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The emCGA is a new extension of the Compact Genetic Algorithm (CGA) that includes
elitism and a mutation operator. These improvements do not increase significantly the
computational cost or the memory consumption and, on the other hand, increases the
overall performance in comparison with other similar works. The emCGA is applied to
the problem of object recognition in digital images. The objective is to find a reference
image (template) in a landscape image, subject to distortions and degradation in quality.
Two models for dealing with the images are proposed, both based on the intensity of
light. Several experiments were done with reference and landscape images, under different
situations. The emCGA was compared with an exhaustive search algorithm and another
CGA proposed in the literature. The emCGA was found to be more efficient for this
problem, when compared with the other algorithms. We also compared the two proposed
models for the object. One of them is more suitable for images with rich details, and
the other for images with low illumination level. Both models seems to perform equally
in the presence of distortions. Overall, results suggested the efficiency of emCGA for
template matching in images and encourages future developments.
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1. Introduction

A Genetic Algorithm (GA) is an efficient tool for search and optimization problems,
and has been applied to many computational and engineering problems. However,
in some applications, the computational cost of the GA can be too high, demanding
a prohibitive execution time or even excessive hardware resources. When a GA is
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implemented in software, usually the computational resources demanded are less
important. However, for high-performance applications, using a GA implemented in
hardware (usually, reconfigurable logic devices5), the amount of memory required
to store the population can be an important limitation of the implementation.
Recall that a GA evolves a population, not a single point, thus requiring memory
space to store such information during generations. Another important issue that
is raised are the techniques used to evolve this population. These techniques were
developed for running in sequential processors, restricting its application in parallel
architectures. A feasible alternative is the use of a genetic algorithm with smaller
computational complexity, which can run in less powerful systems. The Compact
Genetic Algorithm (CGA)8 can achieve the same level of quality of an ordinary SGA
(Simple Genetic Algorithm) with uniform crossover, but using much less memory
to store the population. This is possible because the CGA works with a probability
vector instead of the whole population.

Another feature of the CGA is the use of techniques to evolve the probability
vector, imitating the behavior of a SGA. Due to the simplicity of these techniques
and the small memory requirements, some works proposed software and hardware
implementations of the CGA, showing good results with significant resources reduc-
tion for its construction. This is an important issue because the present work will
be the base for a future implementation in reconfigurable hardware. This is a cur-
rent technological trend for the development of high-performance parallel systems
in many areas, such as mobile robotics3, bioinformatics12 and image processing14.

Also, another motivation for this work is that CGA is relatively new, when
compared with the traditional GA, and few studies about its performance and
applications are available in the recent literature. Therefore, this is an interesting
subject to be studied further.

This work presents an application of the emCGA17, a new extension of a CGA.
This approach uses elitism and introduces a new mutation operator. Differently
from other mutation operators formerly introduced for CGA, this one is applied to
new individual generation, thus imitating the crossover operator of a SGA. This
operator does not increase significantly the computational cost or the memory con-
sumption and, on the other hand, increases the overall performance, when compared
with similar works. The emCGA is applied to the object recognition problem. Two
models are introduced, for color and grayscale images, and several experiments are
done to evaluate its performance.

2. The Compact Genetic Algorithm

The CGA is an Estimation of Distribution Algorithm (EDA)11,19, first proposed
by Harik et al.8, that generates descendants using a statistical population model,
instead of the traditional recombination operators and mutation. As result, the
population in CGA is reduced to a single vector of probabilities that occupies only
L.log2(N) bits of memory, in comparison with L.N for a SGA (where L is the
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chromosome length and N the size of the population). The CGA can imitate the
behavior of a SGA with uniform crossover using a reduced amount of memory. The
importance of the size of the population in GA performance has been focused in
many recent works7,9,16. In general, a large population size results in better quality
of the solution, but it increases the computation cost and memory use. Due the
importance of this parameter, several works aimed at improving the representation
of the population, especially for hardware-based applications.

The genetic drift is a term used by the population genetics area that explains
the tendency of changes in the frequency of an allele through random samplings in
a population. In other words, even with a selective pressure, the frequency of the
alleles in the population varies due to stochastic errors associated to the genetic
operators. When the stochastic variation in the frequency of the alleles overcomes
the selection variation, then a drift stall takes place. In this case, the population
will converge to a non optimal solution15,18. Consequently, for an optimal or quasi-
optimal convergence of the CGA population, the appropriate selective pressure is
quite important. Concisely, the occurrence of the drift stall reflects the lack of
appropriate selective pressure. This one can be increased in CGA, by increasing the
tournament size (of the selection method) or by using elitism.

Since CGA was introduced by Harik et al.8, several extensions were proposed
aiming to improve its performance. Their main focus are the introduction of tech-
niques to allow the CGA to overcome the performance reduction in problems with
high-order building blocks (BBs). The extensions of CGA that proposed some elitist
technique were those that showed the best balance between demand of resources
and performance. Elitism allows to increase the selective pressure and, consequently,
to reduce the genetic drift2.

Despite of the competitive performance of CGA with SGA for low-order BBs,
it does not achieves the same performance when high-order BBs are present in the
problem. In this case, with the compact representation of the population in CGA,
the information regarding high-order relationships among the chromosome bits does
not survive throughout generations, differently that what happens in a SGA. For
real-world problems, these disturbances generated by the uniform crossover should
be overcome, since many problems presents local optima (i.e. multimodal) and
interdependent genes (high-order BBs). However, increasing the selective pressure
in a CGA tends to decrease these noisy effects, because it increases the probability of
high-order BBs to survive throughout generations 1,7. In other words, the increase
of the selective pressure can accomplish the function of the population memory.
Some works proposed modifications in the basic CGA to improve performance by
increasing the selective pressure, such as: neCGA1, mCGA6 and, more recently,
emCGA17. Among them, the emCGA showed the best tradeoff between solution
quality (fitness value) and convergence speed (number of evaluations).
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2.1. The emCGA

The previously mentioned works (neCGA1 and mCGA6) perform better than the
original CGA. Both approaches use elitism, but mCGA also employs a mutation
operator. Another CGA that also includes a mutation operator is MBBCGA20, but
it is different from the mCGA mutation operator. In this work, e use a new mutation
operator, aimed at improving even more the quality of solutions but, also, keeping a
reasonable convergence speed. The previously mentioned works that use mutation
operators do not focus on population diversity control, but on local search. In the
first work the mutation is applied to the elite individual of the current generation
to generate another individual. After a tournament over these individuals, the best
one will be the elite for the next generation. In the second work, mutation is applied
to the first individual to substitute the second generation of the conventional CGA.

The new mutation operator used here allows a more efficient control of the
selective pressure, adjusting the population diversity as the consequence of the ma-
nipulation of the probability vector. Comparing the proposed mutation operator
with that of mCGA, the new operator decreases the number of tournaments per
generation and, consequently, the total number of fitness evaluations per gener-
ation. The consequence is a significant improvement in the convergence speed of
the algorithm, as pointed out in a recent study17. The new CGA resulting from
the use of the proposed mutation is named emCGA (elitism with mutation CGA).
Basically, the proposed mutation operator changes the random generation phase,
by changing the chromosome just-generated with the probability vector.

3. The emCGA for the Object Recognition Problem

The object recognition problem in images is frequently found in real-world and aca-
demic applications. Sometimes, this problem is also referred as image registration
problem. It consists in finding a given reference image (or template) somewhere in
a (much larger) landscape (or input) image. A simple example would be to find a
known human face in a crowd of people. The larger he match between the template
and a region of the landscape image, the higher the probability it includes the object
of interest. In general, the recognition of objects using traditional image processing
algorithms is computationally expensive. Particularly, this effort increases signifi-
cantly when it is present translation, rotation, scale variation or partial obstruction
of the reference image in the landscape image10. Therefore, the implementation of
fast search algorithms for this problem is of great interest. In many cases, applica-
tions using these algorithms should be executed in real time (such as in real-time
face recognition), thus requiring fast algorithms, instead of exhaustive search algo-
rithms. Algorithms based on metaheuristics (such as those from the evolutionary
computation area) can offer reasonable performance and quality of solutions 4,13.
This fact motivated the use of emCGA to the object recognition problem in real-
world images. In this section, a technique of digital processing of images is explored
to extrapolate significant properties of the image of a reference object, and to create
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two computational models. Then, the search of the reference image in the landscape
image is accomplished by emCGA, despite its displacement in position and rotation
or obstruction.

Images can be represented in several formats, for instance, bitmap. Although the
bitmap format is widely known and complete, not all information in the format may
be useful for a given application (especially for identifying the image). Therefore,
different representations of the images are defined in this work, and two models for
approaching the problem were devised, the Light Intensity (LINT) model and the
Binary (BIN) model. These models will be detailed in the next sections.

3.1. The Object Models

The Light Intensity (LINT) model is based on the intensity of the light in the
three channels of the image of the object to be detected, Red, Green and Blue
(RGB). These channels are quantisized in 8 bits and were weighted with 0.30, 0.59
and 0.11, respectively, so as to obtain the effective illuminance of a pixel when
converting color images to grayscale. The conversion of all pixel of the image yields
a generic matrix MLINT , where each element is a value of 256 levels, corresponding
to the light intensity of the pixel in the same image position. By definition, when
the value of the element is 0 means that the light intensity is 0%, and 255 is 100%.

The Binary (BIN) model is also based on the intensity of light, as in the LINT
model. However, this information is binary, that is, either there is light or not,
depending on a given threshold. This is accomplished by means of the binarization
of the MLINT matrix, resulting in another generic matrix, named MBIN . The
binarization process is done for each pixel of the image: if the intensity value is
larger than a threshold, the corresponding cell of the matrix is set to 1, otherwise
to 0.

3.2. Fitness Function

The fitness function of the emCGA measures the similarity between two images.
The object is defined by a reference image. The landscape images is previously
converted to the desired object model (section 3.1). Therefore, it is possible to
reduce the computational cost and the memory demands in the fitness function
execution. The fitness function proposed by Perlin et al.13 computes the percentage
of similarity (S(k)) between two images, the landscape (L) and the reference (R)
image transformed by the set of parameters k. Such parameters include, at least,
the planar translation and rotation, and, optionally, scaling. The function shown in
equation 2 computes, in fact, the absolute error between the reference and landscape
images when the first is properly overlapped over the latter. It is used to compute
the final fitness function shown in equation 1.

S(k) = 100%.
Emax − E(k)

Emax
(1)



May 5, 2009 23:6 WSPC/INSTRUCTION FILE JCSC-Silva-Lima-Lopes

6 Silva, Erig Lima & Lopes

E(k) =
n∑

i=1

m∑

j=1

‖LLINT (i, j)− T(RLINT , k, i, j)‖ (2)

where: LLINT and RLINT are the LINT matrix of the landscape (L) and refer-
ence (R) images, respectively; T is a function that transforms an image according to
the vector of parameters k and returns the (i, j) element of the transformed image;
Emax is the maximum absolute error that is computed according to the model used,
LINT or BIN (see below); n and m are number of lines and columns of reference
image matrix, respectively.

This fitness function returns a value in the range 0..100% representing the sim-
ilarity between the reference and the landscape image. The higher this value, the
higher the probability of finding the object in the landscape image, according to
the vector of parameters k. Since all elements of the R matrix is used for comput-
ing similarity of the object with the landscape, the objective is to find a vector
k that yields the higher possible similarity measured by the fitness function. The
above equations 1 and 2 can be used for both models, LINT and BIN, provided the
corresponding matrices are computed according to the model.

Objects studied in this work are three-dimensional. Consequently, they can be
found displaced horizontally (x axis), vertically (y axis) and in depth (z axis), as
well as rotated in any of the three possible planes (angles θ, α and β). Displacement
in the z axis corresponds to changes in the scaling of the image, and rotations in
the x, z or y, z planes are considered distortions. In this work we considered only
translations and rotations in the (x, y) plane. The distortions, usually present in
real-world images, are indirectly treated by our approach, since they will cause an
increase mismatching of reference and landscape images.

The T transform applies translation and rotation operations in (x, y) plane to
a given point (i, j) and returns the corresponding element of the reference matrix,
defined by coordinates (x′, y′), according to equations 3 and 4.

x′ = x + (i. cos θ + j. sin θ) (3)

y′ = y + (j. cos θ − i. sin θ) (4)

The position (x′, y′) is the transformed position of (i, j), according to this pa-
rameters vector. However, since this transformation uses trigonometrical functions
that return a real number, the returned element of the matrix I is the value of the
closest integer of this position, by rounding up x′ and y′.

The translation position is a position in the landscape image and it is also the
central position of the possible object location. When a position is evaluated close to
the border, some transformed positions (x′, y′) may become invalid. In this case the
error in these points will be the maximum. This procedure allows the identification
of an object partially clipped close to the borders.

A chromosome in the emCGA is then defined by the parameter vector k and
coded according to the following ranges: 0 ≤ x ≤ c, 0 ≤ y ≤ Llin and 0 ≤ θ < 360,
where Lcol and Llin are the number of columns and lines of the landscape image.
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Displacements are measured in pixels (steps of 1) and angle in degrees (steps of
0.7). Consequently, the overall length of the chromosome for the LINT model is
L = log2(Lcol) + log2(Llin) + 9.

For the BIN model, besides the transformations previously mentioned for the
LINT model, it is necessary to establish the binarization threshold t. Therefore, for
the BIN model, the vector of parameter for the T transformation also includes t.
For the BIN model, each element of the matrix will be either 0 or 1, and so, the
maximum absolute error possible becomes Emax = n.m.

3.3. emCGA Parameters

The emCGA uses two parameters that need to be previously defined: the population
size and the mutation rate. The search of an object in an image is a complex
problem, since it may be strongly multimodal, with many local maxima randomly
distributed. Besides, it is important to note that the genes in the chromosome, that
is, the parameters being optimized, are strongly interconnected. Consequently, to
properly cope with such epistasy, the mutation rate recommended is approximately
1/L, and the size of the population should be large enough. See 17 for a detailed
discussion about these subjects.

The landscape images used in our experiments were 1024 x 768 bits large. In
this case, parameters x and y will need 10 bits for encoding, plus 9 bits for the rota-
tion angle. Consequently, the recommended mutation rate is approximately 3.4%.
After preliminary experiments, the size of the population that yielded a reasonable
tradeoff between performance and computational cost was 16384 individuals. Evo-
lutionary computation algorithms, as is the case of emCGA, have their stochastic
nature implemented through a pseudo-random number generator. Thus, it is also
necessary to define a seed for this generator. For each independent run, a different
random seed was chosen.

4. Experiments and Results

Two groups of experiments were done to evaluate the emCGA for the object recog-
nition task in images. The first group is aimed to compare the proposed emCGA
with another similar CGA. The objective of the second group is to compare both
emCGA models themselves, LINT and BIN.

Our experiments use images from digital pictures. For the sake of having a gold
standard, that is, the optimal solution, for a given problem, we devised an Exhaus-
tive Search Algorithm (ESA). ESA evaluates the same fitness function (equation
1) for all possible combinations of the parameters vector k.

4.1. Comparison of two CGA approaches

In this experiment, the object to be found in the input image is a chess bishop piece.
The reference image was used to generate both the LINT and the BIN models,
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BIN
Model

Reference Image
(RGB 8 bits)

Reference Image
(RGB 8 bits)

LINT
Model

(a)

(b)

(c)

Fig. 1. Chess bishop piece search. a) Reference image and corresponding LINT and BIN models.
b) Landscape image and the object recognized.

Algorithm Object model x y θ t S Eval.
emCGA LINT 795 209 200.08 - 97.29 8.81E+04
ESA LINT 795 209 200.08 - 97.29 4.03E+08
emCGA BIN 795 209 200.08 146 97.83 8.12E+04
ESA BIN 795 209 200.08 140 97.83 1.03E+11
mCGA - 737 511 153.58 - 78.68 4.17E+05

Table 1. Results for the comparison of two CGA approaches and exhaustive search algorithm.

according to figure 1a. This model is used by the emCGA to find the object in the
landscape image. The object found is presented in figure 1b inside a rectangle to
stand it out and facilitate its visualization. This procedure will be also used in the
remaining experiments in this work. Notice that the bishop in the input image is
translated and rotated relative to the reference image. Both models, LINT and BIN
succeeded to find exactly the same result, in this case, the optimal result, as pointed
out by the ESA in table 1. Values for the parameters vectors are shown in each
experiment as well as the fitness value (S ) and the number of fitness evaluations
(Eval.) needed to converge the respective algorithm. The comparison of the emCGA
models was done with another CGA, namely the mCGA proposed by Gallager et
al.6.

The former experiment was a simple problem. This is promptly realized consid-
ering the results obtained by the methods. A harder problem is treated now, where
the object to be recognized is a human face within a digital picture in which there
are several other people. This is a difficult problem for a computer-based vision
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Reference Image
(RGB 8 bits)

LINT
Model

(a)

(b)

Fig. 2. Real-world faces search. a) Reference image and the associated model. b) Landscape image
with the recognized face.

Algorithm Object model x y θ t S Eval.
emCGA LINT 792 428 0 - 100 1.08E+05
ESA LINT 792 428 0 - 100 4.03E+08
mCGA - 185 293 3.52 - 84.88 3.84E+05

Table 2. Results for the comparison of two object models and exhaustive search algorithm.

system, since there are many local optima. The face used is shown in figure 2a and
the landscape image with the corresponding recognized face are shown in figure 2b.
The reference image is cut out of the input image, and this image did not undergo
any distortion. The corresponding numerical results are presented in table 2.

In the last experiment of this group, we added real-world factors that makes
harder the object recognition problem. In this experiment, the object to be recog-
nized is a chess knight piece (figure 3a) and there are two landscape images. In the
first landscape image, shown in figure 3b, the object is translated and rotated in
the image plane (x, y). The main distortion in this image that makes the problem
somewhat difficult is due to a different illumination angle, shedding a bright spot
to the object. In the second landscape image (figure 3c), the object is also rotated
in both (z, y) and (x, z) axes and mirrored, using the same illumination scheme.
These rotations impose a more challenging task than the previous one. Besides
these distortions, in the two input images other similar pieces are added, increasing
the difficulty of the problem by injecting more local maxima. The numerical results
of this experiment are shown in table 3.
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Reference Image
(RGB 8 bits)

LINT
Model

(a)
(b) (c)

Fig. 3. Chess knight piece search. a) Reference image and the associated LINT model. b) and c)
Two different landscape images with the recognized object.

Algorithm Object model x y θ t S Eval.
emCGA(a) LINT 327 522 32.41 - 92.86 9.58E+04
ESA(a) LINT 327 522 32.41 - 92.86 4.03E+08
mCGA(a) - 452 501 225.44 - 80.63 3.59E+05
emCGA(b) LINT 292 455 345.91 - 85.04 8.07E+04
ESA(b) LINT 292 455 345.91 - 85.04 4.03E+08
mCGA(b) - 292 455 345.91 - 85.04 3.84E+05

Table 3. Results for the comparison of two object models and exhaustive search algorithm.

4.2. Comparison of the two object models

The second set of experiments aims at unveiling possible differences between the
two proposed models, LINT and BIN. The first experiment uses a domino game
piece as reference image, shown in figure 4a for the LINT model, and in figure 4b
for the BIN model. Since the target objet to be recognized does not present any
distortion in the landscape image, both models obtained similar results, see figure
4c for the LINT model, and figure 4d for the BIN model, respectively. Table 4 shows
the numerical results for this experiment.

The next experiment uses basically the same landscape images, but they the
are with significant illumination attenuation, both models. The reference images
are the same as in figure 4a and 4b. Low level of illumination decreases the average
difference between pixels, and makes the identification of the object more difficult.
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Reference Image
(RGB 8 bits)

Reference Image
(RGB 8 bits)LInt

Model

BIN
Model

(a)
(b)

(c) (d)

Fig. 4. Domino piece search. a) Reference image and LINT model. b)Reference image and BIN
model. c)and d) Landscape images with the object recognized.

Algorithm Object model x y θ t S Eval.
emCGA LINT 533 412 0 - 100 8.03E+04
ESA LINT 533 412 0 - 100 4.03E+08
emCGA BIN 533 412 360 128 100 1.04E+05
ESA BIN 533 412 360 128 100 1.03E+11

Table 4. Results for the comparison of two object models and exhaustive search algorithm.

Figures 5a and 5b show the object recognized using the LINT and the BIN models,
respectively. In these figures, the object is, actually, positioned within the red box
drawn to facilitate visualization. The object was detached and shown in a new box.
The corresponding numerical results are in table 5. Notice that the values of fitness
are all low, due to the effect of illumination attenuation in the image. For the LINT
model, emCGA and ESA found the same object, but rotated around 180 degrees,
thus giving a slight difference in fitness.

Finally, using the reference images of figure 4, and the input image of figure 6, the
object to be recognized is among several other quite similar pieces, characterizing
a difficult problem for a computer-based vision system, with many local optima.
Numerical results for this experiments are in table 6.

5. Discussion and Conclusions

The object recognition problem for computational vision easily falls into an exhaus-
tive search. It is expected that the use of a metaheuristic search algorithm, such
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(a) (b)

Fig. 5. Domino piece search. a) Landscape image and object recognized for the LINT model. b)
Landscape image and object recognized for the BIN model.

Algorithm Object model x y θ t S Eval.
emCGA (a) LINT 580 434 317.03 - 50.15 8.32E+04
ESA (a) LINT 580 428 123.99 - 50.16 4.03E+08
emCGA (b) BIN 572 425 313.5 5 85.96 9.43E+04
ESA (b) BIN 572 425 313.5 5 85.96 1.03E+11

Table 5. Results for the comparison of two object models and exhaustive search algorithm.

(a) (b)

Fig. 6. Complex domino piece search. a) Landscape image and object recognized for the LINT
model. b)Landscape image and object recognized for the BIN model.

as the emCGA, can achieve competitive results to an ESA, but with significant
smaller computational cost (based on the number of fitness evaluations).

The experiments were developed to evaluate the efficiency of emCGA in situa-
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Algorithm Object model x y θ t S Eval.
emCGA (a) LINT 575 193 241.64 - 89.11 8.38E+04
ESA (a) LINT 575 193 241.64 - 89.11 4.03E+08
emCGA (b) BIN 523 125 192.33 128 93.38 8.85E+04
ESA (b) BIN 533 193 241.64 128 95.13 1.03E+11

Table 6. Results for the comparison of two object models and exhaustive search algorithm.

tions with several ingredients of real-world problems. Complex input images were
used to evaluate the robustness of the object detection method using the emCGA.
The utilization of two object models for the reference image and later comparison
enables a better exploration of the emCGA’s potential.

Results of the first experiment using the LINT model indicate that the emCGA
achieved the global maximum with a computational cost of only 0.022% of that of
ESA, and 21.1% of the mCGA. Also, mCGA achieved a performance around 20%
worse than emCGA. The first experiment with the BIN model showed that the
emCGA reaches the global maximum with a computational cost of approximately
0.008% of that of ESA. This performance is similar to the experiment with the LINT
model, but the ESA performance demands a much higher number of evaluations.
This is due to the fact that, in the BIN model, an additional parameter (t) is
included in the chromosome, thus leading to a huge increment in the search space.
Even so, emCGA performed well, when compared with the ESA and mCGA (one
order of magnitude faster).

In the second experiment with the LINT model no distortion was added. How-
ever, the induced search space of the problem has many local maxima, since there
are a lot of similar faces. However, differently from the previous experiment, the
amplitude of the fitness function, when the reference image matches each face in
the landscape image, will lead to local maxima of about the same value. This chal-
lenging problem is commonly found in real-world situations. The emCGA was able
to find the global maximum with a computational cost of approximately 0.027% of
that of ESA. emCGA was, also, 4 times faster than mCGA which, again, performed
worse than emCGA. In fact, mCGA found an object (face) similar, but different
from the reference image. This result shows that the proposed emCGA, using the
LINT model, has a good discriminatory power, capable of capturing underlying
details in the images.

The last experiment of the first group was especially devised to verify how
the method behaves in the presence of significant distortions in the images, other
features present in real-world images. In the first landscape image the object to be
recognized was rotated in two axes, and for the second landscape image, in three
axes. For both cases, emCGA reached the global maximum with a computational
cost of approximately 0.02% of that of ESA, and emCGA converged 4 to 5 times
faster than mCGA. Notice that, for the first landscape image mCGA did not found
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an acceptable solution for the problem, since θ is rotated around 180 degrees of the
expected orientation. Recall that, in our experiments, the chromosome of emCGA
encoded only rotation in plane (x, y). Notwithstanding, for both landscape images
emCGA was able achieve good results even in the presence of unexpected distortions
in the 3D space.

The last set of experiments were devised to evaluate to compare the efficiency
of the object models. In the first experiment of this group, it is observed that both
algorithms were able to find the optimal solution, since the problem is relatively
easy, with a single domino piece. However, using the LINT model less evaluations
were needed, than using the BIN model. The reason for this behavior is that the
BIN model deals with a much larger search space than the LINT model.

The next experiment of the second group focused on the effect of strong illumi-
nation reduction. In this case, both models needed a somewhat similar number of
evaluations, although the LINT model found the object rotated around 180 degrees.
This result suggests that the emCGA with BIN model seems to be more adequate,
than the LINT model, to find objects with low level of illumination.

The final experiment added more complexity to the scene, with several local
maxima. Since all domino pieces have a high degree of similarity each other (com-
pared with the neutral background), even when rotated 180 degrees, this problem
is, possibly, the most challenging one of all the experiments. For this experiment,
both models required about the same computational effort, much lower than ESA.
However, the BIN model did not succeed to find the reference object. Instead, it
found a similar one. Overall, it is possible to assert that, based on our experiments,
the LINT model is a good option to recognize objects with important details, and
the BIN model is more robust for images with low illumination. Both models seems
to perform equally in the presence of distortions.

Generally speaking, emCGA using both object models was found adequate and
efficient for the task of template matching in digital images, although more exten-
sive experiments should be done to evaluate its possible limitations. The can be
applied to real-world problems without increasing significantly the complexity of
the implementation or the demand for computational resources. Future work will
also investigate the utility of emCGA for other real-world problems, as well as com-
paring it with other similar approaches. Since the nature of emCGA (as well as
other CGAs) makes it especially suited for a parallel implementation in reconfig-
urable hardware, this certainly will be the next step of this research, applying the
system to real-time image processing.
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