
242 Int. J. Bio-Inspired Computation, Vol. 2, Nos. 3/4, 2010

Copyright © 2010 Inderscience Enterprises Ltd.

A differential evolution approach for protein
structure optimisation using a 2D off-lattice model

Diego Humberto Kalegari* and Heitor Silvério Lopes
Bioinformatics Laboratory,
Federal University of Technology – Paraná,
Av. 7 de setembro, 3165 80230-901 Curitiba (PR), Brazil
E-mail: kalegari@gmail.com
E-mail: hslopes@pesquisador.cnpq.br
*Corresponding author

Abstract: Protein structure optimisation is a well-known problem in bioinformatics. This work
applies an evolutionary algorithm to solve the protein structure optimisation problem based on
the AB off-lattice model. Three different implementations of the differential evolution (DE)
algorithm were developed, a sequential and two parallel. The parallel implementations
(master-slave and ring-island) showed superior performance than the sequential one. Experiments
were done using a benchmark of toy sequences with 13 to 55 monomers long. Results of the DE
implementations were compared with other works in the literature. Good results were achieved
for most sequences, not achieving the optimal values, but competitive with other specialised
methods. Overall results encourage further research towards the use of knowledge-based
operators to improve performance of DE.

Keywords: bioinformatics; protein folding; evolutionary computation; differential evolution;
parallel computation; message passing interface; MPI.

Reference to this paper should be made as follows: Kalegari, D.H. and Lopes, H.S. (2010)
‘A differential evolution approach for protein structure optimisation using a 2D off-lattice
model’, Int. J. Bio-Inspired Computation, Vol. 2, Nos. 3/4, pp.242–250.

Biographical notes: D.H. Kalegari received his BSc in Computer Engineering from Pontificial
Catholic University of Paraná, in 2005. He is currently a Development Engineer at Institute of
Technology for Development (Lactec). He is also an MSc candidate in Computer Science at the
Federal University of Technology of Paraná (UTFPR), Brazil. His current research interests are
bioinformatics, evolutionary computation, parallel computing and SOA.

H.S. Lopes is an Associate Professor at the Department of Electronics, Federal University of
Technology of Paraná State (UTFPR), Brazil. He received his PhD in Engineering (Information
Systems) from Federal University of Santa Catarina in 1996 and his MSc and BSc in Electrical
Engineering from UTFPR in 1990 and 1984, respectively. He is the Founder and Head of
Bioinformatics Laboratory. His current research interests are bioinformatics, evolutionary
computation and reconfigurable computing and parallel computing.

1 Introduction

Proteins are organic components of all living beings and
composed by smaller structures known as amino acids,
bonded on a chain-like structure. The linear sequence of
amino acids (known as primary structure of a protein) has
all the information for generating a unique tri-dimensional
structure (tertiary structure). Once correctly folded the
amino acids chain, the protein will be ready to have a
biological function. A wrongly folded protein not only can
loose its biological function, but also be very harmful to the
organism, giving origin to several diseases. Scientists have
tried to unveil and simulate the exact way a protein folds
after during its synthesis in the ribosome of the cell. Despite
the huge efforts in this area, the way proteins fold into their
functional structure is still an open issue.

Therefore, predicting protein structure has become a
central problem in bioinformatics, once simulating protein
folding on a realistic way is too complex and expensive
even with the modern computational resources.

To overcome such problem, since long ago, researchers
(mainly in the bioinformatics area) have proposed
alternative models to simplify the structure of the
proteins. Several approaches were proposed, ranging from
lattice-based to free-energy models. For a comprehensive
overview of computational models of protein structure, see
Lopes (2008).

The simplest representation for a protein structure is the
model proposed by Dill (1985) and known as
hydrophobic/polar (HP). In this model, the amino acids
present in a protein are converted to monomers H
(hydrophobic) or P (hydrophilic or polar), depending on its

 A differential evolution approach for protein structure optimisation using a 2D off-lattice model 243

affinity to water. Each monomer of the chain is placed on a
quadratic or cubic lattice and their movements are
constrained by the lattice. Despite the simplicity of the HP
model, it was shown that using it for protein structure
prediction takes to a HP-hard problem (Ngo et al., 1994).
That is, there is no polynomial time algorithm to
solve it. Therefore, many heuristic approaches have
been proposed, such as: neural networks (Stillinger and
Head-Gordon, 1995), multicanonical Monte Carlo (Irbäck et
al., 1997), simulated tempering (Irbäck and Potthast, 1995),
PERM (Hsu et al., 2003), conventional metropolis type
Monte Carlo procedures (Stillinger and Head-Gordon,
1995) and some evolutionary computation-based techniques
(Scapin and Lopes, 2007; Lopes and Bitello, 2007).

The model studied in this paper is based on the HP
model, but the position of the monomers is not restricted to
the crossings of the lattice. Instead, they can be positioned
anywhere in a plane, connected by bounds. This model is
known as toy model or AB model and was proposed by
Stillinger et al. (1993). In the same way as in the HP model,
the AB model also considers only two types of amino acids:
A (hydrophobic) and B (polar).

Both the HP and AB models were proposed to solve the
protein structure optimisation problem, with different levels
of abstraction. All models proposed in the literature have a
common goal: they want to find the best folding for a
protein with the lowest energy state.

Differential evolution (DE) (Price et al., 2005;
Chakraborty, 2008) is an optimisation method, pertaining to
the area of evolutionary computation. DE has been
successfully used for difficult optimisation tasks, including
protein structure prediction (Lopes and Bitello, 2007).

The objective of this work is to use DE algorithm as an
alternative to solve the protein structure optimisation
problem based on the AB model. Two approaches were
implemented, a regular sequential implementation and a
parallel implementation.

In the next sections, we will describe the AB model and
both implementations, comparing their results with other
algorithms published in the literature.

2 Differential evolution

DE (Price et al., 2005; Storn and Price, 1997) is a heuristic
optimisation method from the evolutionary computation
field and was proposed for solving polynomial fitting
problems. The basic idea of DE is the use of difference
vectors for generating perturbations in a population of
vectors. DE is conceptually simple, easy to implement and
has proven to be flexible and achieve good solutions for
many interesting problems (Plagianakos et al., 2008).

The application of DE to real-world problems requests
the definition of the following control parameters:

• Population size (pop): represents the number of
candidate solutions that the algorithm will handle at the
same time.

• Dimension of solutions (nDim): defines the length of the
vectors that represent individuals. Each element of the
vectors is a variable of the problem.

• Range of variables: for each variable of the problem, its
upper and lower bounds have to be defined.

• Weighing factor (F): applied to the vector resulting
from the difference between pairs of vectors (say, X2
and X3). Typically F is a real-valued parameter in the
range [0, ..., 2].

• Crossover probability (CR): probability of crossing
over a given vector of the population (Xi) and a vector
created from the weighted difference of two vectors
(F: (X2, X3)), that are applied to another vector. This
latter vector (Xi) can be either randomly chosen or the
one with the best fitness found up to the moment (Xbest).
The final result of the operation is a candidate vector
(Xcandidate).

• Strategy for vector operations: several different
evolution strategies (vector operations) were proposed
(Price et al., 2005), but the choice of such strategy is
problem-dependent.

• Stop criterion: the time-out criterion is the most widely
used, that is, the algorithm stops after a fixed number of
iterations.

After defining these control parameters, the initial
population is randomly created. In order to have the
coverage of the search space as even as possible, a random
number generator with long period and uniform probability
distribution should be used.

Next, as in all evolutionary computation algorithms, the
fitness function of each individual of the population have to
be evaluated, according to the specific meaning of the
elements of the vector. While a stop criterion, previously
set, was not met, the following loop is repeated:

• For each individual Xi of the population do the
following. Choose at random three other vectors of the
population, for instance, X1, X2 and X3. Vector X1 could
be the one with the best fitness value up to now (Xbest).

• For each element of vector Xi, generate a random
number rnd in the range [0, ..., 1]. If rnd ≤ CR, the
current element of the vector substitutes the
corresponding element of the same index in vector
Xmodified (described in the next item) generating, at the
end, a new individual, Xcandidate. This operation is
somewhat equivalent to the crossover operator,
commonly used in genetic algorithms. There are several
variations of this procedure.

• For each element of vector X1, apply the selected
strategy for vector operation. The result of this
operation is Xmodified = F(X2 – X3). The elements of the
vector are always constrained by upper and lower
bonds. The vector operations over X1 are equivalent to
the mutation operator of genetic algorithms.

244 D.H. Kalegari and H.S. Lopes

• Evaluate the fitness of vector Xcandidate according to its
meaning to the problem in hand.

• Considering here a minimisation problem, if this fitness
is smaller than the fitness of Xi, that is, f(Xcandidate) <
f(Xi), vector Xi is substituted by Xcandidate. This operation
is equivalent to the selection procedure of genetic
algorithms.

• If Xcandidate, just included in the population, has fitness
smaller than Xbest, then the new Xbest will be Xcandidate.

3 The AB off-lattice model

This model for representing the structure of a protein was
first proposed by Stillinger and and Head-Gordon (1995). A
protein is formed by a combination of 20 possible standard
amino acids, although this model considers only two species
of monomers, ‘A’ which represents hydrophobic amino
acids and ‘B’ which represents polar amino acids. Using {A,
B} as alphabet, the primary structure of any complex
protein is represented by a sequence of A’s and B’s. The
monomers are connected by unit-length (distance = 1) bonds
each other and spatially grouped in such a way that the
bonds between them form an angle, relative to its
predecessor. For any protein structure composed by n-
monomers represented with the AB model, n-2 bend angles
will be needed. These angles are defined in range – π ≤ θi ≤
π.

Figure 1 shows the representation of a hypothetical
protein composed by nine amino acids, each one bonded to
the next of the chain.

It is worth to recall that the AB model is a very
simplified abstraction of a real protein structure, although it
can be useful for verifying some of the properties of
real-world proteins.

Figure 1 Generic representation of a hypothetic 9-mer protein
structure with its bended angles

The model defines energy values for monomers: ‘A’ has an
energy value of 1 and ‘B’ has an energy value of –1.
Considering two generic monomers i and j, of species ξi and

ξj, the interaction between species of monomers give rise to
different potential energy values (C): for AA bonds the
energy is 1, meaning that AA monomers tend to attract
strongly each other; BB bonds have energy +1/2, meaning
that they have tendency of attracting each other weakly and
AB or BA bonds have energy –1/2, meaning that when they
are bonded they have tendency for weak repulsion.

The energy for a protein structure with n monomers
(n-mers) is given by equation (1):

1 2

1 2
2 1 2

() (, ,)
− −

= = = +

= +∑ ∑ ∑
n n n

i ij i j
i i j i

V V dφ θ ξ ξ (1)

The above expression postulates two types of intermolecular
potential energies. The first term (V1) depends only on the
angle between monomers and represents the backbone
potentials; the second term (V2) represents the potential
energy present in the non-bonded interactions and it is
known as the Lennard-Jones potential. These terms are
defined by equations (2) and (3), respectively:

1
1()

4.(1 cos)
θ

θ
=

−i
i

V (2)

()12 6
2 (, ,) 4. (,).ξ ξ ξ ξ− −= −ij i j ij i j ijV d d C d (3)

where

1(,)
8.(1 5. .)

ξ ξ
ξ ξ ξ ξ

=
+ + +i j

i j i j
C

is the potential energy due to the interaction between
monomers i and j and dij is the distance between these
monomers in the chain, such that i < j.

4 Methodology

For applying DE to the protein structure optimisation
problem, the individuals are encoded directly with the n-2
angles between the monomers. Angles are defined based on
the axis between the previous monomer and the current on
(see Figure 1), thus limiting values in the range [–π, ..., π],
meaning that a given angle is negative if the angle is below
the axis and positive otherwise. During the creation of the
initial population angles are randomly generated within the
interval.

As mentioned in Section 2, there are several evolution
strategies for dealing with the vectors. That is, how
individuals of the population, represented by vectors, are
perturbed.

The weighing factor (F) is used to calculate the
weighted difference between two or more vectors, this
parameter strongly influences the result of the vector
operation, increasing or decreasing the convergence of the
population. Basically, there are two ways of combining new
vectors. DE will always get one vector from the population
and then randomly choose the second or third vector,

 A differential evolution approach for protein structure optimisation using a 2D off-lattice model 245

depending on how many vectors the strategy uses and
combine with the first one applying F and CR. Another
strategy can combine the selected vector with the best
vector so far on the population. Empirically, Storn and Price
(1997) discovered that randomly chosen vectors, instead of
the best vector, would increase the diversity of the
population along iterations. On the other hand, using the
best vector would lead to fast convergence.

The crossover type can be binomial (Bin), when
every element of the vector has the same probability for
crossover (that is, CR) or exponential (Exp) when crossover
is done while a randomly chosen value is less or equal to
CR.

According to the above mentioned parameters, the
evolution strategies for DE are parametrically defined as a
triplet: selection type/vectors selected/crossover strategy.
The selection type can be either Rand or Best, the number of
vectors selected is usually 1 or 2 and the crossover strategy
can be Bin or Exp.

The evolution strategies that are typically used in DE
problems are: Rand/1/Exp, RandtoBest/1/Exp, Best/1/Exp,
Best/2/Exp, Rand/2/Exp, Best/1/Bin, Rand/1/Bin and
RandtoBest/1/Bin.

4.1 Benchmarks and parameters tuning

The first approach taken to solve the protein structure
optimisation problem was find DE strategies, F and CR
values capable of leading DE to find the best results. We
used some of the strategies and parameters suggested by
Storm and Price (1997) and Feoktistov (2006) in their
respective works. Both works suggest that DE is not too
sensitive to CR than to F, therefore, during the evolution we
decided to set CR = 0.85. According to the references
mentioned, the following set of values for F was tested:
{0.4, 0.6, 0.8, 0.95}. Also, three evolution strategies were
tested in this work: Rand/1/Exp, RandtoBest/1/Exp,
Best/1/Exp.

We used a set of benchmark sequences of monomers
that was previously used in other works in the literature.
These sequences were used in all experiments in this paper.
The sequences of ‘As’ and ‘Bs’ are described in Table 1,
‘N’ is the number of monomers and ‘Emin’ is the minimum
energy known to date (see Section 6 for details).

Table 1 Benchmark of sequences

Sequence N Emin

ABBABBABABBAB 13 –3.2939
BABABBABABBABBABABBAB 21 –6.1976
ABBABBABABBABBABABBAB
ABBABBABABBAB

34 –10.7001

BABABBABABBABBABABBAB
ABBABBABABBABBABABBAB
ABBABBABABBAB

55 –18.5154

The sequential version of DE (see Section 4) was run ten
times for each set of parameters. The best values were

stored and the average was taken. The results for each
sequence are shown in Figures 2 to 5. In these plots, the
vertical axis is the average of the best values found for the
energy of the folding and the horizontal axis is the tested
values of F.

From the plots in the figures below, it is possible to
observe that for all, but the longest sequence, the strategy
that performed best most times was Rand/1/Exp. For the
sequence of 55 monomers, there is no clear definition of
which is the best strategy. Regarding the value of F, a clear
tendency was observed: the larger its value, the better the
results. Again, for the longest sequence, there was no
consistency in this observation.

Overall, these preliminary experiments for tuning DE
showed how difficult is it to find suitable values for the
running parameters. As a matter of fact, optimal values is
problem-dependent (Brest et al., 2008), not only for DE, but
also for most evolutionary computation algorithms.

Figure 2 Average best results for the 13 monomers sequence
(see online version for colours)

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,
40

0,
60

0,
80

0,
95

Rand/1/Exp RandtoBest/1/Exp Best/1/Exp

Figure 3 Average best results for the 21 monomers sequence
(see online version for colours)

-7,0

-6,0

-5,0

-4,0

-3,0

-2,0

-1,0

0,0

0,
40

0,
60

0,
80

0,
95

Rand/1/Exp RandtoBest/1/Exp Best/1/Exp

246 D.H. Kalegari and H.S. Lopes

Figure 4 Average best results for the 34 monomers sequence
(see online version for colours)

-10,0

-9,0

-8,0

-7,0

-6,0

-5,0

-4,0

-3,0

-2,0

-1,0

0,0

0,
40

0,
60

0,
80

0,
95

Rand/1/Exp RandtoBest/1/Exp Best/1/Exp

Figure 5 Average best results for the 55 monomers sequence
(see online version for colours)

-1,4

-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,
40

0,
60

0,
80

0,
95

Rand/1/Exp RandtoBest/1/Exp Best/1/Exp

5 Sequential implementation

The first implementation of the DE algorithm to solve the
sequence optimisation problem was done based on the
algorithm proposed by Storm and Price (1997). The
algorithm was initialised with a population of five
individuals, each one n-2 dimensions, corresponding to the
folding angles of n-mers protein.

Each population evolved for 1,000,000 iterations, the
weight factor (F) equals and crossover factor (CR) were
tested using different values (see next section).

We empirically observed that using a fixed weight factor
(F) turned out not to be the best approach, because the
algorithm got stuck in local minima, unable to evolve good
solutions. Therefore, a tuning approach for F was devised,
based on the number of iterations the algorithm did not
improve the best solution (considering a number of decimal
digits). We set a cut point in the 5th decimal digit and 500
iterations without improvement to toggle the weight factor F

to a random number between 0.5 and 3.95. Later, when the
algorithm is capable of improving solutions again, F is
toggled back to the original value.

We also implemented another strategy that helps to
escape from local minima, called population explosion. This
strategy was based on similar approach that was proved to
be useful for particle swarm optimisation (Hembecker et al.,
2007). When the population stagnated (even after toggling
F) for 10,000 iterations, it is ‘exploded’. That is, the
population re-started from scratch, but preserving the
best-to-date individual before explosion.

6 Parallel implementations

The parallel DE algorithm was implemented aiming
at improving its performance. The parallel
implementation was based on the MPICH-2
(http://www.mcs.anl.gov/research/projects/mpich2/), a
portable and updated implementation of the message
passing interface (MPI) (Gropp et al., 1999). MPI is a
communication protocol widely used for parallel
implementations of scientific applications. Basically, MPI
provide standardised means of communication and control
between processes running in (the same or) different
machines. By parallelising the sequential DE
implementation using MPI standards we divided the
computational load and improved the overall performance.

Two different topologies were proposed for the parallel
DE: master-slave (MS) and ring-island (RI). The first
approach is to distribute between processes the computation
of fitness, because this is the part with highest
computational cost of the algorithm. The second
implementation will try to improve the results, using an
island structure composed by some process that will divide
the workload for the fitness calculation but they also
communicate with another island sharing its best individual.
Both implementations will be detailed below.

6.1 MS approach

The MS approach requires six MPI processes in order to
distribute the computation of the fitness. Figure 6 shows a
diagram of the MS approach: the square represents the
master process; the circles are the slaves and lines between
them are the communication path.

In our cluster, each process runs in a physical processor
(either in the same machine or not). One process is called
master and the remaining five are the slaves. The master
process is responsible for controlling and distributing the
tasks to the slaves, as well as gathering results and
executing operations over vectors. This process contains the
information about the current strategy used by the DE
algorithm and the set of predefined parameters for the run
(F and CR).

When the algorithm is started the master process creates
the initial population and starts the slaves. Once started the
slaves get idle waiting for tasks do; the master distributes
evenly to the slaves the population of individuals of which

 A differential evolution approach for protein structure optimisation using a 2D off-lattice model 247

the fitness (energy of the folding) have to be computed.
Each slave can receive a single individual or a chunk of
individuals, determined during the program initialisation.
Once the fitness of the individual (or group of individuals)
is computed, slaves return the result to the master. This
process is synchronous; since the master waits for the reply
of all slaves before continue the DE algorithm.

Figure 6 MS approach for the parallel DE

6.2 RI approach

The RI approach of parallel DE was done using four
different islands, connected with each other using a ring
model, as shown on Figure 7. In this figure, dotted lines
represent the flow of migration between islands.

Figure 7 RI approach for the parallel DE

Each island has the same structure as the MS approach,
running six processes. However, each island has its own set
of parameters and evolution strategies. Islands are totally
independent from each other, that is, they can run its own
set of parameters and evaluate its individuals even if the
other islands are down. A migration policy was defined:
from time to time the best individual of a given island can
migrate to the next island and replaces randomly one of the
individuals on that specific population. This migration is

done following the precedence established by the ring
structure shown in Figure 7.

In our implementation, we created two possible
migration policies. The first is called forced migration: from
time to time individuals of an island will migrate to the next
island and so forth, this migration done every time the
master reaches 7,500 iterations. The second migration
policy takes place when stagnation is detected in DE,
according to the same strategy used for the sequential
approach (see Section 4).

This approach is asynchronous, because each island can
process a different number of individuals and have different
parameters. However, migration only occurs only when the
island has finished its current generation.

7 Results

The best results using both implementations, sequential and
parallel are shown in Table 2. In this table, there are also
results obtained by other authors using different methods:
first (EPERM) is a pruned-enriched Rosenbluth method –
PERM, by Hsu et al. (2003), next (Emin) is the minimum
energy obtained by the same method with subsequent
conjugate gradient minimisation. Eground is the putative
ground state energy obtained by Stillinger and Head-Gordon
(1995) using a Monte Carlo method hybridised with
Newtonian conjugate gradient minimisation. The second
group corresponds to results obtained in this work: DESeq
is the sequential DE implementation, DE-MS and DE-RI
refer to the two approaches of the parallel DE
implementations, MS and RI, respectively.

Table 2 Best results obtained and comparison with other
works

N EPERM Emin Eground

13 –3.2167 –3.2939 –3.2235
21 –5.7501 –6.1976 –5.2881
34 –9.2195 –10.7001 –8.9749
55 –14.9050 –18.5154 –14.4089

N DESeq DE-MS DE-RI

13 –3.1999 –3.1999 –3.2924
21 –6.19799 –6.19799 –6.19799
34 –9.29173 –9.15178 –9.68382
55 –11.52403 –13.7471 –14.68478

In order to evaluate visually the quality of the foldings
produced by the DE algorithm in this work, the best results,
previously mentioned, were used to draw the planar form of
the sequence (conformation). A program in MATLAB was
developed to convert the string of angles into {x, y}
coordinates and plot the structure. The larger dot represents
the start of the sequence, which can be either ‘A’ or ‘B’
monomers, black dots represent ‘A’ monomers and the
yellow dots represent ‘B’ monomers. Recall that the energy
of the folding is a function of the proximity of monomers,
especially the ‘A’ monomers. Therefore, compact structures

248 D.H. Kalegari and H.S. Lopes

tend to have lower energy levels than those structures more
dispersed. Figures 8 to 19 show the best foldings obtained
with the three DE implementations (sequential – DESeq,
parallel MS – DE-MS and parallel RI – DE-RI), for
sequences with 13, 21, 34 and 55 monomers.

Figure 8 Best folding for N = 13 (DESeq) (see online version for
colours)

Figure 9 Best folding for N = 13 (DE-MS) (see online version
for colours)

Figure 10 Best folding for N = 13 (DE-RI) (see online version for
colours)

Figure 11 Best folding for N = 21 (DESeq) (see online version for
colours)

Figure 12 Best folding for N = 21 (DE-MS) (see online version
for colours)

Figure 13 Best folding for N = 21 (DE-RI) (see online version for
colours)

Figure 14 Best folding for N = 34 (DESeq) (see online version for
colours)

Figure 15 Best folding for N = 34 (DE-MS) (see online version
for colours)

Figure 16 Best folding for N = 34 (DE-RI) (see online version for
colours)

Figure 17 Best Fitness N = 55 (DESeq) (see online version for
colours)

 A differential evolution approach for protein structure optimisation using a 2D off-lattice model 249

Figure 18 Best folding for N = 55 (DE-MS) (see online version
for colours)

Figure 19 Best folding for N = 55 (DE-RI) (see online version for
colours)

8 Analysis of results

The analysis of results shown at the previous sections
(Table 2 and Figures 8 to 19) indicates an evolution of
quality, from the sequential implementation to the parallel
RI model.

During the sequential tests for N = 13 the best energy
value obtained was –3.1999. This result turned out to be a
strong local minimum that could only be broken by the
parallel DE-RI implementation. Possibly, this was due to the
different evolution strategies, different parameters and the
migration between the islands.

For the N = 21 sequence the results of the sequential
implementation and the other two parallel implementations
were basically the same. Despite being longer than the
previous sequence, it seems to be easier to fold than it. For
this particular sequence DE seems to be more efficient than
the other methods, since it obtained a slightly better result.

For the N = 34 sequence, the results obtained by our
implementation were only 13%, 14% and 9% above the
minimum energy known. Notice that both DESeq and
DE-RI still obtained better results than the PERM
implementation.

For the hardest problem, N = 55 monomers, DE was not
able to find good results when compared with the minimum
energy known. However, our results are, in general,
comparable to results of the PERM method as well as of the
ground energy found by Stillinger and Head-Gordon (1995).
The DE-RI implementation obtained quite similar results to
these previously mentioned results.

9 Conclusions

Several protein folding problems were tested using DE
algorithm, in sequential and parallel versions. DE turned out
to be an interesting method to predict protein structure using
the AB model. The parallel DE versions had superior
performance when compared with the sequential one.
Particularly, the RI approach was more efficient than the
MS approach.

As previously described for smaller proteins DE was
able to find the ground state energy values. However, as the
number of amino acids of the sequence increases, the
complexity of the problem increases exponentially and DE
looses performance. Anyhow, DE (the parallel versions) got
close to the best values obtained for the N = 34 protein,
finding energies lower than some previous implementations,
although it was not able to find the ground states for N = 34
and N = 55.

It is worth to recall that the current optimal results were
obtained with specialised methods hybridised with local
search procedures and DE is a general-purpose method.
Also, no special operators or problem-dependent approaches
were used to improve performance of DE.

The overall comparison of results suggests that DE may
be a promising method for solving the structure optimisation
problem for small protein sequences; although for long
sequences the method degrades performance. Possibly, this
is due to conjunction of several factors: the huge search
space that grows exponentially as the number of amino
acids increase; the nature of the problem which is highly
constrained and the premature convergence of the algorithm
to local minima and difficulty in escaping from there.

These facts suggest the need for special manipulations
of the vectors, which could take into account not only the
physical constraints of the foldings, but also some biological
knowledge. In the same way, hybridisation seems to be
needed, especially towards the use of concomitant local
search procedures.

The promising results reported here encourages further
research, mainly towards the use of special operators, so as
to improve results for long protein sequences.

Acknowledgements

This work was partially supported by the Brazilian National
Research Council – CNPq, under Research Grant No.
309262/2007-0 to H.S. Lopes.

References
Brest, J., Zamuda, A., Bošković, B, Greiner, S. and Žumer, V.

(2008) ‘An analysis of the control parameters’ adaptation in
DE’, in Chakraborty, U.K. (Ed.): Advances in Differential
Evolution, Springer, pp.89–110.

Chakraborty, U.K. (2008) Advances in Differential Evolution,
Springer.

250 D.H. Kalegari and H.S. Lopes

Dill, K.A. (1985) ‘Theory for the folding and stability of globular
proteins’, Biochemistry, Vol. 24, pp.1501–1509.

Feoktistov, V. (2006) Differential Evolution: In Search of
Solutions, Springer.

Gropp, W., Lusk, E. and Thakur, R. (1999) Using MPI-2:
Advanced Features of the Message-Passing Interface, MIT
Press.

Hembecker, F., Lopes, H.S. and Godoy, W. Jr. (2007) ‘Particle
swarm optimization for the multidimensional knapsack
problem’, Proceedings of Adaptive and Natural Computing
Algorithms (ICANNGA), Warsaw, Poland, Lecture Notes in
Computer Science, Springer, Part I, Vol. 4331, pp.358–365.

Hsu, H.P., Mehra, V. and Grassberger, P. (2003) ‘Structure
optimization in an off-lattice protein model’, Physical Review
E, Vol. 68, No. 3, pp.037703–037707.

Irbäck, A. and Potthast, F. (1995) ‘Studies of an off-lattice model
for protein folding: sequence dependence and improved
sampling at finite temperature’, Journal of Chemical Physics,
Vol. 103, pp.10298–10305.

Irbäck, I., Peterson, C., Potthast, F. and Sommelius, O. (1997)
‘Local interactions and protein folding: a 3d off-lattice
approach’, Journal of Chemical Physics, Vol. 107,
pp.273–282.

Lopes, H.S. (2008) ‘Evolutionary algorithms for the protein
folding problem: a review and current trends’, in Smolinski,
T.G., Milanova, M.M. and Hassanien, A-E. (Eds.):
Applications of Computational Intelligence in Bioinformatics
and Biomedicine: Current Trends and Open Problems,
Springer-Verlag, Vol. 1, pp.297–315.

Lopes, H.S. and Bitello, R. (2007) ‘A differential evolution
approach for protein folding using a lattice model’, Journal of
Computer Science and Technology, Vol. 22, No. 6,
pp.904–908.

Ngo, J.T., Marks, J. and Karplus, M. (1994) ‘Computational
complexity, protein structure prediction and the Levinthal
paradox’, in Merz, K. Jr. and LeGrand, S. (Eds): The Protein
Folding Problem and Tertiary Structure Prediction,
Birkhauser, pp.433–506.

Plagianakos, V.P., Tasoulis, D.K. and Vrahatis, M.N. (2008) ‘A
review of major application areas of differential evolution’, in
Chakraborty, U.K. (Ed.): Advances in Differential Evolution,
Springer, pp.197–238.

Price, K.V., Storn, R.M. and Lampinen, J.A. (2005) Differential
Evolution: A Practical Approach to Global Optimization,
Springer.

Scapin, M.P. and Lopes, H.S. (2007) ‘A hybrid genetic algorithm
for the protein folding problem using the 2D-HP lattice
model’, in Ang Yang, Yin Shan and Lam Thu Bui (Eds.):
Success in Evolutionary Computation, Springer-Verlag,
pp.205–224.

Stillinger, F.H. and Head-Gordon, T. (1995) ‘Collective aspects of
protein folding illustrated by a toy model’, Physical Review E,
Vol. 52, pp.2872–2877.

Stillinger, F.H., Head-Gordon, T. and Hirshfeld, C.L. (1993) ‘Toy
model for protein folding’, Physical Review E, Vol. 48,
pp.1469–1477.

Storn, R.M. and Price, K.V. (1997) Differential evolution – a
simple and efficient heuristic for global optimization over
continuous spaces, Journal of Global Optimization, Vol. 11,
pp.341–359.

