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Abstract: Protein structure optimisation is a well-known problem in bioinformatics. This work 
applies an evolutionary algorithm to solve the protein structure optimisation problem based on 
the AB off-lattice model. Three different implementations of the differential evolution (DE) 
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were done using a benchmark of toy sequences with 13 to 55 monomers long. Results of the DE 
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operators to improve performance of DE. 
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1 Introduction 

Proteins are organic components of all living beings and 
composed by smaller structures known as amino acids, 
bonded on a chain-like structure. The linear sequence of 
amino acids (known as primary structure of a protein) has 
all the information for generating a unique tri-dimensional 
structure (tertiary structure). Once correctly folded the 
amino acids chain, the protein will be ready to have a 
biological function. A wrongly folded protein not only can 
loose its biological function, but also be very harmful to the 
organism, giving origin to several diseases. Scientists have 
tried to unveil and simulate the exact way a protein folds 
after during its synthesis in the ribosome of the cell. Despite 
the huge efforts in this area, the way proteins fold into their 
functional structure is still an open issue. 

Therefore, predicting protein structure has become a 
central problem in bioinformatics, once simulating protein 
folding on a realistic way is too complex and expensive 
even with the modern computational resources. 

To overcome such problem, since long ago, researchers 
(mainly in the bioinformatics area) have proposed 
alternative models to simplify the structure of the  
proteins. Several approaches were proposed, ranging from 
lattice-based to free-energy models. For a comprehensive 
overview of computational models of protein structure, see 
Lopes (2008). 

The simplest representation for a protein structure is the 
model proposed by Dill (1985) and known as 
hydrophobic/polar (HP). In this model, the amino acids 
present in a protein are converted to monomers H 
(hydrophobic) or P (hydrophilic or polar), depending on its 
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affinity to water. Each monomer of the chain is placed on a 
quadratic or cubic lattice and their movements are 
constrained by the lattice. Despite the simplicity of the HP 
model, it was shown that using it for protein structure 
prediction takes to a HP-hard problem (Ngo et al., 1994). 
That is, there is no polynomial time algorithm to  
solve it. Therefore, many heuristic approaches have  
been proposed, such as: neural networks (Stillinger and  
Head-Gordon, 1995), multicanonical Monte Carlo (Irbäck et 
al., 1997), simulated tempering (Irbäck and Potthast, 1995), 
PERM (Hsu et al., 2003), conventional metropolis type 
Monte Carlo procedures (Stillinger and Head-Gordon, 
1995) and some evolutionary computation-based techniques 
(Scapin and Lopes, 2007; Lopes and Bitello, 2007). 

The model studied in this paper is based on the HP 
model, but the position of the monomers is not restricted to 
the crossings of the lattice. Instead, they can be positioned 
anywhere in a plane, connected by bounds. This model is 
known as toy model or AB model and was proposed by 
Stillinger et al. (1993). In the same way as in the HP model, 
the AB model also considers only two types of amino acids: 
A (hydrophobic) and B (polar). 

Both the HP and AB models were proposed to solve the 
protein structure optimisation problem, with different levels 
of abstraction. All models proposed in the literature have a 
common goal: they want to find the best folding for a 
protein with the lowest energy state. 

Differential evolution (DE) (Price et al., 2005; 
Chakraborty, 2008) is an optimisation method, pertaining to 
the area of evolutionary computation. DE has been 
successfully used for difficult optimisation tasks, including 
protein structure prediction (Lopes and Bitello, 2007). 

The objective of this work is to use DE algorithm as an 
alternative to solve the protein structure optimisation 
problem based on the AB model. Two approaches were 
implemented, a regular sequential implementation and a 
parallel implementation. 

In the next sections, we will describe the AB model and 
both implementations, comparing their results with other 
algorithms published in the literature. 

2 Differential evolution 

DE (Price et al., 2005; Storn and Price, 1997) is a heuristic 
optimisation method from the evolutionary computation 
field and was proposed for solving polynomial fitting 
problems. The basic idea of DE is the use of difference 
vectors for generating perturbations in a population of 
vectors. DE is conceptually simple, easy to implement and 
has proven to be flexible and achieve good solutions for 
many interesting problems (Plagianakos et al., 2008). 

The application of DE to real-world problems requests 
the definition of the following control parameters: 

• Population size (pop): represents the number of 
candidate solutions that the algorithm will handle at the 
same time. 

• Dimension of solutions (nDim): defines the length of the 
vectors that represent individuals. Each element of the 
vectors is a variable of the problem. 

• Range of variables: for each variable of the problem, its 
upper and lower bounds have to be defined. 

• Weighing factor (F): applied to the vector resulting 
from the difference between pairs of vectors (say, X2 
and X3). Typically F is a real-valued parameter in the 
range [0, ..., 2]. 

• Crossover probability (CR): probability of crossing 
over a given vector of the population (Xi) and a vector 
created from the weighted difference of two vectors  
(F: (X2, X3)), that are applied to another vector. This 
latter vector (Xi) can be either randomly chosen or the 
one with the best fitness found up to the moment (Xbest). 
The final result of the operation is a candidate vector 
(Xcandidate). 

• Strategy for vector operations: several different 
evolution strategies (vector operations) were proposed 
(Price et al., 2005), but the choice of such strategy is 
problem-dependent. 

• Stop criterion: the time-out criterion is the most widely 
used, that is, the algorithm stops after a fixed number of 
iterations. 

After defining these control parameters, the initial 
population is randomly created. In order to have the 
coverage of the search space as even as possible, a random 
number generator with long period and uniform probability 
distribution should be used. 

Next, as in all evolutionary computation algorithms, the 
fitness function of each individual of the population have to 
be evaluated, according to the specific meaning of the 
elements of the vector. While a stop criterion, previously 
set, was not met, the following loop is repeated: 

• For each individual Xi of the population do the 
following. Choose at random three other vectors of the 
population, for instance, X1, X2 and X3. Vector X1 could 
be the one with the best fitness value up to now (Xbest). 

• For each element of vector Xi, generate a random 
number rnd in the range [0, ..., 1]. If rnd ≤ CR, the 
current element of the vector substitutes the 
corresponding element of the same index in vector 
Xmodified (described in the next item) generating, at the 
end, a new individual, Xcandidate. This operation is 
somewhat equivalent to the crossover operator, 
commonly used in genetic algorithms. There are several 
variations of this procedure. 

• For each element of vector X1, apply the selected 
strategy for vector operation. The result of this 
operation is Xmodified = F(X2 – X3). The elements of the 
vector are always constrained by upper and lower 
bonds. The vector operations over X1 are equivalent to 
the mutation operator of genetic algorithms. 
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• Evaluate the fitness of vector Xcandidate according to its 
meaning to the problem in hand. 

• Considering here a minimisation problem, if this fitness 
is smaller than the fitness of Xi, that is, f(Xcandidate) < 
f(Xi), vector Xi is substituted by Xcandidate. This operation 
is equivalent to the selection procedure of genetic 
algorithms. 

• If Xcandidate, just included in the population, has fitness 
smaller than Xbest, then the new Xbest will be Xcandidate. 

3 The AB off-lattice model 

This model for representing the structure of a protein was 
first proposed by Stillinger and and Head-Gordon (1995). A 
protein is formed by a combination of 20 possible standard 
amino acids, although this model considers only two species 
of monomers, ‘A’ which represents hydrophobic amino 
acids and ‘B’ which represents polar amino acids. Using {A, 
B} as alphabet, the primary structure of any complex 
protein is represented by a sequence of A’s and B’s. The 
monomers are connected by unit-length (distance = 1) bonds 
each other and spatially grouped in such a way that the 
bonds between them form an angle, relative to its 
predecessor. For any protein structure composed by n-
monomers represented with the AB model, n-2 bend angles 
will be needed. These angles are defined in range – π ≤ θi ≤ 
π. 

Figure 1 shows the representation of a hypothetical 
protein composed by nine amino acids, each one bonded to 
the next of the chain. 

It is worth to recall that the AB model is a very 
simplified abstraction of a real protein structure, although it 
can be useful for verifying some of the properties of  
real-world proteins. 

Figure 1 Generic representation of a hypothetic 9-mer protein 
structure with its bended angles 

 

The model defines energy values for monomers: ‘A’ has an 
energy value of 1 and ‘B’ has an energy value of –1. 
Considering two generic monomers i and j, of species ξi and 

ξj, the interaction between species of monomers give rise to 
different potential energy values (C): for AA bonds the 
energy is 1, meaning that AA monomers tend to attract 
strongly each other; BB bonds have energy +1/2, meaning 
that they have tendency of attracting each other weakly and 
AB or BA bonds have energy –1/2, meaning that when they 
are bonded they have tendency for weak repulsion. 

The energy for a protein structure with n monomers  
(n-mers) is given by equation (1): 
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The above expression postulates two types of intermolecular 
potential energies. The first term (V1) depends only on the 
angle between monomers and represents the backbone 
potentials; the second term (V2) represents the potential 
energy present in the non-bonded interactions and it is 
known as the Lennard-Jones potential. These terms are 
defined by equations (2) and (3), respectively: 
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is the potential energy due to the interaction between 
monomers i and j and dij is the distance between these 
monomers in the chain, such that i < j. 

4 Methodology 

For applying DE to the protein structure optimisation 
problem, the individuals are encoded directly with the n-2 
angles between the monomers. Angles are defined based on 
the axis between the previous monomer and the current on 
(see Figure 1), thus limiting values in the range [–π, ..., π], 
meaning that a given angle is negative if the angle is below 
the axis and positive otherwise. During the creation of the 
initial population angles are randomly generated within the 
interval. 

As mentioned in Section 2, there are several evolution 
strategies for dealing with the vectors. That is, how 
individuals of the population, represented by vectors, are 
perturbed. 

The weighing factor (F) is used to calculate the 
weighted difference between two or more vectors, this 
parameter strongly influences the result of the vector 
operation, increasing or decreasing the convergence of the 
population. Basically, there are two ways of combining new 
vectors. DE will always get one vector from the population 
and then randomly choose the second or third vector, 
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depending on how many vectors the strategy uses and 
combine with the first one applying F and CR. Another 
strategy can combine the selected vector with the best 
vector so far on the population. Empirically, Storn and Price 
(1997) discovered that randomly chosen vectors, instead of 
the best vector, would increase the diversity of the 
population along iterations. On the other hand, using the 
best vector would lead to fast convergence. 

The crossover type can be binomial (Bin), when  
every element of the vector has the same probability for 
crossover (that is, CR) or exponential (Exp) when crossover 
is done while a randomly chosen value is less or equal to 
CR. 

According to the above mentioned parameters, the 
evolution strategies for DE are parametrically defined as a 
triplet: selection type/vectors selected/crossover strategy. 
The selection type can be either Rand or Best, the number of 
vectors selected is usually 1 or 2 and the crossover strategy 
can be Bin or Exp. 

The evolution strategies that are typically used in DE 
problems are: Rand/1/Exp, RandtoBest/1/Exp, Best/1/Exp, 
Best/2/Exp, Rand/2/Exp, Best/1/Bin, Rand/1/Bin and 
RandtoBest/1/Bin. 

4.1 Benchmarks and parameters tuning 

The first approach taken to solve the protein structure 
optimisation problem was find DE strategies, F and CR 
values capable of leading DE to find the best results. We 
used some of the strategies and parameters suggested by 
Storm and Price (1997) and Feoktistov (2006) in their 
respective works. Both works suggest that DE is not too 
sensitive to CR than to F, therefore, during the evolution we 
decided to set CR = 0.85. According to the references 
mentioned, the following set of values for F was tested: 
{0.4, 0.6, 0.8, 0.95}. Also, three evolution strategies were 
tested in this work: Rand/1/Exp, RandtoBest/1/Exp, 
Best/1/Exp. 

We used a set of benchmark sequences of monomers 
that was previously used in other works in the literature. 
These sequences were used in all experiments in this paper. 
The sequences of ‘As’ and ‘Bs’ are described in Table 1, 
‘N’ is the number of monomers and ‘Emin’ is the minimum 
energy known to date (see Section 6 for details). 

Table 1 Benchmark of sequences 

Sequence N Emin 

ABBABBABABBAB 13 –3.2939 
BABABBABABBABBABABBAB 21 –6.1976 
ABBABBABABBABBABABBAB 
ABBABBABABBAB 

34 –10.7001 

BABABBABABBABBABABBAB 
ABBABBABABBABBABABBAB 
ABBABBABABBAB 

55 –18.5154 

The sequential version of DE (see Section 4) was run ten 
times for each set of parameters. The best values were  

stored and the average was taken. The results for each 
sequence are shown in Figures 2 to 5. In these plots, the 
vertical axis is the average of the best values found for the 
energy of the folding and the horizontal axis is the tested 
values of F. 

From the plots in the figures below, it is possible to 
observe that for all, but the longest sequence, the strategy 
that performed best most times was Rand/1/Exp. For the 
sequence of 55 monomers, there is no clear definition of 
which is the best strategy. Regarding the value of F, a clear 
tendency was observed: the larger its value, the better the 
results. Again, for the longest sequence, there was no 
consistency in this observation. 

Overall, these preliminary experiments for tuning DE 
showed how difficult is it to find suitable values for the 
running parameters. As a matter of fact, optimal values is 
problem-dependent (Brest et al., 2008), not only for DE, but 
also for most evolutionary computation algorithms. 

Figure 2 Average best results for the 13 monomers sequence 
(see online version for colours) 
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Figure 3 Average best results for the 21 monomers sequence 
(see online version for colours) 
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Figure 4 Average best results for the 34 monomers sequence 
(see online version for colours) 
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Figure 5 Average best results for the 55 monomers sequence 
(see online version for colours) 
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5 Sequential implementation 

The first implementation of the DE algorithm to solve the 
sequence optimisation problem was done based on the 
algorithm proposed by Storm and Price (1997). The 
algorithm was initialised with a population of five 
individuals, each one n-2 dimensions, corresponding to the 
folding angles of n-mers protein. 

Each population evolved for 1,000,000 iterations, the 
weight factor (F) equals and crossover factor (CR) were 
tested using different values (see next section). 

We empirically observed that using a fixed weight factor 
(F) turned out not to be the best approach, because the 
algorithm got stuck in local minima, unable to evolve good 
solutions. Therefore, a tuning approach for F was devised, 
based on the number of iterations the algorithm did not 
improve the best solution (considering a number of decimal 
digits). We set a cut point in the 5th decimal digit and 500 
iterations without improvement to toggle the weight factor F 

to a random number between 0.5 and 3.95. Later, when the 
algorithm is capable of improving solutions again, F is 
toggled back to the original value. 

We also implemented another strategy that helps to 
escape from local minima, called population explosion. This 
strategy was based on similar approach that was proved to 
be useful for particle swarm optimisation (Hembecker et al., 
2007). When the population stagnated (even after toggling 
F) for 10,000 iterations, it is ‘exploded’. That is, the 
population re-started from scratch, but preserving the  
best-to-date individual before explosion. 

6 Parallel implementations 

The parallel DE algorithm was implemented aiming  
at improving its performance. The parallel  
implementation was based on the MPICH-2 
(http://www.mcs.anl.gov/research/projects/mpich2/), a 
portable and updated implementation of the message 
passing interface (MPI) (Gropp et al., 1999). MPI is a 
communication protocol widely used for parallel 
implementations of scientific applications. Basically, MPI 
provide standardised means of communication and control 
between processes running in (the same or) different 
machines. By parallelising the sequential DE 
implementation using MPI standards we divided the 
computational load and improved the overall performance. 

Two different topologies were proposed for the parallel 
DE: master-slave (MS) and ring-island (RI). The first 
approach is to distribute between processes the computation 
of fitness, because this is the part with highest 
computational cost of the algorithm. The second 
implementation will try to improve the results, using an 
island structure composed by some process that will divide 
the workload for the fitness calculation but they also 
communicate with another island sharing its best individual. 
Both implementations will be detailed below. 

6.1 MS approach 

The MS approach requires six MPI processes in order to 
distribute the computation of the fitness. Figure 6 shows a 
diagram of the MS approach: the square represents the 
master process; the circles are the slaves and lines between 
them are the communication path. 

In our cluster, each process runs in a physical processor 
(either in the same machine or not). One process is called 
master and the remaining five are the slaves. The master 
process is responsible for controlling and distributing the 
tasks to the slaves, as well as gathering results and 
executing operations over vectors. This process contains the 
information about the current strategy used by the DE 
algorithm and the set of predefined parameters for the run 
(F and CR). 

When the algorithm is started the master process creates 
the initial population and starts the slaves. Once started the 
slaves get idle waiting for tasks do; the master distributes 
evenly to the slaves the population of individuals of which 
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the fitness (energy of the folding) have to be computed. 
Each slave can receive a single individual or a chunk of 
individuals, determined during the program initialisation. 
Once the fitness of the individual (or group of individuals) 
is computed, slaves return the result to the master. This 
process is synchronous; since the master waits for the reply 
of all slaves before continue the DE algorithm. 

Figure 6 MS approach for the parallel DE 

 

6.2 RI approach 

The RI approach of parallel DE was done using four 
different islands, connected with each other using a ring 
model, as shown on Figure 7. In this figure, dotted lines 
represent the flow of migration between islands. 

Figure 7 RI approach for the parallel DE 

 

Each island has the same structure as the MS approach, 
running six processes. However, each island has its own set 
of parameters and evolution strategies. Islands are totally 
independent from each other, that is, they can run its own 
set of parameters and evaluate its individuals even if the 
other islands are down. A migration policy was defined: 
from time to time the best individual of a given island can 
migrate to the next island and replaces randomly one of the 
individuals on that specific population. This migration is 

done following the precedence established by the ring 
structure shown in Figure 7. 

In our implementation, we created two possible 
migration policies. The first is called forced migration: from 
time to time individuals of an island will migrate to the next 
island and so forth, this migration done every time the 
master reaches 7,500 iterations. The second migration 
policy takes place when stagnation is detected in DE, 
according to the same strategy used for the sequential 
approach (see Section 4). 

This approach is asynchronous, because each island can 
process a different number of individuals and have different 
parameters. However, migration only occurs only when the 
island has finished its current generation. 

7 Results 

The best results using both implementations, sequential and 
parallel are shown in Table 2. In this table, there are also 
results obtained by other authors using different methods: 
first (EPERM) is a pruned-enriched Rosenbluth method – 
PERM, by Hsu et al. (2003), next (Emin) is the minimum 
energy obtained by the same method with subsequent 
conjugate gradient minimisation. Eground is the putative 
ground state energy obtained by Stillinger and Head-Gordon 
(1995) using a Monte Carlo method hybridised with 
Newtonian conjugate gradient minimisation. The second 
group corresponds to results obtained in this work: DESeq 
is the sequential DE implementation, DE-MS and DE-RI 
refer to the two approaches of the parallel DE 
implementations, MS and RI, respectively. 

Table 2 Best results obtained and comparison with other 
works 

N EPERM Emin Eground 

13 –3.2167 –3.2939 –3.2235 
21 –5.7501 –6.1976 –5.2881 
34 –9.2195 –10.7001 –8.9749 
55 –14.9050 –18.5154 –14.4089 

N DESeq DE-MS DE-RI 

13 –3.1999 –3.1999 –3.2924 
21 –6.19799 –6.19799 –6.19799 
34 –9.29173 –9.15178 –9.68382 
55 –11.52403 –13.7471 –14.68478 

In order to evaluate visually the quality of the foldings 
produced by the DE algorithm in this work, the best results, 
previously mentioned, were used to draw the planar form of 
the sequence (conformation). A program in MATLAB was 
developed to convert the string of angles into {x, y} 
coordinates and plot the structure. The larger dot represents 
the start of the sequence, which can be either ‘A’ or ‘B’ 
monomers, black dots represent ‘A’ monomers and the 
yellow dots represent ‘B’ monomers. Recall that the energy 
of the folding is a function of the proximity of monomers, 
especially the ‘A’ monomers. Therefore, compact structures 
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tend to have lower energy levels than those structures more 
dispersed. Figures 8 to 19 show the best foldings obtained 
with the three DE implementations (sequential – DESeq, 
parallel MS – DE-MS and parallel RI – DE-RI), for 
sequences with 13, 21, 34 and 55 monomers. 

Figure 8 Best folding for N = 13 (DESeq) (see online version for 
colours) 

 

Figure 9 Best folding for N = 13 (DE-MS) (see online version 
for colours) 

 

Figure 10 Best folding for N = 13 (DE-RI) (see online version for 
colours) 

 

Figure 11 Best folding for N = 21 (DESeq) (see online version for 
colours) 

 

Figure 12 Best folding for N = 21 (DE-MS) (see online version 
for colours) 

 

Figure 13 Best folding for N = 21 (DE-RI) (see online version for 
colours) 

 

Figure 14 Best folding for N = 34 (DESeq) (see online version for 
colours) 

 

Figure 15 Best folding for N = 34 (DE-MS) (see online version 
for colours) 

 

Figure 16 Best folding for N = 34 (DE-RI) (see online version for 
colours) 

 

Figure 17 Best Fitness N = 55 (DESeq) (see online version for 
colours) 
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Figure 18 Best folding for N = 55 (DE-MS) (see online version 
for colours) 

 

Figure 19 Best folding for N = 55 (DE-RI) (see online version for 
colours) 

 

8 Analysis of results 

The analysis of results shown at the previous sections 
(Table 2 and Figures 8 to 19) indicates an evolution of 
quality, from the sequential implementation to the parallel 
RI model. 

During the sequential tests for N = 13 the best energy 
value obtained was –3.1999. This result turned out to be a 
strong local minimum that could only be broken by the 
parallel DE-RI implementation. Possibly, this was due to the 
different evolution strategies, different parameters and the 
migration between the islands. 

For the N = 21 sequence the results of the sequential 
implementation and the other two parallel implementations 
were basically the same. Despite being longer than the 
previous sequence, it seems to be easier to fold than it. For 
this particular sequence DE seems to be more efficient than 
the other methods, since it obtained a slightly better result. 

For the N = 34 sequence, the results obtained by our 
implementation were only 13%, 14% and 9% above the 
minimum energy known. Notice that both DESeq and  
DE-RI still obtained better results than the PERM 
implementation. 

For the hardest problem, N = 55 monomers, DE was not 
able to find good results when compared with the minimum 
energy known. However, our results are, in general, 
comparable to results of the PERM method as well as of the 
ground energy found by Stillinger and Head-Gordon (1995). 
The DE-RI implementation obtained quite similar results to 
these previously mentioned results. 

9 Conclusions 

Several protein folding problems were tested using DE 
algorithm, in sequential and parallel versions. DE turned out 
to be an interesting method to predict protein structure using 
the AB model. The parallel DE versions had superior 
performance when compared with the sequential one. 
Particularly, the RI approach was more efficient than the 
MS approach. 

As previously described for smaller proteins DE was 
able to find the ground state energy values. However, as the 
number of amino acids of the sequence increases, the 
complexity of the problem increases exponentially and DE 
looses performance. Anyhow, DE (the parallel versions) got 
close to the best values obtained for the N = 34 protein, 
finding energies lower than some previous implementations, 
although it was not able to find the ground states for N = 34 
and N = 55. 

It is worth to recall that the current optimal results were 
obtained with specialised methods hybridised with local 
search procedures and DE is a general-purpose method. 
Also, no special operators or problem-dependent approaches 
were used to improve performance of DE. 

The overall comparison of results suggests that DE may 
be a promising method for solving the structure optimisation 
problem for small protein sequences; although for long 
sequences the method degrades performance. Possibly, this 
is due to conjunction of several factors: the huge search 
space that grows exponentially as the number of amino 
acids increase; the nature of the problem which is highly 
constrained and the premature convergence of the algorithm 
to local minima and difficulty in escaping from there. 

These facts suggest the need for special manipulations 
of the vectors, which could take into account not only the 
physical constraints of the foldings, but also some biological 
knowledge. In the same way, hybridisation seems to be 
needed, especially towards the use of concomitant local 
search procedures. 

The promising results reported here encourages further 
research, mainly towards the use of special operators, so as 
to improve results for long protein sequences. 
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