
Reconfigurable Hardware Computing for

Accelerating Protein Folding Simulations

using the Harmony Search Algorithm and

the 3D-HP-Side Chain Model ⋆

César Manuel Vargas Benítez, Marlon Scalabrin,
Heitor Silvério Lopes, Carlos R. Erig Lima

Bioinformatics Laboratory, Federal University of Technology - Paraná,
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil

cesarvargasb@gmail.com, marlonscalabrin@yahoo.com.br,

hslopes@utfpr.edu.br, erig@utfpr.edu.br

1 Introduction

Proteins are essentials to life and they have countless biological functions. They
are synthesized in the ribosome of cells following a template given by the mes-
senger RNA (mRNA). During the synthesis, the protein folds into an unique
three-dimensional structure, known as native conformation. This process is called
protein folding. Several diseases are believed to be result of the accumulation of
ill-formed proteins.Therefore, understanding the folding process can lead to im-
portant medical advancements and development of new drugs.

Thanks to the several genome sequencing projects being conducted in the
world, a large number of new proteins have been discovered. However, only a
small number of such proteins have its three-dimensional structure known. For
instance, the UniProtKB/TrEMBL repository of protein sequences has currently
around 16.5 million records (as in july/2011), and the Protein Data Bank –
PDB has the structure of only 74,800 proteins. This fact is due to the cost
and difficulty of unveiling the structure of proteins, from the biochemical point
of view. Computer Science has an important role here, proposing models and
computation approaches for studying the Protein Folding Problem (PFP).

The Protein Folding Problem (PFP) can be defined as finding the three-
dimensional structure of a protein by using only the information about its pri-
mary structure (e.g. polypeptide chain or linear sequence of amino acids) [9].
The three-dimensional structure is the folding (or conformation) of a polypep-
tide as a result of interactions between the side chains of amino acids that are
in different regions of the primary structure.

⋆ This work is partially supported by the Brazilian National Research Council – CNPq,
under grant no. 305669/2010-9 to H.S.Lopes and CAPES-DS scholarships to C.M.V.
Benítez and M.H. Scalabrin

2 C.M. Vargas Benítez, M. Scalabrin, H.S. Lopes, C.R.E. Lima

The simplest computational model for the PFP problem is known as Hydrophobic-
Polar (HP) model, both in two (2D-HP) and three (3D-HP) dimensions [5]. Al-
though simple, the computational approach for searching a solution for the PFP
using the HP models was proved to be NP -complete [3]. This fact emphasizes
the necessity of using heuristic and massively parallel approaches for dealing
with the problem.

In this scenery, reconfigurable computation is an interesting methodology due
to the possibility of massive parallel processing. However, this methodology has
been sparsely explored in molecular biology applications. For instance, [7] present
a methodology for the design of a system based on reconfigurable hardware
applied to the protein folding problem, where different strategies are devised
to achieve a significant reduction of the search space of possible foldings. Also,
[12] presents a methodology for the design of a reconfigurable computing system
applied to the protein folding problem using Molecular Dynamics (MD). [13]
propose a complete fine-grained parallel hardware implementation on FPGA to
accelerate the GOR-IV package for 2D protein structure prediction. [4] present
a FPGA based approach for accelerating string set matching for Bioinformatics
research. A survey of FPGAs for acceleration of high performance computing
and their application to computational Molecular Biology is presented by [11].

The main focus of this work is to develop approaches for accelerating protein
folding simulations using the Harmony Search algorithm and the 3D-HP-SC
(three dimensional Hydrophobic-Polar Side-Chain) model of proteins.

2 The 3D-HP Side-Chain Model (3D-HP-SC)

The HP model divides the 20 proteinogenic amino acids into only two classes,
according to their affinity to water: Hydrophilic (or Polar) and Hydrophobic.
When a protein is folded into its native conformation, the hydrophobic amino
acids tend to group themselves in the inner part of the protein, in such a way
to get protected from the solvent by the polar amino acids that are preferably
positioned outwards. Hence, a hydrophobic core is usually formed, especially
in globular proteins. In this model, the conformation of a protein (that is, a
folding) is represented in a lattice, usually square (for the 2D-HP) or cubic (for
the 3D-HP). Both 2D-HP and 3D-HP models have been frequently explored in
the recent literature [9].

Since the expressiveness of the HP models is very poor from the biological
point of view, a further improvement of the model is to include a bead that repre-
sents the side-chain (SC) of the amino acids [8]. Therefore, a protein is modeled
by a backbone (common to any amino acid) and a side-chain, either Hydropho-
bic (H) or Polar (P). The side-chain is responsible for the main chemical and
physical properties of specific amino acids.

The energy of a conformation is an inverse function of the number of adjacent
amino acids in the structure which are non-adjacent in the sequence. To compute
the energy of a conformation, the HP model considers that the interactions
between hydrophobic amino acids represent the most important contribution for

Reconfigurable Computing for Protein Folding Using Harmony Search 3

the energy of the protein. Li et al. [8] proposed an equation that considers only
three types of interactions (not making difference between types of side-chains).
In this work we use a more realistic approach, proposed by [2], to compute the
energy of a folding, observing all possible types of interactions, as shown in
Equation 1.

H =

ǫHH ·

n
∑

i=1,j>i

δrHH
ij

+

ǫBB ·

n
∑

i=1,j>i+1

δrBB
ij

+

ǫBH ·

n
∑

i=1,j 6=i

δrBH
ij

+

ǫBP ·

n
∑

i=1,j 6=i

δrBP
ij

+

ǫHP ·

n
∑

i=1,j>i

δrHP
ij

+

ǫPP ·

n
∑

i=1,j>i

(δrPP
ij

)

(1)

In this equation, ǫHH , ǫBB, ǫBH , ǫBP , ǫHP , ǫPP are the weights of the en-
ergy for each type of interaction, respectively: hydrophobic side-chains (HH),
backbone-backbone (BB), backbone-hydrophobic side-chain (BH), backbone-
polar side-chain (PH), hydrophobic-polar side-chains (HP), and polar side-chains
(PP). In a chain of n amino acids, the distance (in the three-dimensional space)
between the ith and jth amino acid interacting with each other is represented by
r∗∗ij . For the sake of simplification, in this work we used unity distance between
amino acids (r∗∗ij = 1). Therefore, δ is an operator that returns 1 when the dis-

tance between the ith and jth elements (either backbone or side-chain) for each
type of interaction is the unity, or 0 otherwise. We also used an optimized set of
weights for each type of interaction, defined by [2].

During the folding process, interactions between amino acids take place and
the energy of the conformation tends to decrease. Conversely, the conformation
tends to converge to its native state, in accordance with the Anfinsen’s thermo-
dynamic hypothesis [1]. In this work we consider the symmetric of H such that
PFP is understood as a maximization problem.

3 Harmony Search Algorithm

The Harmony Search (HS) meta-heuristic is inspired by musician skills of com-
position, memorization and improvisation. Musicians use their skills to pursuit a
perfect composition with a perfect harmony. Similarly, the HS algorithm use its
search strategies to pursuit for the optimum solution to an optimization problem.

The pseudo-code of the HS algorithm is presented in Algorithm 1 [6]. The
Harmony Search (HS) algorithm starts with a Harmony Memory of size HMS,
where each memory position is occupied by a harmony of size N (musicians).
Each improvisation step of a new harmony is generated from the harmonies
already present in the harmony memory. If the new harmony generated is better
than the worst harmony in the harmony memory, it is replaced with the new.
The steps to improvise and update the harmony memory are repeated until the
maximum number of improvisations (MI) is achieved.

The HS algorithm can be described by five main steps, detailed below [6]1:

1 For more information see the HS repository: http://www.hydroteq.com

4 C.M. Vargas Benítez, M. Scalabrin, H.S. Lopes, C.R.E. Lima

Algorithm 1 Pseudo-code of the Harmony Search algorithm.

1: Parameters: HMS, HMCR, PAR, MI, FW
2: Start

3: Objective Function f(x),x = [x1, x2, ..., xN]
4: Initialize Harmony Memory xi, i = 1, 2, ..., HMS

5: Evaluate each Harmony in HM: f(xi)
6: cycle ← 1
7: while cycle < MI do

8: for j ← 1 to N do

9: if random ≤ HMCR then {Rate of Memory Consideration}

10: x
′

j ← xi
j , with i ∈ [1, HMS] {chosen randomly}

11: if random ≤ PAR then {Pitch Adjusting Rate}

12: x
′

j ← x
′

j ± r × FW {with r random}
13: end if

14: else {Random Selection}

15: Generate x
′

j randomly
16: end if

17: end for

18: Evaluate new harmony generated: f(x
′

)

19: if f(x
′

) is better than worst harmony in HM then

20: Update Harmony Memory
21: end if

22: cycle ← cycle + 1
23: end while

24: Results and views
25: End

1. Initialization and Setting Algorithm Parameters: In the first step, as
in any optimization problem, the problem is defined as an objective function
to be optimized (line 3), which can or cannot be constrained. Originally, Har-
mony Search was designed for solving minimization problems [6]. The four
main parameters of the algorithm are also defined here: Harmony Memory
size – HMS, the Harmony Memory Consideration Rate – HMCR, the Pitch
Adjusting Rate – PAR, and the Maximum number of Improvisations – MI.

2. Harmony Memory Initialization: The second step is the initialization of
the Harmony Memory (HM) with a number of harmonies randomly gener-
ated (line 4). The Harmony Memory is the vector in which the best harmonies
found during execution are stored. Each harmony is a vector representing a
possible solution to the problem.

3. Improvise a New Harmony: In the third step, a new harmony is im-
provised based on a combination of several other harmonies found in HM
(between lines 8–17). For each variable of the new harmony, a harmony of
HM is arbitrarily selected by checking the corresponding probability of using
or not this value (HMCR). If another harmony is used, the value of this
variable will have small adjustments (Fret Width – FW) according to a prob-
ability (PAR). If the value of another harmony is not used, a random value

Reconfigurable Computing for Protein Folding Using Harmony Search 5

within the range of allowed values is assigned. Thus, the parameters HMCR
and PAR are responsible for establishing a balance between exploration and
exploitation in the search space.

4. Update Harmony Memory: In the fourth step, each new improvised
harmony is checked to see if it is better than the worst harmony from HM
(lines 19–21). If so, the new harmony replaces the worst one in HM.

5. Verification of the Stopping Criterion: In the fifth step, the end of
each iteration is checked to discover if the best harmony meets the stopping
criterion, usually a maximum number of improvisations (MI). If so, the ex-
ecution is completed. Otherwise, it returns to the second step until reaching
the stopping criterion.

4 Methodology

This section describes in detail the implementation of the Harmony Search al-
gorithm for the PFP using the 3D-HP-SC model of proteins. Four versions were
developed: a desktop computer version and three different FPGA-based imple-
mentations. The FPGA-based versions were developed in VHDL (Very High
Speed Integrated Circuit Hardware Description Language) and implemented in
a FPGA (Field Programmable Gate Array) device. Two of these versions also
used an embedded processor (Altera’s NIOS II), as part of its hardware design.
On the other hand, software implementations (i.e. for both NIOS II and the
desktop computer) were developed in ANSI-C programming language.

The first hardware-based approach is a version for the 32-bit NIOS II embedded-
processor, and simply reproduces the software implemented on the desktop com-
puter. The second hardware-based approach is a version for NIOS II with a ded-
icated hardware block, specifically developed for computing the fitness function,
as shown in Figure 1). The HS algorithm runs on the NIOS II processor and
the block called “Fitness Calculation System” works as a slave of the NIOS II.
The processor is responsible for initializing the Harmony Memory, improvising
new harmonies, updating the Harmony Memory and, finally, distributing the
individuals (also called as harmonies) to the slave block. The slave, in turn, is
responsible for computing the fitness function for each individual received. The
internal structure of this block is described later.

The third hardware-based approach is fully implemented in hardware and
does not use an embedded processor, as shown in Figure 2. The block called
“Harmony Search Core” performs the HS algorithm. The Harmony Memory ini-
tialization is performed producing a new harmony for each position of the Har-
mony Memory. Each variable of each new harmony is independent of the others.
Therefore, each new harmony is generated in one clock pulse using a set of N
random number generators, where N is the number of variables in the harmony.

Once the Harmony Memory is loaded with the initial harmonies, the iterative
process of optimization of the HS algorithm is started. At each iteration, four
individuals (harmonies) are evaluated simultaneously (in parallel), thus expect-
ing an improvement in performance. In the improvisation step of the algorithm,

6 C.M. Vargas Benítez, M. Scalabrin, H.S. Lopes, C.R.E. Lima

FPGA

Fitness
Calculation

System

Results
MUX

*Energy
*Colisions
*Fitness

 Harmony
Search

Algorithm
(NIOS II)

harmony

reset

Enable

busy

fitness

Sequence

clk

rst

Fig. 1. Functional block diagram of the folding system with NIOS II embedded-
processor.

the process of selection of each variable of the new harmony is performed inde-
pendently. This procedure is done in only N clock pulses, as before.

After that, the updating of the Harmony Memory is performed by inserting
the new harmonies in their proper positions. The following positions are shifted,
discarding the four worst harmonies. To find the insertion position, the position
of the worst harmony in the Harmony Memory is always maintained in a latch.
Each variable to be replaced is treated simultaneously. Once the optimization
process is completed, the best harmony found is transferred from the Harmony
Memory to the “Fitness Calculation System” block in order to display all relevant
information about the conformation represented by this harmony.

The chronometer block measures the total elapsed processing time of the
system. The multiplex block selects output data among the obtained results
(energy of each interaction, number of collisions, fitness and the processing time
to be shown in a display interface).

The random number generator is implemented using the Maximum Length
Sequence (MLS) pseudo-random number approach. MLS is an n-stage linear
shift-register that can generate binary periodical sequences of maximal period
length of L = 2n − 1. In this work, we used n=7 or 4 for all probability values
mentioned in the Algorithm 1, and n = 5 for generate variables of the new
harmonies in the improvisation process.

Figure 3 shows a functional block diagram of the “Fitness Calculation Sys-
tem” that has three main elements: a three-dimensional conformation decoder, a
coordinates memory and a fitness computation block. By calculating the energy
of each different type of interactions and the number of collisions between the
elements (side-chains and backbone), the fitness of the conformation is obtained.
The blocks that perform such operations are described as follows:

Harmony Representation: The encoding of the candidate solutions (har-
monies of the HS algorithm) is an important issue and must be carefully im-
plemented. Encoding can have a strong influence not only in the size of the
search space, but also in the hardness of the problem, due to the establishment
of unpredictable cross-influence between the musicians of a harmony. There are

Reconfigurable Computing for Protein Folding Using Harmony Search 7

FPGA

Harmony Search
Core

Fitness
Calculation

System
1

Amino acid
Sequence

clkrst

Chronometer

enable

Harmony Memory
clk

rst

Results MUX
*Energy

*Colisions
*Fitness

*Chronometer

clk

rst

Harmony
Data Address Write

Enable

reset

Enable

busy

processing time

fitness_1

fitness_4

harmony_1

harmony_4

MLS Random
Number

Generator

clk

rst

clk

rst

Fitness
Calculation

System
2

Fitness
Calculation

System
3

Fitness
Calculation

System
4

Fig. 2. Functional blocks of the proposed folding system without NIOS II embedded-
processor.

Fitness Calculation System

3D Conformation
Decoder

Coordinates
Memory

Element
Coordinates

(xi, yi, zi)
clk_mem

Fitness Computation

Harmony

clk

rst Interactions
calculation

Collisions
detection

Energy
Calculation

Fitness Calculation
Fitness

Fitness Interactions
Energy

Collisions

Coordinates
(xi, yi, zi)

Fig. 3. Fitness computing system

8 C.M. Vargas Benítez, M. Scalabrin, H.S. Lopes, C.R.E. Lima

several ways of representing a folding in an individual, as pointed by [9]: distance
matrix, Cartesian coordinates (absolute coordinates), or relative internal coor-
dinates. In this work we used the relative internal coordinates, because it is the
most efficient for the PFP using lattice models of proteins. In this coordinates
system, a given conformation of the protein is represented as a set of movements
into a three-dimensional cubic lattice, where the position of each amino acid of
the chain is described relatively to its predecessor.

As mentioned in Section 2, using the 3D-HP-SC model, each amino acid of the
protein is represented by a backbone (BB) and a side-chain, either hydrophobic
(H) or polar (P). Using the relative internal coordinates in the three-dimensional
space, there are five possible relative movements for the backbone (Left, Front,
Right, Down and Up), and other five for each side-chain (left, front, right, down,
up). It is important to know that the side-chain movement is relative to the
backbone. The combination of these possible movements gives 25 possibilities.
Each possible movement is represented by a symbol which, in turn, is represented
using a 5-bit binary format (number of bits needed to represent the alphabet
of 25 possible movements, between 0 and 24). The invalid values (value ≥ 25)
are replaced by the largest possible (value = 24). Considering a folding of a n-
amino acids long protein, a harmony of n− 1 musicians will represent the set of
movements of the backbone and side-chain of a protein in the three-dimensional
lattice. For a n-amino acids long protein, the resulting search space is 25(n−1)

possible foldings/conformations.

Three-Dimensional Conformations Decoder: The harmony, representing
a given conformation, has to be converted into Cartesian coordinates that em-
beds the conformation in the cubic lattice. Therefore, a progressive sequential
procedure is necessary, starting from the first amino acid. The coordinates are
generated by a combinational circuit for the whole conformation. These coor-
dinates are stored in the “Coordinates Memory” which, in turn, provides the
coordinates of all elements (backbone and side-chains) in a parallel output bus.

The algorithm for the decoding process (harmony → conformation) is as fol-
lows. The harmony is read and decoded into a vector using the set of possible
movements. In the next step, the elements of the first amino acid are placed in
the three-dimensional space. For each movement, four steps are done. First, the
direction of the movement is obtained from the next movement and the direc-
tion of the movement of the predecessor amino acid. The backbone coordinates
are obtained similarly from predecessor amino acid. The next step consists in
determining the coordinates of the side-chain of the amino acids from the move-
ment and coordinates of the backbone. Finally, the coordinates obtained in this
process are stored in the “Coordinates Memory”.

Figure 4(left) shows a conformation for a hypothetical 4-amino acids long
protein, where the Cartesian coordinates of each element are represented as xi

(row), yi (column), zi (depth), and obtained from the relative movement of
the current amino acid and position of its predecessor. Blue balls represent the
polar residues and the red ones, the hydrophobic residues. The backbone and the

Reconfigurable Computing for Protein Folding Using Harmony Search 9

connections between elements are shown in gray. The search space for the protein
represented in this figure has 25(n−1) = 253 = 15625 possible conformations.
Here, the folding is formed by three movements: Ul→Dl→Dl. In this figure,
the backbone and the side-chain of the first amino acid of the chain are also
indicated, where the backbone and the side-chain are set to the origin of the
coordinates system (0,0,0) and (0, -1, 0), respectively.

Fig. 4. Left: Example of relative 3D movements of a folding. Right: Diagram repre-
senting the possible iterations between the elements of a protein chain.

Fitness Function: In this work, we used a simplified fitness function based on
that formerly proposed by [2]. Basically, this function has two terms: fitness =
H − (NC · PenaltyV alue). The first is relative to the free-energy of the folding
(H , see Equation 1) and the second is a penalty term that decreases the fitness
value according to the number of collisions in the lattice. The term Energy

takes into account the number of hydrophobic bonds, hydrophilic interactions,
and interactions with the backbone. Also, the number of collisions (considered
as penalties) and the penalty weight are considered in this term. This penalty
is composed by the number of points in the three-dimensional lattice that is
occupied by more than one element (NC - number of collisions), multiplied by
the penalty weight (PenaltyV alue).

The blocks named “Interactions calculation”, “Collisions detection” and “En-
ergy calculation”, compute the energy of each type of interaction (see Figure
4(right) for a visual representation), the number of collisions between elements
and the free-energy (H), respectively. Finally, the block called “Fitness Calcula-
tion” computes the fitness function. It is important to note that, in the current
version of the system, due to hardware limitations, all energies are computed
using a sequential procedure, comparing the coordinates of all elements of the
protein. As the length of sequences increase, the demand for hardware resources
will increase accordingly.

5 Experiments and Results

All hardware experiments done in this work were run in a NIOS II Development
kit with an Altera Stratix II EP2S60F672C5ES FPGA device, using a 50MHz

10 C.M. Vargas Benítez, M. Scalabrin, H.S. Lopes, C.R.E. Lima
Table 1. Comparative performance of the several approaches.

n tp(s)

tpNIOS
tpNIOS−HW

tpSW
tpHW

20 557.3 54.0 6.5 1.6

27 912.8 75.0 7.7 3.0

31 1186.8 87.3 7.9 4.0

36 1460.5 107.7 9.4 5.0

48 2414.9 174.8 13.44 10.0

internal clock. The experiments done for the software version were run in a
desktop computer with a Intel processor Core2Quad at 2.8GHz, running Linux.

In the experiments reported below, the following synthetic sequences were
used [2], with 20, 27, 31, 36 and 48 amino acids, respectively: (HP)2PH2PHP2HP
H2P(PH)2; H3P2H4P3(HP)2PH2P2HP3H2; (HHP)3H(HHHHHPP)2H7; PH
(PPH)11P; HPH2P2H4PH3P2H2P2HPH3(PH)2HP2 H2P3HP8H2.

In this work, no specific procedure was used for adjust the running parameters
of the HS algorithm. Factorial experiments and self-adjusting parameters [10] of
algorithms are frequently used in the literature, but these issues fall outside
the focus of the work. Instead, we used the default parameters suggested in
the literature. The running parameters used in this work are: MI = 100000,
HMS = 20, PAR = 30%, FW = 5 and HMCR = 90%.

It is important to recall that the main objective of this work is to decrease
the processing time of protein folding simulations by using the 3D-HP-SC model.
Each developed approach was applied to the sequences mentioned before. Results
are shown in Table 1. In this table, the first column identifies the sequence length;
columns tpNIOS

, tpNIOS−HW
, tpSW

and tpHW
show the processing time for each

approach. Where, tpNIOS
, tpNIOS−HW

, tpSW
and tpHW

represent, respectively,
the total elapsed processing time for the NIOS II, NIOS II with the “Fitness
Calculation System” block, the software and the hardware-based system without
embedded processor approach. Overall, the processing time, for any approach,
is a function of the length of the sequence, possibly growing exponentially as the
number of amino acids of the sequence increases. This fact, by itself, strongly
suggests the need for highly parallel approaches for dealing with the PFP. In
order to facilitate the comparison of performance between the approaches, Figure
5 presents the speedups obtained, where:

– Spa
= tpNIOS−HW

/tpNIOS
: speedup of the NIOS II with the “Fitness Calcu-

lation System” block relative to the NIOS II approach;
– Spb

= tpSW
/tpNIOS−HW

: speedup of the software relative to the NIOS II
with the “Fitness Calculation System” block;

– Spc
= tpNIOS−HW

/tpHW
: speedup of the hardware-based system without

embedded processor approach relative to the NIOS II with the “Fitness Cal-
culation System” block;

– Spd
= tpSW

/tpHW
: speedup of the hardware-based system without embedded

processor approach relative to the software for desktop computers.

Reconfigurable Computing for Protein Folding Using Harmony Search 11

 0

 5

 10

 15

 20

 25

 30

 35

 20 25 30 35 40 45

S
pe

ed
up

n

Spa
Spb
Spc
Spd

Fig. 5. Comparison of speedups between the approaches.

The NIOS II version presented the worst performance (i.e. the highest pro-
cessing time) amongst all implementations. Its processing time was larger than
the software approach due to the slow frequency of the internal clock (compar-
ing with the desktop processor). It is also observed that the NIOS II with the
“Fitness Calculation System” block achieved significant speedup when compared
to the NIOS II approach, ranging from 10x to 13x, depending on the length of
the sequence, mainly due to the number of clock cycles needed to execute each
instruction in the NIOS II processor.

The hardware-based system without the embedded processor showed the
best performance, mainly due to the several levels of parallelism, namely, in the
Harmony Memory initialization, in the improvisation and in the parallelization
of several fitness function evaluations. It is observed that this approach was
significantly better when compared to the remaining hardware-based approaches,
achieving a speed-up ranging from 17x to 34x, also depending on the length of the
sequence. When compared with the software approach, it is observed that this
approach achieved speedups ranging from 1.5x to 4.1x. The speedup decreases
as the length of the sequences grows, due to the sequential procedure used to
compute the energy for each type of interaction (as mentioned in Section 4).

6 Conclusions and Future Works

The PFP is still an open problem for which there is no closed computational
solution. As mentioned before, even the simplest discrete model for the PFP
requires an NP -complete algorithm, thus justifying the use of metaheuristic
methods and parallel computing. While most works used both 2D and 3D-HP
models, the 3D-HP-SC is still poorly explored (see [2]), although being a more
expressive model, from the biological point of view.

Improvements will be done in future versions with the hardware-based sys-
tem without the embedded processor approach, such as the full parallelization of

12 C.M. Vargas Benítez, M. Scalabrin, H.S. Lopes, C.R.E. Lima

the energy computation. Also, future works will investigate hardware versions of
other evolutionary computation approaches, such the Ant Colony Optimization
(ACO), Particle Swarm Optimization (PSO) or the traditional Genetic Algo-
rithm (GA) applied to the PFP, so as to develop parallel hybrid versions and
different parallel topologies. Regarding the growth of hardware resources usage,
future work will consider the use of larger devices or multi-FPGA boards.

Overall, results lead to interesting insights and suggest the continuity of the
work. We believe that the use of reconfigurable computing for the PFP using
the 3D-HP-SC model is very promising for this area of research.

References

1. C.B. Anfinsen. Principles that govern the folding of protein chains. Science,
181(96):223–230, 1973.

2. C.M.V. Benítez and H.S. Lopes. Hierarchical parallel genetic algorithm applied to
the three-dimensional HP side-chain protein folding problem. In Proc. of the IEEE

Int. Conf. on Systems, Man and Cybernetics, pages 2669–2676, 2010.
3. B. Berger and F.T. Leighton. Protein folding in the hydrophobic-hydrophilic HP

model is NP-complete. Journal of Computational Biology, 5(1):27–40, 1998.
4. Y.S. Dandass, S.C. Burgess, M. Lawrence, and S.M. Bridges. Accelerating string

set matching in FPGA hardware for bioinformatics research. BMC Bioinformatics,
9(197), 2008.

5. K.A. Dill, S. Bromberg, K. Yue, and K.M. Fiebig et al. Principles of protein folding
- a perspective from simple exact models. Protein Science, 4(4):561–602, 1995.

6. Z.W. Geem, J.-H. Kim, and G. V. Loganathan. A new heuristic optimization
algorithm: Harmony search. Simulation, 76(2):60–68, 2001.

7. N.B. Armstrong Junior, H.S. Lopes, and C.R.E. Lima. Preliminary steps towards
protein folding prediction using reconfigurable computing. In Proc. 3rd Int. Conf.

on Reconfigurable Computing and FPGAs, pages 92–98, 2006.
8. M.S. Li, D.K. Klimov, and D. Thirumalai. Folding in lattice models with side

chains. Computer Physics Communications, 147(1):625–628, 2002.
9. H.S. Lopes. Evolutionary algorithms for the protein folding problem: A review and

current trends. In Computational Intelligence in Biomedicine and Bioinformatics,
volume I, pages 297–315. Springer-Verlag, Heidelberg, 2008.

10. M.H. Maruo, H.S. Lopes, and M.R.B Delgado. Self-adapting evolutionary param-
eters: encoding aspects for combinatorial optimization problems. Lecture Notes in

Computer Science, 3448:154–165, 2005.
11. T. Ramdas and G. Egan. A survey of FPGAs for acceleration of high performance

computing and their application to computational molecular biology. In Proc. of

the IEEE TENCON, pages 1–6, 2005.
12. W-T. Sung. Efficiency enhancement of protein folding for complete molecular sim-

ulation via hardware computing. In Proc. 9th IEEE Int. Conf. on Bioinformatics

and Bioengineering, pages 307–312, 2009.
13. F. Xia, Y. Dou, G. Lei, and Y. Tan. FPGA accelerator for protein secondary

structure prediction based on the GOR algorithm. BMC Bioinformatics, 12:S5,
2011.

