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Abstract-This work describes a Hierarchical Parallel Genetic 
Algorithm (HPGA) applied to the Protein Folding Problem (PFP). 
The modeling of the problem, using the 3DHP-Side-chain model, 
and details of the HPGA are presented. The effect of the energy 
weights in the performance of the algorithm was also studied. 
The HPGA was tested using three sets of benchmark sequences. 
Results show that the HPGA obtained biologically coherent 
results, suggesting the adequacy and efficiency of the HPGA for 
the problem. 

Index Terms-Genetic Algorithm, Bioinformatics, Protein 
Folding, 3DHP-SC. 

I. INT RO DUCTION 

Proteins are essential to life and they have countless bio­
logical functions. They can be defined as polymers composed 
by a chain of amino acids (also known as residues) that are 
linked together by means of peptide bonds. Each amino acid 
is characterized by a central carbon atom (referred as Cn), to 
which a hydrogen atom, an amine group (NH 2), a carboxyl 
group (COOH) and a side-chain (also known as radical R) are 
attached. The carboxyl group of one amino acid and the amino 
group of another one are responsible for linking them together. 
An amino acid differs from others by their side-chain, since 
the backbone of all amino acids are the same [18]. 

Proteins are synthesized in the ribosome of cells following 
a template given by the messenger RNA (mRNA). During 
the synthesis, the protein folds itself into a unique three­
dimensional structure. This process is known as protein fold­
ing. The specific shape to which the protein naturally folds 
is known as its native conformation. The biological function 
of a protein depends on its three-dimensional shape, which, 
in turn, is a function of its primary structure (linear sequence 
of amino acids). It is known that ill-formed protein (due to 
wrong folding) can be completely inactive or even harmful 
to the organism. Several diseases are believed to result from 
the accumulation of ill-formed proteins. Therefore, better un­
derstanding the protein folding process, the three-dimensional 
structure and functionality of proteins, is a fundamental issue 
for MedicinelBiochemistry. Notwithstanding, despite a large 
number of proteins that have been discovered by recent 
genome sequencing projects, only a small amount of these 
proteins have their three-dimensional structure kwnown. For 
instance, the UniProtKBrrrEMBL [8] repository of protein 
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sequences has currently around 11.2 million records (as in 
July/20lO), and the Protein Data Bank - PDB [5] has the 
structure of only 62,212 proteins 1. This fact is due to the 
cost and difficulty in unveiling the structure of proteins, from 
the biochemical and biological point of view. It is here that 
Computer Science has an important role, proposing models for 
studying the Protein Folding Prediction (PFP) problem [16]. 

The simplest computational model for the PFP problem 
is known as Hydrophobic-Polar (HP) model, both in two 
(2D-HP) and three (3D-HP) dimensions [9]. However, the 
computational approach for searching a solution for the PFP 
using simple HP models was proven to be NP-complete [2]. 
Consequently, metaheuristic approaches seem to be the most 
reasonable algorithmic choice for dealing with the problem. 
Evolutionary computation methods and, in special, Genetic 
Algorithms (GA) have been proved not only adequate, but very 
efficient for the PFP [16], [20] 

The objective of this work is to extend and deepen a 
previous work [3], [4], aiming at finding the native confor­
mation of synthetic proteins represented with the 3D-HP Side­
Chain model. This is accomplished by using a hierarchical 
parallel genetic algorithm. We also studied the effect of the 
energy weights in the performance of the algorithm, proposing 
optimized values, not yet available in the literature for this 
model. Comparing with our previous work [3], [4], this version 
also includes a strategy for improving performance of the GA, 
updated results and new benchmarks. 

II. THE 3DHP SI DE-CHAIN MO DEL 

The Hydrophobic-Polar (HP) model is the most simple 
abstraction of the protein structure and divides the 20 stan­
dardized amino acids into two types: Hydrophilic (or Polar) 
and Hydrophobic. Therefore, a protein (string of amino acids) 
is represented by a string of characters defined over a binary 
alphabet {H, Pl. The HP is a lattice model, and thus the chain 
is embedded in a square (for the 2D-HP) or cubic (for the 
3D-HP) lattice. Both 2D-HP and 3D-HP models have been 
extensively explored in the recent literature [16]. 

From the biological point of view, the expressiveness of the 
HP models is very poor. Therefore, the next step to simulate 

1 Available, respectively, at http://www.uniprot.org/ and http://www.pdb.org 
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more realistic features of proteins is to include a side bead 
representing the side-chain (SC) of the amino acids [15]. 
Recall that all the standard amino acids have the same basic 
structure (backbone), but different side-chains define their 
physico-chemical properties. Therefore, a protein is modeled 
by a common backbone and a side-chain, either Hydrophobic 
(H) or Polar (P). Different from the 2D-HP and 3D-HP, the 3D­
HP-SC model is very sparsely studied in the recent literature, 
possibly due to the higher level of complexity of the model, 
when compared with the former. In fact, this model increases 
the realism of the simulation, but at the expense of increasing 
the complexity of the problem, from the computational point 
of view. 

In the original HP model, it is considered that interac­
tions between hydrophobic amino acids represent the most 
important contribution to the free-energy of the protein. The 
more hydrophobic interactions, the small the free-energy of 
the protein. For the 3D-HP-SC model, the free-energy of a 
given conformation is also in accordance with that principle, 
and takes into account the position in the space of the side­
chains. To compute the energy of a conformation, Li et al. 
[15] proposed an equation that considers only three types of 
interactions (not making difference between types of side­
chains). In this work we propose a more realistic way to 
compute the energy of a folding that accounts for all possible 
types of interactions, as shown in Equation 1. 

n n 

H = EHH· '"' 6rIfH + EBB· '"' 6rB.B � 1.J � 1,J 
i=l,j>i i=l,j>i+l 

n n 

+EBH· '"' 6rBH + EBp· '"' 6rBP � 1.J � 1.J 
i=l,#i i=l,#i 

n n 

+EHp· '"' 6rHP + Epp· '"' 6rPp (1) � '/,J � 'l.J 
i=l,j>i i=l,j>i 

In this equation, EHH, EBB, EBH, EBP, EHP, Epp are 
the weights of the energy for each type of interaction, re­
spectively: hydrophobic side-chains (HH), backbone-backbone 
(BB), backbone-hydrophobic side-chain (BH), backbone-polar 
side-chain (PH), hydrophobic-polar side-chains (HP), and polar 
side-chains (PP). In a chain of n residues, the distance (in 
the three-dimensional space) between the ith and lh residue 
interacting with each other is represented by r;7 . For the sake 
of simplification, in this work we used unity distance between 
residues (rU = 1). Therefore, 6 is an operator that returns 1 
when the distance between the ith and jth side-chain is the 
unity, or 0 otherwise. 

In section IV-C an optimized set of weights will be proposed 
for using in the experiments. Such set was found by means of 
a Genetic Algorithm. 

As the amino acids chain folds over themselves, bonds (or 
contacts) between them take place, according to the possible 
interactions indicated in Eq. 1. It is believed that the non­
local hydrophobic interactions are the main driving force that 
causes the macromolecule to fold correctly. During the folding 

process, the free energy of the protein tends to decrease. As 
mentioned before, the free-energy of a given three-dimensional 
conformation is inversely proportional to the number of non­
local hydrophobic side-chain bonds (H nC). Therefore, an 
algorithmic procedure for the protein folding that maximizes 
the H nC will, probably, take the molecule to the smallest 
possible free-energy state. 

According to [15], the weight for HnC (EHH) is negative. 
Consequently, the smaller the value of the free-energy function, 
the closer to its native state the conformation will be, in 
accordance with the Anfinsen's thermodynamic hypothesis [1]. 
In this work we consider the symmetric of H to turn the 
problem to maximization, and make the interpretation easier. 

III.  HIE RA RCHICAL PARALLEL GENE TIC ALGO RI THM FO R 

THE PFP 

Genetic Algorithms (GAs) are based on the Darwinian 
model of natural selection and evolution and they have been 
applied successfully to a wide range of problems. GAs operate 
on a population of individuals, as potential solutions to a given 
problem. Variables of a problem are represented by genes 
encoded in the individualt's chromosome, typically a string 
(or another alphabet) of binary digits. 

In general, GAs are able to find good solutions in reasonable 
amount of time, but as they are applied to larger and harder 
problems, significant increment of processing time are required 
to find satisfactory solutions. As a consequence, there have 
been multiple efforts to make GAs faster, and one of the most 
promising options is to use parallel implementations. Besides, 
depending on the parallelization model, one can take advantage 
of the co-evolution between populations that may lead to better 
solutions. 

Three main types of Parallel GAs (PGAs) [7] can be iden­
tified: global single-population master-slave, single-population 
fine-grained and multiple-population coarse-grained. There is 
also a combination of these types, leading to Hierarchical Par­
allel Genetic Algorithms (HPGAs). The HPGA implemented in 
this work has two levels: in the upper level multiple-population 
coarse-grained islands, and in the lower level global single­
population master-slaves. This combination aims at taking 
advantage of the benefits of both approaches, as suggested by 
[6]. 

In the lower level the processing load is divided into several 
slaves, under the coordination of a master which is respon­
sible for initializing the population, executing the selection 
procedure, applying the genetic operators, and distributing 
individuals to slaves. Slaves, in turn, receive a number of 
individuals, decode the corresponding chromosomes, compute 
penalties and the objective function. Finally, they return to the 
master the fitness value for each individual. 

In the upper level each population (master and correspond­
ing slaves) is seen as an island. Sporadic migrations take place 
between islands, controlled by four parameters set by the user: 
Migration gap (number of generations between successive 
migrations), Migration rate (number of individuals that will 
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migrate at each migration event), Selection/Substitution criteria 
for migrants, and topology of connectivity between islands. 

A. Encoding and Initial Population 

The way variables are encoded has a significant influence 
in the dynamics and efficiency of a GA. The genotype is 
the way information is encoded in the chromosomes, and the 
phenotype is the decoding of such information into a real­
world solution. To model the PFP, the phenotype represents the 
spatial position of the amino acids in a lattice. There are several 
ways for representing a folding in a chromosome [16], such as: 
distance matrix, Cartesian coordinates or internal coordinates. 
Most works in recent literature use this last approach, since it 
was suggested that it is the most efficient when using GA [14]. 
In this coordinate system, a given conformation is represented 
by a set of movements of one amino acid relative to its 
predecessor in the chain. Therefore, for a protein with n amino 
acids, a folding encoded in the chromosome of the GA will 
have n - 1 elements. 

There are five possible movements for the backbone in 
the 3D space: (Left, Front, Right, Down, Vp), and the same 
number for the side-chains, (left, front, right, down, up). 
Combining all possible movements, there are 25 possibilities 
for each amino acid: {Ll, Lf, Lr, Ld, Lu, Fl, Ff, Fr, Fd, Fu, 
Rl, Rf, Rr, Rd, Ru, Dl, Df, Dr, Dd, Du, VI, Uf, Vr, Ud, Uu}. 
Each element of this set is translated into an unique symbol. 
Instead of the traditional binary alphabet, a set of 25 numbers 
and letters was used to encode the chromosome (see Table I) 
[3]. 

Table I 
ENCODING SCHEME OF THE RELATIVE INTERNAL COORDINATES. 

Movements 
Backbone 

L F R D U 

I 0 5 A F K 
c 
'", f I 6 B G L 
..c u 
.u r 2 7 C H M 

"" 
d 3 8 0 I N c;) 
u 4 9 E J 0 

To represent the position of the amino acids in the cubic 
lattice, the Cartesian coordinates of each element (backbone 
and side-chain) will be later defined by a vector (Xi, Yi, Zi). 

This vector is obtained from the relative movement of an amino 
acid and position of its predecessor. A folding begins in the 
origin of the three-dimensional Cartesian coordinates, such that 
the first backbone is at (0,0,0) and its side-chain at (0, -1,0). 
The position of the remaining amino acids is computed fol­
lowing the movements encoded in the chromosome. Therefore, 
a progressive sequential procedure is necessary for genotype­
phenotype decoding. Figure 1 shows an example of genotype­
phenotype decoding. Only the first four movements are shown 
in the figure due space restrictions. 

Despite the advantages of using the proposed genotypical 
representation, it allows that two or more elements (backbone 
or side-chain) to occupy the same position in the lattice. This 

Genotype 
(chromo orne) 

MI03 · 

Phenotype 
(Conformation) 

Figure I. Example of genotype-phenotype decoding 

fact is known as collision, and results in an invalid conforma­
tion, since it is physically unfeasible. However, when the initial 
population is randomly created, the number of collisions tend 
to increase as the size of the protein increases [16]. Therefore, 
the GA will spend a reasonably large time throughout the 
first generations working with invalid individuals until good 
individuals appear. Aiming at improving the performance of 
the GA, a method for creating better initial individuals was 
proposed. The initial population is divided into two parts (80% 
and 20%). The first part is randomly generated, as usual, and 
the second part is composed only by collision-free individuals, 
generated by a backtracking strategy, explained below. 

After positioning the first backbone and its side-chain in 
the lattice, the movement of the next amino acid backbone 
is randomly selected. If the movement leads to a collision 
with the backbone or the side-chain of any other amino 
acid previously positioned in the lattice, a backtracking is 
done. Other possible positions for the backbone and side-chain 
are examined until a suitable combination is found (with no 
collisions). If this is not possible, the last pair backbone/side­
chain is removed from the current position of the lattice and 
set to another position. The procedure is recursively repeated 
until a complete valid folding is obtained. 

Although the proposed method for generating the initial 
population is very time-consuming, it assures the quality of 
individuals in the first generation, thus fostering the evolution 
of the AG towards good solutions. 

B. Fitness Function 

The objective function used in this work was first proposed 
by [17], and adapted to the 3DHP-SC by [3]. In a simplified 
way, this function has three terms (as shown in Equation 2). 
The first one is relative to the free-energy of the folding 
(see Equation 1), decreased by the number of collisions in 
the lattice. The following terms represent the compacity of 
the hydrophobic and polar side-chains, respectively. This is 
accomplished by means of the computation of the radius of 
gyration of the corresponding side-chains. This is done in 
such a way to favor conformations in which hydrophobic side­
chains are compacted within the core, and polar side-chains are 
pushed outwards of the conformation. A detailed description 
of the objective function can be found in [3],[17]. 
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fitness = Energy· RadiusG H . RadiusG p (2) 

In this equation, the term Energy takes into account the 
number of non-local hydrophobic bonds, hydrophilic interac­
tions, and interactions with the backbone. Also, the number 
of collisions (considered as penalties) and the penalty weight 
are considered in this term. This penalty is composed by the 
number of points in the 3D lattice that is occupied by more 
than one element (NG - number of collisions), multiplied by 
the penalty weight (PenaltyValue), as shown in Equation 
(3). RadiusG Hand RadiusG p represent the gyration radius 
of the hydrophobic and hydrophilic side-chains, respectively. 
Radius of gyration is a measure of compactness of a set of 
points (in this case, the side-chains of the amino acids in 
the lattice). The more compact the set of points, the smaller 
the radius of gyration. Equation 4 shows how this measure is 
computed. 

Energy = H - (NG· PenaltyValue) (3) 

RGaa = 
2:::1 [(Xi - X)2 + (Yi - y)2 + (Zi - Z)2] 

(4) 
Naa 

In this equation, Xi, Yi and Zi are the coordinates of the i-th 
side-chain of type "aa" of the protein, either hydrophobic (H) 
of polar (P); X, Y and Z are the average of all Xi, Yi and Zi; 

and Naa is the number of side-chains of type "aa". 

In order to obtain a compact hydrophobic core, typical 
of globular proteins, the radius of gyration of the set of 
hydrophobic side-chains (RG H) should be minimized, thus 
increasing the number of hydrophobic bonds between amino 
acids. Conversely, the maximization of the radius of gyration 
of the set of polar side-chains (RG p) takes them to the outer 
side of the conformation. To obtain such effect, both terms 
are computed by Equations 5 and 6, where maxRG H is 
the value of the radius of gyration when the amino acids 
chain is completely stretched. Once computed RadiusG Hand 
RadiusGp, they are used in the fitness function shown in 
Equation 2. 

RadiusGH = maxRGH - RGH 

{I 
RadiusGp = 1 

l-(RGp-RGH) 

if (RGp - RGH :::: 0) 

else 

C. Genetic Operators and Improvement Strategy 

(5) 

(6) 

Current literature presents many specialized genetic opera­
tors for the PFP and, in particular, some biologically-inspired 
operators. In this work we do not attempted to apply other ge­
netic operators other than the regular two-point crossover and 
multibit mutation. Future work will focus on other operators. 

When a GA gets trapped around a local maxima point in 
the search space, a decrement of population diversity usually 
takes place, mainly as a consequence of the intense local search 
provided by the crossover operator. This effect sometimes can 

be balanced by the action of the mutation operator. However, 
frequently, this is not enough and additional strategies are 
needed to avoid stagnation of the search. 

When the population of the GA is concentrated around a 
local maxima, the only way to avoid useless computational 
effort is to escape from the current region, and redirects the 
GA to explore other regions of the search space. In this work 
we used the Decimation-and-Hot-Boot (DHB) strategy [11], 
[20], explained below. 

During the evolution of the GA, the best individual of 
each generation is always maintained. An indirect evidence 
that the GA has stagnated is when the best individual does 
not improve for many generations. The strategy used verifies 
whether or not the best-so-far individual is improved from a 
given generation to the next one. If it is improved, a counter is 
zeroed, otherwise, it is incremented. When the counter reaches 
a predefined number of generations (gen2decimate), 50% of 
the population is decimated and substituted by individuals 
generated according to the same procedure done for the initial 
population (see section III-A). It is important to note that 
the best individual is always maintained during the DHB 
procedure. 

The application of this strategy improves significantly the 
genetic diversity and allows the evolutionary process to con­
tinue for some more generations. Ultimately, the chances of 
finding even better solutions is improved. However, it should 
be taken into account that new individuals recently created by 
the DHB procedure probably will have low fitness values. If, in 
one hand, the genetic diversity is improved, on the other hand, 
the selective pressure is increased due to the large differences 
of fitness values between the individuals. It is well known 
that high selective pressure leads to premature convergence 
due to loss of genetic diversity. This is the opposite effect 
to what would be desired. Therefore, it is necessary to avoid 
high selective pressure during some generations just after the 
decimation. This is accomplished by decreasing the number of 
individuals that take part of the tournament selection (parame­
ter tourneysize) to 2 during a fixed number of generations 
(parameter gen2weakTourney), and then returning to its 
original value. 

IV. COMPUTATIONAL EXPERIMENT S  AND RE SULT S 

All experiments reported in this work were run in a cluster 
of 31 computers with the same hardware and software con­
figurations (Intel core 2-quad at 3 GHz, running Linux). The 
software was developed in ANSI-C programming language, 
using the Message Passing Interface (MPI) MPICH2 package 
for the communication between processes 2. 

A. Benchmark sequences 

In our experiments, 25 synthetic amino acids sequences 
were used as benchmark, as shown in Table II. These se­
quences had either 27, 31, 36 or 48 amino acids-long. Three 
groups of benchmarks were used: "Dill. *", first proposed by 
[24], "Unger273d.*" due to [22] and "S48.*" due to [25]. 

2 Available at: http://www.mcs.anl.gov/research/projects/mpich2/ 
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To the best of our knowledge, the "Unger273d. *" sequences 
were used for the first time by [3] for the 3DHP-SC model 
(results are shown in the column H nC), but the remaining 
were not yet tried for this model. 

Only for comparison purposes, the maximum known num­
ber of hydrophobic contacts for "Dill.*", "Unger273d.*" and 
"S48. *" group of sequences using the 3DHP model are shown 
in the column (E) of the table, following results obtained by 
[24], [19] and [21], respectively. It is supposed that the optimal 
solution for these sequences, using the 3DHP-SC model, will 
have no less than the same number of contacts (of the 3DHP 
model), but, probably, more. 

B. Control Parameters of the GA 

There is no specific procedure for adjusting parameters of 
a GA. In this work we decided to do several preliminary 
experiments combining possible values for the parameters. 
For each combination, 100 independent runs were done using 
different random seeds, and the average results were compared. 

The basic parameters of the GA were tested in the fol­
lowing ranges: tournament size of the selection procedure 
(tourneysize): 2%, 3%, 5%; probability of crossover operator 
(pcross): 70%, 80%, 90%; probability of the mutation operator 
(pmut): 2%, 5%, 8%. Also, the parameteres of the DHB stra­
tegy, gen2decimate and gen2weakTourney, were tested in 
the ranges [300; 600] and [30; 60; 300; 600], respectively. The 
migration parameters, Migrationgap and MigrationRate, 
were tested for the following values: [20; 30; 60; 90; 120; 
150; 300; 600; 900] and [2; 3; 5], respectively. A total of 62 
experiments were done. 

By analyzing the average results we found the best set of 
parameters for the HPGA. They were used in all experiments 
reported in the next sections. The basic parameters of each 
island were: number of generations (3000), population size 
(500), two-points crossover probability (80%), multibit mu­
tation probability (8%), selection method (stochastic tourna­
ment, tourneysize=3%). The specific parameters of the DHB 
strategy were: gen2decimate = 300, gen2weakTourney = 
300. The migration policy parameters were set as: Migration 
gap = 120 generations, Migration Rate = 5 individuals, best 
and four random immigrants replace random individuals of the 
receiving population, topology with 4 islands connected by a 
unidirectional ring. 

C. Optimization of the Energy Weights 

In order to study the effect of weights of the energy function 
(Equation 1) in the quality of solution, a factorial experiment 
was done using one benchmark sequence of 27 amino acids 
(see section IV-A). The following values were tested: E HH: 10, 
15; EHP and EBH : -5, -3; Epp, EBP and EBB: -1, 0, l. Also, 
the joint effect of the penalty applied to the objective function 
as a consequence of collisions was also evaluated. Such penalty 
decreases the energy function by the product of the length of 
the sequence. This parameter (Penalty Value) was tested for 
the values: 5, 7, and 10. All the possible combinations of the 
above mentioned values gives 36 different experiments. For 

each experiment, 30 independent runs were done with different 
initial random seeds. The average results were analyzed and the 
best performing set of parameters were used in the remaining 
experiments. Here, the quality was evaluated as the number 
of hydrophobic side-chains contacts. The optimized value for 
these parameters are: EHH = 10; EHP = EBH = -3; Epp = EBP 

= EBB = 1; Penalty Value = 10. 

D. Decimation-and-Hot-Boot (DHB) Strategy 

The HPGA was executed with and without the DHB 
strategy for 100 independent runs, keeping fixed all other 
parameters. Figure 2 shows a plot of the average fitness of 
the best individual (Bestever) for the two situations, at each 
generation. It is observed in this figure that the use of the 
DHB strategy leads to better individuals when compared with 
a HPGA without DHB, achieving, in this case, a gain that 
exceeds 10%. These results strongly suggests that the DHB 
strategy is advantageous for the GA and, therefore, it was used 
in all remaining experiments. 

E. Benchmark Results and Discussion 

Due to the stochastic nature of GA, the HPGA was run 
100 times with a different initial random seeds for each of 
the 25 benchmark sequences, and results are shown in Table 
III. In this table, the first column identifies the sequence, the 
second, third and fourth columns identify, respectively, the 
generation in which the best individual was found, the average 
(± standard deviation) and maximum number of generations 
needed to find the best individual. Next, the average processing 
time for running in parallel (in seconds). The last two columns 
of the table show, respectively, the average value (± standard 
deviation), and the maximum number of non-local bonds 
between hydrophobic side-chains. 

In this table it is observed that the HPGA needed, in aver­
age, less generations than the maximum allowed (maxgen = 

3000) to find the best-of-run solution. This fact suggests that 
a smaller number of generations could be used in future 
experiments with these benchmarks. 
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Table II 
BENCHMARK SEQUENCES FOR 3DHP-SC MODEL: n INDICATES THE NUMBER OF AMINO ACIDS OF THE SEQUENCE, E THE MAXIMUM NUMBER OF 

NON-LOCAL HYDROPHOBIC CONTACTS FOR THE 3DHP MODEL, AND HnC IS THE EQUIVALENT FOR THE 3DHP-SC MODEL, HOWEVER CONSIDERING THE 
CONTACTS BETWEEN HYDROPHOBIC SIDE-CHAINS. 

Reference n HP Chain E HnC [3] 

Dill. ! 27 H p4 H4 pcp H)3 H(H p)2 P H2 p2 H 16 

Dill.2 27 HP3H4(PH)2Hp3HPH(HP)2p2HP 15 

Dill.3 27 HPH2(PPHH)2 H(HPPp)2 H3 p2 H 16 

Dill.4 31 

DiIl.5 36 

Unger273d.l 27 

Unger273d.2 27 

Unger273d.3 27 

(H H p)3 H(H H H H H P p)2 H7 
PH(PPH)l1p 
(P H)3 H2 p2 (H p)2 plO H2 P 
P H2 plO H2 p2 H2 p2 H p2 H P H 
H4 p5 H p5 H3 p8 H 

28 

14 

9 10 

10 12 

8 11 

Unger273d.4 27 H3 p2 H4 p3(HP)2 PH2 p2 Hp3 H2 15 18 

Unger273d.5 27 H4p4HPH2p3H2plO 8 11 

Unger273d.6 27 H p6 H P H3 p2 H2 p3 H p4 H P H 11 13 

Unger273d.7 27 H p2 H P H2 p3 H p5 H P H2 (P H)3 H 13 16 

Unger273d.8 27 HPll(HP)2p7HPH2 4 6 

Unger273d.9 27 p7 H3 p3 H P H2 p3 H p2 H p3 7 9 

Unger273d.lO 27 p5H(HP)5(PHH)2PHp3 11 14 

S48.1 48 H P H2 p2 H4 P H3 p2 H2 p2 H P H3 (P H)2 H p2 H2 p3 H p8 H2 32 

S48.2 48 H4(P HH)2 H3(p P H)2 HP2 HP6(HP p)2 P HP2 H2 p2 H3 PH 34 

S48.3 48 (P H)2 HP H6 p2(HP)2(p H)2(HP)3(p P H)2 HP2 H2 p2(HP)2P HP 34 

S48.4 48 (PH)2Hp2HPH3p2H2PH2p3H5p2HPH2(PH)2p4Hp2(HP)2 33 

S48.5 48 p2 Hp3 HP H4 p2 H4(P HH)2 HP(P H)3 p2 HP5(p HH)2 PH 32 

S48.6 48 H3 p3 H(HP)2(HHP)3 HP7(HP)2 PHp3 Hp2 H6 PH 32 

S48.7 48 PHP4HPH3(PH)2H3(PHH)2p3(HP)2p2H3(PPHH)2p3H 32 

S48.8 48 (PHH)2HPH4p2H3p6HPH2p2H(HP)2p2H2(PH)3Hp3 31 

S48.9 48 (PH)2 p4(HP)3(PH)2 H5 p2 H3 PHP(PH)2 HP(PH)2 H2 P4H 34 

S48.10 48 P H2 p6 H2 p3 H3 P H pcp H)2 (H P p)3 H2 p2 H7 p2 H2 33 

If the GA was able to achieve the maximum number of non­
local bonds (last column of table III) in all runs, its efficiency 
would be 100%. Considering all the benchmark sequences, the 
proposed HPGA achieved an average efficiency that exceeds 
80%. This value can considered very good, taking into account 
the differences between instances, the stochastic nature of a 
GA and the number of parameters to be adjusted. Therefore, 
it can be inferred that the proposed GA performs consistently. 

It is also observable that the total processing time is 
dependent on the length of the sequence, possibly growing 
exponentially with the number of amino acids. This fact 
suggests that the HPGA will lose performance for larger 
sequences. 

Finally, the present version of the GA is significantly 
more efficient than a previous work [3]: for the benchmarks 
"Unger273d. *" it obtained better results in 7 out of 10 cases 
(comparing last column of Tables II and III). 

For some of the benchmark sequences the best conformation 
found is shown in Figures 3(a), 3(b), 3(c), 3(d), 3(e), 3(f) 
and 3(g). It is possible to observe in these foldings that a 
compact hydrophobic core is formed, partially surrounded by 
amino acids with polar side-chains. This type of conformation, 
typical of globular proteins, was expected as consequence of 
the fitness function. This fact suggests that the proposed fitness 
function is adequate for the PFP problem using the 3D-HP 
side-chain model, mainly because the final results are capable 
to mimic some biological properties of real proteins during 

folding. 

V. CONCLUSIONS 

This work proposed a hierarchical parallel genetic algorithm 
for the protein folding problem using the 3DHP-side-chain 
model. To date, there is only a previous version [3] to compare 
with and these are the best results found for the 3DHP-SC 
model. Therefore, an important contribution of this work are 
the results regarding this issue. However, closely observing 
figure 3(g) it is possible to notice that small (but relevant) 
improvements could be further done with that folding. Such 
improvements could be achieved by means of some local 
search strategy, to be investigated in a future work. 

In this work we also studied the effect of the energy weights 
in the performance of the algorithm. Therefore, another rele­
vant contribution is the set of optimized weights for the 3DHP­
SC model, not yet available in the literature. 

Future work will also investigate parallel versions of other 
evolutionary computation approaches, such as Ant Colony 
Optimization (ACO) [10], Particle Swarm Optimization (PSO) 
[13], Artificial Bee Colony (ABC) [12] and Firefly Algorithm 
(FA) [23], so as to compare with the HPGA presented in this 
study. 

Overall results are good and very promising to suggest the 
continuity of the work, representing a significant increment 
over [3], in quality and extension. This work also offered new 
reference values for three sets of benchmark sequences that 
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Table III 
RESULTS OF THREE GROUPS OF BENCHMARK SEQUENCES FOR THE 3DHP-SC MODEL. 

Reference Generation 

best avg ± stdev 

Dill.1 2160 2151.80 ± 687.28 

Dill.2 2904 2084.25 ± 770.10 

Dill.3 2880 2378.29 ± 583.31 

Dill.4 2760 2154.31 ± 603.6 

Dill.5 2880 2104.10 ± 741.37 

Unger273d.1 2400 2153.13 ± 702.58 

Unger273d.2 2640 2025.67 ± 725.73 

Unger273d.3 2880 1996.71 ± 740.37 

Unger273d.4 1778 2405.63 ± 498.65 

Unger273d.5 2779 2340.37 ± 438.18 

Unger273d.6 1680 2126.62 ± 612.23 

Unger273d.7 1680 2019.89 ± 763.72 

Unger273d.8 1560 1523.00 ± 817.37 

Unger273d.9 2400 1818.24 ± 846.19 

Unger273d.10 2400 2068.67 ± 871.71 

S48.1 2882 2467.10 ± 593.50 

S48.2 2520 2523.32 ± 373.44 

S48.3 2880 2367.69 ± 619.59 

S48.4 2760 2541.63 ± 469.90 

S48.5 2964 2340.37 ± 723.44 

S48.6 2780 2275.26 ± 658.95 

S48.7 2144 2319.56 ± 687.14 

S48.8 2743 2335.81 ± 596.25 

S48.9 2084 2378.71 ± 516.47 

S48.10 1800 2135.00 ± 480.95 

can be used in the future by other researchers and optimization 
methods. 

We believe that this work provides a contribution to this 
area of research because of three factors: deeper exploring 
the 3DHP side-chain model suggesting optimized weights for 
the energy function, providing benchmark results useful for 
comparison with other approaches, and modeling an efficient 
HPGA for the PFP. Further work will focus on generating more 
benchmark results, as well as the development of biologically 
inspired genetic operators and local-search strategies. 
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Figure 3. Best 3D folding for sequences found for Dill.2 (a), Unger273d.3 (b), Unger273d.4 (c), Dill.4 (d), Unger273d.7 (e), Dil1.3 (t) and S48.1O (g). Blue 
balls represent the polar residues and Red ones represent the hydrophobic residues. The backbone and the connections between elements are shown in gray. 

[18] D.L. Nelson and M.M. Cox. Lehninger Principles of Biochemistry. W.H. 
Freeman, 5th edition, 2008. 

[19] A.L. Patton, w.F. Punch III, and E.D. Goodman. A standard GA 
approach to native protein conformation prediction. Proc. (Jh Int. Con! 
on Genetic Algorithms, pages 574-581, 1995. 

[20] M.P. Scapin and H.S. Lopes. A hybrid genetic algorithm for the protein 
folding problem using the 2D-HP lattice model. In A. Yang, Y. Shan, 
and L.T. Bui, editors, Success in Evolutionary Computation, number 
205-224, pages 205-224. Springer, Heidelberg, 2007. 

[21] C. Thachuk, A. Shmygelska, and H.H. Hoos. A replica exchange 
Monte Carlo algorithm for protein folding in the HP model. BMC 
Bioinformatics, 8, 2007. 

[22] R. Unger and 1. Moult. A genetic algorithm for 3D protein folding 
simulations. Proc. 5th Ann. Int. Con! on Genetic Algorithms, pages 
581-588, 1993. 

[23] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press, 
York, UK, 2008. 

[24] K. Yue and K.A. Dill. Sequence-structure relationships in proteins and 
copolymers. Physical Review E, 48(3):2267-2278, 1993. 

[25] K. Yue, K. Fiebig, and P. Thomas et al. A test of lattice protein folding 
algorithms. Proceedings of the National Academy of Sciences of USA, 
V. 91:581-588, 1994. 

2676 


