
Applied Mathematics and Computation 217 (2011) 5338–5346
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc
Discrete Capacity Assignment in IP networks using Particle
Swarm Optimization

Emilio Carlos Gomes Wille ⇑, Eduardo Yabcznski, Heitor Silvério Lopes
Federal Technology University of Paraná - UTFPR. 80230-901, Av. Sete de Setembro, 3165, Curitiba-PR, Brazil
a r t i c l e i n f o

Keywords:
IP networks
Quality-of-Service
Discrete Capacity Assignment
Particle Swarm Optimization
0096-3003/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.amc.2010.12.003

⇑ Corresponding author.
E-mail address: ewille@utfpr.edu.br (E.C.G. Wille
a b s t r a c t

This paper presents a design methodology for IP networks under end-to-end Quality-
of-Service (QoS) constraints. Particularly, we consider a more realistic problem formulation
in which the link capacities of a general-topology packet network are discrete variables.
This Discrete Capacity Assignment (DCA) problem can be classified as a constrained
combinatorial optimization problem. A refined TCP/IP traffic modeling technique is also
considered in order to estimate performance metrics for networks loaded by realistic traffic
patterns. We propose a discrete variable Particle Swarm Optimization (PSO) procedure to
find solutions for the problem. A simple approach called Bottleneck Link Heuristic (BLH) is
also proposed to obtain admissible solutions in a fast way. The PSO performance, compared
to that one of an exhaustive search (ES) procedure, suggests that the PSO algorithm
provides a quite efficient approach to obtain (near) optimal solutions with small computa-
tional effort.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The classical approaches to the optimal design and planning of packet networks, extensively investigated in their early
days [1,2], focused on the network-layer infrastructure. Such approach neglected end-to-end (e2e) Quality-of-Service
(QoS) issues, and Service Level Agreement (SLA) guarantees. Today, TCP/IP (Transmission Control Protocol/Internet Protocol)
is the most widely used set of protocols of the Internet, being TCP answerable for a great amount of the total traffic volume
[3]. Recently, investigations considering Internet traffic have shown that IP packets do not arrive at router buffers following a
Poisson process [4], but there is a correlation degree, which can be partly due to the TCP control mechanisms. This traffic
profile may produce transient network congestion, which can cause performance problems to the network system.

To avoid these problems we need a correct modeling. In [5], the authors proposed a network design and planning
approach that considers the dynamics of packet networks, as well as the effect of protocols at the different layers of the
Internet architecture on the e2e QoS experienced by end-users. The proposed approach firstly maps the end-user perfor-
mance constraints into transport-layer performance constraints, and then into network-layer performance constraints. This
mapping process is then considered together with a refined TCP/IP traffic modeling technique that is both simple and capable
of producing accurate performance estimates for general-topology packet networks loaded by realistic traffic patterns.
However, the optimization procedure employed was based on continuous link capacities. Generally, this is not the case in
real-world systems.

In this paper, we present and solve the Discrete Capacity Assignment (DCA) problem subject to e2e QoS constraints (spe-
cifically we consider the average packet delay), where link capacities are picked from a set of discrete values. This leads to a
. All rights reserved.

).

http://dx.doi.org/10.1016/j.amc.2010.12.003
mailto:ewille@utfpr.edu.br
http://dx.doi.org/10.1016/j.amc.2010.12.003
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346 5339
constrained combinatorial optimization problem, classified as NP-complete [6]. Therefore, we use the Particle Swarm Opti-
mization (PSO) [7] heuristic to find solutions for the problem. Originally, PSO was created to work with continuous variables.
In this work we also extend PSO in order to deal with discrete variables. To evaluate the performance of our proposed ap-
proach, PSO results (and its effectiveness) will be compared with the optimal solutions found by an exhaustive search (ES)
procedure. Finally, a simple heuristics called Bottleneck Link Heuristic (BLH) is also proposed to obtain, in a fast way, admis-
sible solutions to the DCA problem.

The rest of the paper is organized as follows. Section 1.1 briefly mentions some previous work in the field of packet
network design. Section 2 describes basic assumptions, and presents the formulation of the optimization problem.
Section 3 illustrates the heuristic solution procedures. Numerical results are discussed in Section 4. Conclusions are given
in Section 5.

1.1. Related work

In this section we briefly summarize previous work on discrete capacity allocation. The objective is to establish a parallel
between this work and related publications which focus on similar problems and use metrics related to the transmission
delay.

Maruyama and Tang [8] propose a heuristic solution for the discrete allocation problem with different classes of IP pack-
ets. The authors aimed at minimizing costs and satisfy average transmission delay constraints, for different classes of IP
packets. The problem was modeled in a way similar to ours, but packets were classified according their priority level (priority
assignment). This classification was done according to the length of packets, the transmission delay constraints, the average
length of the path (end-to-end) and the transmission rate. The algorithm used to solve the problem limits the number of
priority levels according to the number of classes. This is done for limiting the processing time. Several experiments were
done, showing a significant decrement in cost when different priority levels were considered for the different classes of
packets.

Ersoy et al. [9] proposed two artificial intelligence-based metaheuristics to solve the problem previously cited in [8]. They
used simulated annealing and genetic algorithms, besides a deterministic method, devised by the authors, named MT-CA.
Simulated annealing is based on an analogy with thermodynamics, when observing the behavior of atoms of a given material
during controlled cooling, after being heated. This method performed particularly well when the number of packets and pri-
ority levels were high. On the other hand, genetic algorithms were shown to be slower than simulated annealing, but still
faster than MT-CA. Also, as the size of the network grows, the processing time required by genetic algorithms increases less
than that required by MT-CA. This suggests the applicability of genetic algorithms to problems with large-scale networks.

In Liu et al. [10], a different approach was proposed. Given a set of discrete capacities and respective costs, for each link
both the speed (type) and number of channels (capacity) are selected, constrained by the transmission end-to-end average
delay for each source/destination pair. The method is divided in three steps. First, the capacity of the link is chosen. Next, the
number of channels for the link is computed. Then, a function for computing the cost of the network is evaluated. The algo-
rithm prevents unnecessary increment of link capacity by considering two functions. The first one computes the significance
of the link, given by the number of routes through it. The second function evaluates the economy of the link, considering the
variation of the average delay for the link as the cost of the chosen channels change.

Ferreira and Luna [11] confront an extension of the capacity assignment problem. They consider the problem of capacity
and flow assignment where the routing assignments and capacities are considered as decision variables, also known as
capacity and flow assignment problem (CFA problem). The interested reader may refer to the references therein for a deeper
discussion on this subject.

It is worth to point that, in the above cited works, the queue model used was the classic M/M/1 queue [12], while in our
approach we preferred a queue with batch arrivals in order to better model the system. The batch arrival model, like M[X]/M/1
queue, is motivated physically from TCP’s behavior [13].
2. Problem statement

2.1. Network and queueing models

The network infrastructure is represented by a graph G = (V,E) in which V is a set of nodes (with cardinality N) and E is a
set of edges (with cardinality L). Each node represents a network router and the edges represent physical links connecting a
router to another. Each output interface of each router is modeled by a queue with finite buffer. For a given link (i, j), the flow
fij is defined as the average quantity of information transported by this link, while its capacity Cij is a measure of the maximal
quantity of information that can be transmitted (both are given in bits per second-bps).

According to [4], IP packets do not arrive at router buffers following a Poisson process. However, there is a correlation
degree, which can be partly due to the TCP control mechanisms. In [14], the authors for the first time abandon the Markovian
assumption in favor of a long range dependence (LRD) traffic model. However, the relation among traffic, capacity and
queueing delay is not expressed in closed-form. As a consequence, the mathematical formulation of the problem may be
unnecessarily complicated, without any benefits.

5340 E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346
In order to consider the traffic burstiness induced by TCP, we choose a specific kind of queue to model each router inside
the network topology [5]. Thus, we choose the M[X]/M/1 queue, i.e. a Markovian queue with batch arrivals [12]. The batch size
varies between 1 and W with distribution [X], where W is the maximum TCP window size expressed in segments. Indeed, a
wide range of experiments performed in [13] certify the accurate estimates of network layer metrics by considering M[X]/M/1
models.

Lets consider that packet lengths are exponentially distributed with mean 1/l (bits/packet) [1,2]. Additionally, we define
the arrival rate k = l�f (packets/s), and the link utilization factor q = f/C. Hence, packets experience delays caused by routers
which average value (T) given by the following expression (notice that the subscript (ij) was dropped for the sake of clarity):
T ¼ K
l

1
C � f

with K ¼
m0½X� þm00½X�

2m0½X�
ð1Þ
where m0½X� and m00½X� are the first and second moments of the batch size distribution [12].
The traffic requirements and the traffic routing uniquely determine the flow of each link. The average traffic requirements

between nodes are represented by a traffic matrix C = {csd}, where the traffic csd between a node pair (s,d) represents the
average number of bps sent from source s to destination d.

The traffic demand between a source/destination pair (s,d) is routed along the minimum cost path. If multiple paths exist
with the same minimum cost, the traffic demand is evenly divided among all these paths. These paths are assumed fixed and
known in advance.

Let D ¼ dsd
ij

n o
be a matrix whose elements are equal to one if link (i, j) is in the path (s,d) or zero, otherwise. Thus, a flow on

link (i, j) results from the sum of the traffics that are routed on this link, i.e. fij ¼
P

s;dd
sd
ij csd.

2.2. The Discrete Capacity Assignment problem

In this subsection we focus on the Discrete Capacity Assignment problem, i.e. the selection of the link capacities from a
discrete set of values. We solve the DCA problem considering the e2e delay constraints. Given the network topology, the traf-
fic requirements, and the routing, the DCA problem is formulated as the following optimization problem:
ZDCA ¼ min
X

i;j

tij � dij � Cij ð2Þ
subject to:
Tsd ¼
K
l
X

i;j

dsd
ij

Cij � fij
6 Delaysd; 8ðs; dÞ ð3Þ

Cij > fij > 0; 8ði; jÞ ð4Þ
Cij 2 S; 8ði; jÞ ð5Þ
The objective function (2) represents the total link cost, which is the sum of the cost functions of all links (i, j). The cost func-
tion is a linear function, where dij is the physical length of the link, and tij is the monetary cost in $/Mbps/km/year. Eq. (3) is
the e2e packet delay constraint for each source/destination pair. It says that the total amount of delay Tsd experienced by all
the flows routed on path (s,d) should not exceed Delaysd. If multiple paths exist for an specific source/destination pair these
constraints are split accordingly. Constraints (4) are non-negativity constraints. S corresponds to a set, with cardinality Ns, of
discrete capacities (constraints (5)). Delaysd is obtained following the procedure presented in [5].

We notice that the above stated DCA problem is a constrained combinatorial optimization problem, and its global
optimum can be found using an exhaustive search method. However, this algorithm is very time-consuming. A suboptimal,
but quite good, solution to this problem can be found using the proposed PSO heuristic.
3. Solution methods

In this section we present the solution methods used to solve the DCA problem.

3.1. Particle Swarm Optimization

The Particle Swarm Optimization is a population-based metaheuristic introduced around a decade ago by Kennedy and
Eberhart [7]. PSO belongs to a class of methods known as evolutionary computation and it is inspired in the emerging prop-
erties of collective behavior of some animals, such as bird flocking, bee swarming, and fish schooling. For instance, in birds
flocking, the velocity of each element is dynamically adjusted according to the velocity of the other surrounding elements.
The influence of a bird on another is sensed by keeping an average distance between them.

At each instant of time (t), the position and velocity of particles are adjusted according to the position (X) and velocity (V)
in the previous time (t � 1), as follows:

E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346 5341
ViðtÞ ¼ Viðt � 1Þ þu1 � r1 � ½Xblp � Xiðt � 1Þ� þu2 � r2 � ½Xbgp � Xiðt � 1Þ� ð6Þ
XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ ð7Þ
where u1 and u2 are positive constants; r1 and r2 are normally distributed random values in the range [0,1]; Xi(t) = (xi1(t), -
xi2(t), . . . ,xid(t)) represent the current location of the i-th particle; d is the dimension of the vector represented by a particle;
Xblp represent the previous best local position of the i-th particle; Xbgp represent the best global position found up to the mo-
ment by the whole swarm; Vi(t) = (vi1(t),vi2(t), . . . ,vid(t)) is the velocity of the i-th particle.

Eq. (7) defines how the position of particles is dynamically adjusted, taking into account the movement in the d-dimen-
sional space given by Eq. (6). Notice that this Equation consists of three terms. The first term is the momentum part, meaning
that the velocity cannot be changed abruptly. The second term is the cognitive part, that allows the particle to learn from its
own flying experience, keeping track of the best position it has encountered up to the moment. The third term is the social
part, and represents the collaboration among particles, allowing a particle to learn from the swarm’s experience. The balance
among these three parts determines the global or local convergence of the swarm.

When the sum of the three terms of Eq. (6) exceeds a user-defined value ±Vmax, the velocity is clamped to this value. High
values of Vmax can make the particles potentially fly towards good solutions, but without reaching them. On the other hand,
low values of Vmax can lead particles to converge to a local solution.

The original procedure for implementing PSO is as follows [15]:

(1) Initialize a population of particles with random positions and velocities on the d-dimensional search space of the
problem.

(2) For each particle, evaluate its vector as a possible solution for the problem, by using a fitness function.
(3) Compare each particle’s fitness with its Xblp. If the current value is better than Xblp, then set Xblp equal to the current

value of Xi(t).
(4) Among all particles, identify the one with the best fitness, and assign to Xbgp the current position of such particle. In

some applications, only the surrounding neighbors can be considered instead of the whole swarm for updating
velocity.

(5) Update the velocity and position of all particles according to Eqs. (6) and (7) and, if necessary, restrict velocity to ±Vmax.
(6) Loop to step (2) until a stop criterion is met, usually a sufficiently good solution or a maximum number of iterations.

There are many variations of the algorithm above described. In general, it is useful to have some strategy to preserve
diversity in the swarm, so as to avoid fast convergence to local optima. Periodic explosions of the swarm can do this job by
observing the agglutination of particles around a local optimum and resetting them to random positions, but keeping Xbgp

unchanged [16].
Originally, PSO was created to deal with problems with continuous variables. An important extension of the

algorithm was the introduction of binary rather than continuous variables, thus allowing PSO to deal with combinatorial
problems [17,18]. In this implementation, each element of vector Xi(t) is a bit, and the velocity is used as a probability
to determine whether each bit will be in 0 or 1. After the evaluation of the n-th element of the velocity vector of the i-th
particle (Eq. (6), now, with binary values), the following sigmoid function is used to decide which value will have the
particle:
sðv inÞ ¼
1

1þ expð�v inÞ
ð8Þ
if ri < s(vin) then xin = 1; otherwise, xin = 0. ri is a random number, which comes from an uniform distribution (in the range
[0,1]).

Another useful improvement in the basic PSO is the use of an inertia weight w, that multiplies the velocity term in Eq. (6).
Large values of w facilitate a global search, and small values favor local search. In general, w starts large and is decre-
mented during the evolution of the algorithm. Usual values for the parameters are: u1 = u2 = 2 and w decreases from 0.9
to 0.4 [15].

3.2. Applying PSO to the network design

As explained before, the problem solution corresponds to the selection of capacities for each link (among the set of the
possible ones), always respecting the delay constraints.

The key point in a constrained optimization process is to deal with the constraints. Many methods were proposed for han-
dling constraints. It is possible to group them into four categories: methods based on preserving feasibility of solutions;
methods based on penalty functions; methods that make a clear distinction between feasible and infeasible solutions;
and other hybrid methods. To cope with the constraints, we proposed two modifications regarding the original PSO.

(1) During initialization, all the particles are repeatedly initialized until they satisfy all the constraints.
(2) During the evolving process of PSO, our algorithm is based on a penalty function (if constraints are not satisfied) using

the following fitness function, where g is the penalty value:

5342 E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346
F ¼

P
ði;jÞ

tij � dij � Cij; Tsd 6 Delaysd; 8ðs;dÞ

g �
P
ði;jÞtij � dij � Cij; otherwise

8<
: ð9Þ
Thus, the following procedure is done to apply the PSO algorithm to the DCA problem: after the evaluation of Eqs. (6) and (7),
each variable xin(t) is rounded up to the nearest integer. Then, this value is mapped to one element of the capacities set S. The
proposed algorithm is explained below with the aid of an example. For instance, having three values to be selected from S for
the capacities of each link, we set xmin = 0 and xmax = 3. Let Xi = (0.45,2.67,2.21), after rounding up we obtain Xi = (1,3,3). If
S = {15,20,50}, then the selected capacities are: C = (15,50,50). If a capacity Cij is smaller than the respective flow fij, it is
important to select the next value for C (from S), respecting constraints (4). After the evaluation of the fitness, Xblp and Xbgp,
are updated, the stop criterion is verified and, if it was not reached, the cycle is repeated.

3.3. The Bottleneck Link Heuristic

In this section we propose a simple heuristic to obtain feasible solutions (not optimal ones) to the DCA problem. This heu-
ristic relies on the concept of bottleneck link. In our context, the bottleneck link for a given data path is the link that produces
the largest delay. The heuristic corresponds to identify and eliminate the bottleneck link, keeping solutions admissibility, in
an iterative fashion [19]. The proposed Bottleneck Link Heuristic (BLH) is as follows:

(1) Initialize each link with a capacity value C greater than its respective link flow. It is important to select the smaller
value for C (from S), respecting constraints (Eq. (4)).

(2) Evaluate the delays constraints (Eq. (3)):

(a) If all constraints are satisfied the algorithm ends.
(b) Otherwise continue.
(3) Make a list of link delays sorted in decrescent order.
(4) Find the bottleneck link:
(a) If all capacity values (from S) were already tested for this link, eliminate the link at the top of the list of link delays
and loop to step (4).

(b) Otherwise select the next value of capacity for this link (from S).

(5) Loop to step (2).

4. Computational experiments and results

In this section, we present results obtained considering three randomly generated topologies. We emphasize that our
approach does not rely on the properties of any specific network topology and, therefore, it can be applicable to any topology
or graph. The traffic matrices were generated by picking the traffic intensity of each source/destination pair from an uniform
distribution. For each topology, we solved the DCA problem using both the PSO and the ES approaches. The algorithms (PSO
and ES) were implemented using C programming language, and the experiments were done in a desktop computer with
1 GHz processor, and 512 kBytes of RAM.

The set of experiments aimed at investigating the impact of the network dimension on the network cost, PSO perfor-
mance and processing time. For the PSO we set: w = 0.5, u1 = u2 = 2.0, g = 4.0, and tij = 1.0. In the ES approach the number
of iterations grows very quickly as the number of network links increases. In this case, it is necessary to search in a solution
space of about (Ns)L candidate solutions, where Ns is the cardinality of set S and L the number of links.

4.1. PSO and ES results

Topology 1: First we considered a simple network, with 12 links and 11 delays constraints, where S = {4,6,10,
20,50} Mbps, dij = 150 km, "(i, j), and Delaysd/K1 = 0.72, "(s,d). The link flows (traffic 1.a), in Mbps, evaluated based on the
traffic matrix, are f = (16,11,21,21,2,14,24,19,9,3,8,21), as shown in Fig. 1. The optimal solution corresponds to the follow-
ing list of capacities C = (20,20,50,50,4,20,50,50,20,6,10,50), and the best (minimum) cost value is 52500/year (both found
by the ES approach). It is important to note that the solutions space for this problem has about (Ns)L = 2.4 � 108 candidate
solutions.

The PSO performance has been evaluated, and the results are presented below. Six different combinations of the number
of particles (Np) and the number of iterations (Nitr) were considered (each combination is called a test). Since the PSO is an
stochastic algorithm, each test was repeated 500 times with different random seeds. The success rate, best and average
objective function values were recorded. The success rate corresponds to the ratio of runs for which the PSO found the global
minimum rather than being trapped into a local minimum. A second set of experiments was done using another traffic pro-
file (traffic 1.b), which is twice the traffic 1.a.

Tables 1 and 2 summarize the performance of the PSO approach for the above scenario. These tables clearly show the
impact of the PSO parameters on the algorithm performance; as expected, the cost standard deviations (St.Dev.) reduce

Fig. 1. Topology 1.

E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346 5343
by increasing the Np and Nitr parameters. A small standard deviation indicates that a increased number of good solutions are
close to the optimal one.

Topology 2: The second set of tests aimed at investigating the design of a network with 24 links and 16 delays constraints,
where S = {6,8,34,51,155} Mbps, and Delaysd/K1 = 0.72, "(s,d). The range of link flows were between 5 Mbps and 54 Mbps,
with average 21.4 Mbps (traffic 2.a). The link distances were uniformly distributed in the interval 5–50 km. The solutions
space for this case has about (Ns)L = 5.9 � 1016 candidate solutions. The best cost value found by the ES approach was
17938.4/year.

For each test, 500 runs were performed. Tables 3 and 4 summarize the performance of the PSO approach for the above
problem.

We observed that PSO successfully found the optimum for all cases within few iterations and with a high success rate,
even in the case of small number of particles.
Table 1
Tests for topology 1 and traffic 1.a.

Np Nitr Succ. rate Best Average St. Dev.

1 5 50 387/500 52500 53548.5 2215.2
2 10 50 474/500 52500 52737.0 997.4
3 30 50 500/500 52500 52500.0 0.0
4 5 100 391/500 52500 53515.5 2180.1
5 10 100 460/500 52500 52863.0 910.9
6 30 100 500/500 52500 52500.0 0.0

Table 2
Tests for topology 1 and traffic 1.b.

Np Nitr Succ. rate Best Average St. Dev.

1 5 50 492/500 73500 73593 599.7
2 10 50 500/500 73500 73500 0.0
3 30 50 500/500 73500 73500 0.0
4 5 100 486/500 73500 73659 330.6
5 10 100 500/500 73500 73500 0.0
6 30 100 500/500 73500 73500 0.0

Table 3
Tests for topology 2 and traffic 2.a.

Np Nitr Succ. rate Best Average St. Dev.

1 10 100 276/500 17938.4 18864.1 430.0
2 30 100 475/500 17938.4 18021.1 83.8
3 50 100 500/500 17938.4 17938.4 0.0
4 10 300 265/500 17938.4 18988.7 233.4
5 30 300 483/500 17938.4 17997.2 37.9
6 50 300 500/500 17938.4 17938.4 0.0

Table 4
Tests for topology 2 and traffic 2.b.

Np Nitr Succ. rate Best Average St. Dev.

1 10 100 409/500 32750.4 33136.6 160.4
2 30 100 500/500 32750.4 32750.4 0.0
3 50 100 500/500 32750.4 32750.4 0.0
4 10 300 430/500 32750.4 33040.0 76.0
5 30 300 500/500 32750.4 32750.4 0.0
6 50 300 500/500 32750.4 32750.4 0.0

5344 E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346
Topology 3: Finally, we analyzed a more challenging problem. The design of a network with 48 links and 25 delays con-
straints and Delaysd/K1 = 0.72, "(s,d). The range of link flows were between 5 Mbps and 90 Mbps, with average 33.3 Mbps
(traffic 3.a). The distances were uniformly distributed in the interval 3–25 km. In this case, we used two sets of capacities:
S = {8,34,44,51,155} Mbps, with (Ns)L = 3.5 � 1033 candidate solutions; and S = {10,25,34,44,51,70,90,120,155,190} Mbps,
with a solution space of about (Ns)L = 10 � 1048. The corresponding best (minimum) cost values are 18908.0/year and
12605.8/year, respectively.

For each test, 500 runs were performed. Tables 5 and 6 summarize the performance of the PSO approach.
It is observed that the results obtained for the problems with Ns = 5 are more unstable (Table 5). There was not much

improvement with large Nitr and Np and, indeed, a worsening of the standard deviations. These results can be explained if
we consider the huge solutions space of the associated problems. In Table 6 we need to actually select large parameter values
in order to improve the success rates, and to reduce standard deviations.

4.2. BLH Results

The main purpose of the BLH approach is to obtain admissible solutions in a fast way. The BLH was successful in finding
the optimal values for the first and second problems. On the other hand, for the third problem, with the first set of capacities
it found a cost value of about 19289.9/year, and 12887.4/year with the second set of capacities case.

Obviously, the BLH approach, being a heuristic, does not always find optimal solutions. If we perform row permutations in
routing matrix D (responsible for delays evaluation), the BLH will produce different solutions. This cannot be considered a
misfunctioning of the heuristic, indeed the fundamental BLH purpose is to satisfy delay constraints and do not minimize
costs. Table 7 summarizes the results.
Table 5
Tests for topology 3, traffic 3.a, and Ns = 5.

Np Nitr Succ. rate Best Average St. Dev.

1 200 500 125/500 18908.0 19185.2 162.5
2 300 500 132/500 18908.0 19179.8 154.2
3 200 800 131/500 18908.0 19180.0 110.7
4 300 800 148/500 18908.0 19168.9 99.2
5 800 1000 234/500 18908.0 19089.0 84.9

Table 6
Tests for topology 3, traffic 3.a, and Ns = 10.

Np Nitr Succ. rate Best Average St. Dev.

1 800 1000 53/500 12605.8 12702.1 149.0
2 1000 2000 75/500 12605.8 12673.1 123.3
3 3000 4000 247/500 12605.8 12612.6 13.9

Table 7
BLH and ES results.

Topol./traff. BLH ES

1/1.a 52500 52500
1/1.b 73500 73500
2/2.a 17938.4 17938.4
3/3.a (Ns = 5) 19289.9 18908
3/3.a (Ns = 10) 12887.4 12605.8

Table 8
Processing times.

12 Links 24 Links 48 Links

ES Few seconds 5 h 6 days
PSO Tenths of seconds Tenths of seconds 20 sa, 8 minb

BLH Few seconds Few seconds Few seconds

a Problem 5 of Table 5.
b Problem 3 of Table 6.

E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346 5345
4.3. Computational effort

Finally, Table 8 shows the processing times required to optimally solve the presented set of problems. It can be observed
that the ES method becomes promptly unfeasible as the size of the problem grows. The BLH approach is faster, but it is ex-
pected that, as long as the problem size grows, the gap between BLH and PSO results becomes more prominent. The PSO
presents a good tradeoff between processing times and results.

5. Conclusion and future work

We have considered the QoS design of packet networks and, in particular, the Discrete Capacity Assignment problem,
where capacity assignments are considered the decision variables. In order to better model the network system, following
recent research, we preferred to use a queue with batch arrivals instead of the classic M/M/1 queue. We have formulated the
problem as a combinatorial optimization problem with constraints. A discrete PSO approach was used to obtain feasible
solutions, and its performance was compared with an exhaustive search method. Examples of application of the proposed
design methodology to different network configurations have been discussed.

The success rate of PSO is more sensitive to the number of particles than the number of iterations. Although the ideal
number of particles for the first two problems were between 30 and 50, very good results were obtained even for a quite
small number of particles (5–10). Considering a more challenging problem (the third one), larger parameter values needed
to be selected in order to improve the success rate. It is important to note that the number of fitness evaluations required by
PSO in the worst case is still an extremely small portion of the search space. This fact, by itself, stresses the efficiency of PSO
as a heuristic search method. Also, the PSO presents a good scalability, taking into account the three instances of different
sizes tested. Due to the NP-completeness of the problem, the exhaustive search method becomes promptly unfeasible as the
size of the problem grows.

Overall, the computational results suggest that the PSO algorithm provides a quite efficient approach to obtain (near)
optimal solutions with small computational effort. On the other hand, the BLH approach, although faster, will lose its per-
formance as the problem size grows.

Future work will propose an enhancement of the BLH approach by considering multiple random restarts. The idea can be
stated as follows: starting with an initial routing matrix D, the BLH computes a solution. Then a random row permutation is
performed on matrix D and the BLH process is restarted. This process continues until no solution improvement can be ob-
tained. The best solution over all iterations is the final result.

Acknowledgments

The authors are grateful to the referees for their valuable comments and suggestions on earlier version of this paper.

References

[1] L. Kleinrock, Queueing Systems, Computer Applications, Vol. II, Wiley Interscience, New York, 1976.
[2] M. Gerla, L. Kleinrock, On the topological design of distributed computer networks, IEEE Trans. Commun. 25 (1977) 48–60.
[3] M. Mellia, A. Carpani, R.L. Cigno, Measuring IP and TCP behavior on edge nodes, IEEE Globecom 2002 (2002).
[4] V. Paxson, S. Floyd, Wide-area traffic: the failure of Poisson modeling, IEEE/ACM Trans. Network. 3 (1995) 226–244.
[5] E.C.G. Wille, M. Mellia, E. Leonardi, M. Ajmone-Marsan, Algorithms for IP networks design with end-to-end QoS constraints, Comput. Networks 50

(2006) 1086–1103.
[6] J.F. Hayes, Modeling and Analysis of Computer Communications Networks, Plenum Press, New York, 1984.
[7] J. Kennedy, R.C. Eberhart, A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and

Human Science, 1995, pp. 39–43.
[8] K. Maruyama, D.T. Tang, Discrete link capacity and priority assignments in communication networks, IBM J. Res. Develop (1977) 254–263.
[9] C. Ersoy, A. Levi, O. Gumrah, Artificial intelligence search techniques for discrete link capacity assignment in prioritized multiservice networks, Int. J.

Comput. Syst. Sci. Eng. (2000) 191–197.
[10] X. Liu, J. Igarashi, H. Miyamoto, A capacity assignment method with different types of channel capacities for packet switched networks, in: 2nd

Switching Network Systems Division, NEC Corp., 1990, pp. 194–199.
[11] R. Ferreira, H. Luna, Discrete capacity and flow assignment algorithms with performance guarantee, Comput. Commun. 26 (10) (2003) 1056–1069.
[12] X. Chao, M. Miyazawa, M. Pinedo, Queueing Networks – Customers, Signals and Product Form Solutions, John Wiley, New York, 1999.
[13] M. Garetto, D. Towsley, An efficient technique to analyze the impact of bursty tcp traffic in wide-area networks, Perform. Eval. 65 (2) (2008) 181–202.

5346 E.C.G. Wille et al. / Applied Mathematics and Computation 217 (2011) 5338–5346
[14] C. Fraleigh, F. Tobagi, C. Diot, Provisioning IP backbone networks to support latency sensitive traffic, IEEE Infocom 03 (2003).
[15] J. Kennedy, R.C. Eberhart, Swarm Intelligence, Morgan Kauffmann, San Francisco, 2001.
[16] H.S. Lopes, L.S. Coelho, Particle swarm optimization with fast local search for the blind traveling salesman problem, in: Proceedings of the 5th

International Conference on Hybrid Intelligent Systems, 2005, pp. 245–250.
[17] H.S. Lopes, F. Hembecker, W. Godoy Jr., Particle swarm optimization for the multidimensional knapsack problem, in: Proceedings of the 8th

International Conference on Adaptive and Natural Computing Algorithms, vol. LNCS 4431, 2007, pp. 358–365.
[18] R.C. Eberhart, X. Hu, Y. Shi, Swarm intelligence for permutation optimization: a case study of n-queens problem, in: IEEE Swarm Intelligence

Symposium, 2003, pp. 243–246.
[19] E. Yabcznski, Algorithms for solving the discrete capacity assignment problem in TCP/IP networks, MSc. dissertation, Graduate Program on Electrical

Engineering and Industrial Informatics (CPGEI), Federal University of Technology – Paraná (UTFPR) - Brazil (in Portuguese), 2007.

	Discrete Capacity Assignment in IP networks using Particle Swarm Optimization
	Introduction
	Related work

	Problem statement
	Network and queueing models
	The Discrete Capacity Assignment problem

	Solution methods
	Particle Swarm Optimization
	Applying PSO to the network design
	The Bottleneck Link Heuristic

	Computational experiments and results
	PSO and ES results
	BLH Results
	Computational effort

	Conclusion and future work
	Acknowledgments
	References

