri) 
and the loudness (Ai) balances the exploitation and 
exploration behaviour of each bat, respectively. As the 
loudness usually decrease once a bat has found its 
prey/solution (in order to do not loss the prey), the rate of 
pulse emission increases in order to raise the attack 
accuracy. The BA pseudo-code is shown in Algorithm 9. 

The BA is shown in Algorithm 9. 

Algorithm 9 Bat algorithm (BA) 

1 Parameters: n, α,γ 

2 Initialise the bats population ix  and iv  randomly 

3 Define pulse frequency if  at ix  

4 for i = 1 to n do 

5  Initialise pulse rates ri and loudness Ai 

6 end for 

7 Compute ( )if x  

8 Find the current best x∗  

9 while stop condition not met do 

10  for i = 1 to n do 

11   Generate new solutions by adjusting: 

12    Frequency: 

( )min max min , [0,1]if f f f β β= + − ∈  

13    Velocity: ( )1t t t t
i i iv v x x f−

∗= + −  

14    Location: 1t t t
i ix x v−= +  

15   if rand > ri then 

16    Select a solution among the best solutions 

17    Generate a local solution around the selected 
best solution 

18   end if 

19   Generate a new solution by flying randomly 

20   if rand < Ai & ( ) ( )if x f x∗<  then 

21    Accept the new solutions 

22    Increase 1 0: [1 exp( )]t
i i ir r r t+ = − −γ  

23    Decrease: 1: t
i i iA A Aα+ =  

24   end if 

25  end for 

26  Find the current best x* 

27 end while 

28 Postprocess results and visualisation 

3 Applications 

For all the algorithms mentioned in the previous sections, a 
search in the literature was done to find applications in the 
most different domains. Although this search is not 
exhaustive, it covers the most relevant applications, and 
emphasises the applicability of those algorithms. 

The BA (Section 2.1.1) was applied with success  
in some problems including training of multi-layered 
perceptron neural networks (Pham et al., 2006b), job shop 
scheduling optimisation (Pham et al., 2007a), data 
clustering (Pham et al., 2007b), multi-objective optimisation 
(Pham and Ghanbarzadeh, 2007), protein folding 
optimisation using the torsion angles model (Bahamish et 
al., 2008), optimisation of fuzzy logic controller parameters 
(Pham and Kalyoncu, 2009), peer-to-peer file sharing in 
mobile ad-hoc networks (Dhurandher et al., 2009), and 
interference suppression of linear antenna arrays (Guney 
and Onay, 2010). 
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Applications found in the literature using the ABC 
algorithm (Section 2.1.2) include: the generalised 
assignment problem optimisation (Baykasoğlu et al., 2007), 
energy distribution network configuration (Srinivasa et al., 
2008; Linh and Anh, 2010), neural network training 
(Karaboga and Ozturk, 2009), multi-objective optimisation 
(Pawar et al., 2008), data clustering (Marinakis et al., 2009), 
solving integer programming benchmarks (Akay and 
Karaboga, 2009b), template matching in digital images 
(Chidambaram and Lopes, 2009), and signal model 
parameter extraction (Sabata et al., 2010). 

The Marriage in MBO algorithm (Section 2.2.1), was 
applied to several problems in the literature, for instance: 
three-SAT problem optimisation (Abbass, 2001; Teo  
and Abbass, 2003), MAX-SAT problem optimisation 
(Benatchba et al., 2005), water resources management 
(Haddad and Afshar, 2004), non-linear constrained and 
unconstrained optimisation (with an updated version called 
honey bee mating optimisation algorithm – HBMO) 
(Haddad et al., 2006), stochastic dynamic programming 
(Chang, 2006), continuous optimisation (with an improved 
version of HBMO) (Afshar et al., 2007), data clustering 
(Fathian et al., 2007), stepped spillway optimum design 
(Haddad et al., 2008), and reconfiguration of multi-
objective distribution feeder (Taher, 2009). 

The BFO algorithm (Section 2.3.1) has been used for 
some applications such as multivariate PID controller tuning 
(Kim and Cho, 2005a; Luo and Chen, 2010), power systems 
harmonic estimation (Mishra, 2005), power transmission 
loss optimisation (Tripathy et al., 2006), machine learning 
(Kim and Cho, 2005b), multi-objective optimisation (Hazra 
and Sinha, 2008), prediction of stock market indexes (Majhi 
et al., 2009), identification of dynamic and non-linear 
systems (Majhi and Panda, 2008, 2009), and optimisation of 
fuzzy controller (Alavandar et al., 2010). Some other 
applications are summarised in Das et al. (2009). Recently, 
an updated version of the algorithm named self-adaptive 
bacterial foraging optimisation (SABFO) was proposed by 
Chen et al. (2008). Results obtained upon several 
benchmark functions showed a significant improvement in 
performance over the original BFO, whilst similar or even 
superior performance compared to PSO and GA. 

The GSO algorithm (Section 2.4.1) was applied in 
Krishnanand and Ghose (2009) to find multiple optima of 
multimodal benchmark functions. This work also conducted 
detailed parameter tuning experiments. The comparison 
with a Niched-PSO showed better results concerning the 
number of peaks found in almost all test functions. Another 
application using GSO is for hazard sensing in ubiquitous 
environments (Krishnanand and Ghose, 2008). 

For the FA (Section 2.4.2), a recent work done by  
Lukasik and Zak (2009) performed an extensive set of 
empirical tests for parameter tuning, and proposed some 
extensions to the algorithm. Some comparisons against PSO 
on benchmark functions showed competitive results, 
suggesting that the FA is a powerful optimisation approach. 
Some extensions in the algorithm was proposed in Yang 

(2010a) combining Lévy flights with the FA search strategy. 
Since FA is a very recent meta-heuristic, to date no other 
application to real-world problems was found. 

Concerning the SMOA (Section 2.5.1) no other 
applications to problem solving were found to date, besides 
that of the original paper (Monismith and Mayfield, 2008). 

A single application of the RIO algorithm (Section 
2.6.1) was found: it was used for pattern recognition in 
images, checking the posture and stability of elders while 
they are performing exercises (Havens et al., 2009). 

Concerning the mosquito host-seeking algorithm 
(MHSA, Section 2.7.1) and the BA (Section 2.8.1), to date, 
no other application to real world problems was found, 
besides the original works for solving the symmetric 
travelling salesman problem (TSP) (Feng et al., 2009), and 
for solving benchmark functions (Yang, 2010b), 
respectively. 

Most of the above-mentioned algorithms are very 
recent. Although few applications have appeared to date, we 
can notice a growing interest in bio-inspired computation. 

4 Discussion 

Table 1 summarises all algorithms in terms of  
biological inspiration, optimisation domain, mechanisms of 
exploitation and exploration, and the communication model 
for each approach. 

The second column of Table 1 indicates the biological 
inspiration behind of each algorithm. All the inspiring 
behaviours have in common two facts: they are 
compounded by a distributed society/population of 
individuals where the control is also distributed among the 
individuals (there is no centralised control); and the 
individuals’ decision-making is stochastic and based only 
on local information, without knowledge of the global 
pattern/solution (communications among them are 
localised). Moreover, the society-level behaviour transcends 
the behaviour of a single individual, leading to an emergent 
behaviour through self-organisation. 

The third column of Table 1 classifies the algorithms 
according to the domain they were first applied, either 
continuous or discrete optimisation. This classification was 
done concerning the algorithms only in their first canonical 
publication. An approach inserted in the continuous domain 
is characterised by solving problems where the variables to 
be optimised in the objective function can assume only real 
values. On the other hand, the discrete domain is 
characterised by solving problems where the variables to be 
optimised in the objective function are restricted to assume 
only discrete values, such as integers. Moreover, some 
algorithms were further adapted to handle the other 
optimisation domain, different from the original. It is the 
case, e.g., of BA in Pham et al. (2007a), ABC in Akay and 
Karaboga (2009b), and MBO in Afshar et al. (2007). 
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Table 1 Meta-heuristics summary 

Algorithm Inspiration First applied to… Mechanism of exploitation Mechanism of exploration Communication model 

BA Bee foraging Continuous 
optimisation 

Neighbourhood search in 
good food sources 

Random search of scout 
bees 

Broadcast-like 

ABC Bee foraging Continuous 
optimisation 

Neighbourhood search 
carried by employed and 

onlooker bees 

Random search of scout 
bees 

Broadcast-like 

MBO Bee mating Discrete 
optimisation 

Neighbourhood search in 
queens and broods carried 

by workers 

Spermatheca creation Direct 

BFO Bacterial 
foraging 

Continuous 
optimisation 

Chemotaxis and 
reproduction steps 

Elimination-dispersal step Direct 

GSO Firefly 
bioluminescense 

Continuous 
optimisation 

Glow-worm position 
update 

Find neighbour phase 
dictated by sensor range 

Broadcast-like 

FA Firefly 
bioluminescense 

Continuous 
optimisation 

Firefly movement 
according to attractiveness 

Random move of the best 
firefly 

Broadcast-like 

SMOA Amoebae 
foraging 

Continuous 
optimisation 

Vegetative state Dispersal state Stigmergic 

RIO Cockroaches 
infestation 

Continuous 
optimisation 

Find friend phase Find food phase Broadcast-like 

MHSA Mosquito 
foraging 

Discrete 
optimisation 

Host attraction Mosquitoes interaction Broadcast-like 

BA Bat 
echolocation 

Continuous 
Optimisation 

Low loudness and high 
pulse rate values 

High loudness and low 
pulse rate values 

Broadcast-like 

 
An interesting fact about the third column is that most 
approaches can be applied to continuous optimisation. This 
gives us an insight that they could be applied together to the 
same problem, without major modifications, in order to 
promote co-evolution. The co-evolution can occur when 
migrations of individuals from one population biases 
positively the evolution of another population that receives 
the individuals. Hence, each approach can be viewed as an 
island evolving with its own strategies upon a migration 
topology. 

The fourth and fifth columns of Table 1 show  
the exploitation and exploration mechanisms for each 
approach, respectively. All the mentioned algorithms  
use exploration and exploitation procedures in their  
own particular way to seek for the global optimum value  
of an optimisation problem. According to the no  
free-lunch theorem (Wolpert and Macready, 1997), it is  
not possible to point which is the best approach  
without considering a specific problem. At a higher  
level, currently it is not possible to point which  
algorithms are more efficient for generic classes of 
problems, such as continuous optimisation or discrete 
optimisation. Therefore, systematic studies comparing the 
performance of the swarm intelligence algorithms presented 
here are still missing and this will be a future research 
direction. 

The communication model (sixth column of Table 1) 
classifies the approaches regarding how their individuals 
communicate to each other. The communication can be: 

1 Broadcast-like: The information propagates throughout 
the environment to some limited extent and/or is made 
available for a short time such as the bees waggle 
dance, and the fireflies glow intensity. 

2 Direct: The communication is done through 
antennation, reproduction, trophallaxis (food or liquid 
exchange), and mandibular contact. 

3 Stigmergic/indirect: Occurs when one individual 
modifies the environment and other individual responds 
asynchronously to the changes in the environment at a 
later time. 

The communication models for the well-known ACO and 
PSO meta-heuritics are indirect through pheromone trails in 
the environment and broadcast-like through the social 
component of particles, respectively. In the BA approach, 
best sites are broadcasted and recruitment takes place. The 
ABC algorithm uses the waggle dance to disseminate the 
information. The MBO algorithm uses the spermatheca 
formation as a direct communication strategy. The BFO 
algorithm uses the reproduction phase to propagate the 
information. Both GSO and FA approaches use the glow 
intensity as broadcast-like communication strategy. The 
SMOA uses indirect communication through cAMP trails in 
the environment. The RIO algorithm broadcasts the 
information using the find friend phase. In the MHSA, 
broadcast-like communication occurs through the radiated 
heat of the host. Finally, the BA approach uses the same 
PSO strategy that is based on a social component. 
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5 Conclusions and future work 

This work presented a review of the most recent 
developments in the field of swarm intelligence. Going 
beyond the traditional ACO and PSO meta-heuristics, we 
focused on emergent works that take inspiration from the 
behaviour of social organisms, but are not much explored, 
to date. 

In the same way as in ACO and PSO, nature observation 
has lead to these new algorithms. This highlights the fact 
that the nature is an unending source of inspiration for 
computer scientists, and many other approaches will appear 
in the future. 

The computer science community have already learned 
about the importance of emergent behaviours for complex 
problem solving. As shown in this work, learning about the 
collective behaviour of living beings can provide interesting 
and useful swarm-based meta-heuristics. The studies that 
have been done to date show the potential of these new 
approaches to effectively find good solutions to many types 
of practical optimisation problems. 

In fact, there is no ‘best’ approach, independently of 
specific context (Wolpert and Macready, 1997). Different 
implementations will be more adequate for different 
problems, either leading to better solutions, or improved 
speed. Moreover, the convenience of a particular approach 
does not depend only on the problem: different methods will 
be more useful for different people, depending on their 
experience and expertise. 

A straightforward future research is the comparison of 
performance of these approaches upon a specific problem  
in a specific domain, such as numerical optimisation  
of mathematical functions (continuous optimisation), 
combinatorial optimisation (discrete optimisation), or  
multi-objective optimisation (either continuous or discrete 
optimisation). Such work will focus on unveiling the 
strengths and weakness of the several algorithms, as well as 
trying to point out their applicability for different classes of 
problems, from the user viewpoint. 

In evolutionary computation in general, and in swarm 
intelligence, in particular, the use of mechanisms for  
self-adaptation of parameters is scarce, but a subject of 
current research. Self-adaptation of parameters could be 
useful, e.g., for the BFO algorithm that has seven 
parameters, and for the GSO algorithm that has nine 
parameters to be tuned by the user. It is not a trivial task to 
set all these parameters to achieve the best performance for 
a specific problem. Hence, the design of strategies to  
fine-tune or to reduce the number of parameters of the 
swarm intelligence algorithms presented in this paper is 
another topic pointed for future research in this area. 

Another two trends of research could be either to 
explore the concept of co-evolution using these new 
approaches working as islands upon a migratory topology, 
or to explore the development of hybrid systems where 
some properties of one approach are combined with those of 
another one. 

Hopefully, plenty of other collective behaviours remain 
in the shadow waiting to be investigated, such as 

dragonflies hunting, bees pollination, butterflies mating, 
ants nest building, locusts collective motion, and others. In 
the near future, these research opportunities will, possibly, 
lead to novel algorithms and problem-solving 
methodologies. 
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Notes 

1 ACO Repository: available at 
http://iridia.ulb.ac.be/~mdorigo/ACO/. 

2 PSO Repository: available at http://www.particleswarm.info. 
3 BA Repository: available at http://www.bees-algorithm.com. 
4 ABC Repository: available at http://mf.erciyes.edu.tr/abc/. 
5 A pseudopod is an extension of the cytoplasm of unicellular 

organisms that imitates a foot and is used to move the cell. 


