
Computing and Informatics, Vol. 29, 2010, 1233–1250

A PARALLEL ALGORITHM FOR LARGE-SCALE
MULTIPLE SEQUENCE ALIGNMENT

Heitor S. Lopes, Carlos R. Erig Lima, Guilherme L. Moritz

Bioinformatics Laboratory/CPGEI
Federal University of Technology – Paraná
Av. 7 de setembro, 3165
80230-901, Curitiba, Brazil
e-mail: {hslopes, erig}@utfpr.edu.br

Manuscript received 16 October 2008; revised 22 January 2009
Communicated by Viera Šipková

Abstract. Multiple sequence alignment is a central topic of extensive research
in computational biology. Basically, two or more protein sequences are compared
to evaluate their similarity and to identify conserved regions. This work reports
a methodology for parallel processing of a multiple sequence alignment algorithm
(ClustalW) in an environment of networked computers. A detailed description of
the modules that compose the distributed system is provided, giving special atten-
tion to the way a dynamic programming algorithm is run in multilevel parallelism.

Extensive experiments were done to evaluate performance and scalability of the
reported method. Results suggest that the proposed method is very promising for
large-scale multiple protein sequence alignment.

Keywords: Bioinformatics, parallel algorithm, multiple sequence alignment

Mathematics Subject Classification 2000: 68W10: Parallel algorithms; 92-08:
Computational Methods; 92D20: Protein sequences

1 INTRODUCTION

In biological systems, proteins are the most abundant and functionally diverse
molecules. Almost all vital processes depend on these macromolecules that are com-
posed by amino acids chains. The standardized 20 different types of amino acids can

1234 H. S. Lopes, C.R. E. Lima, G. L. Moritz

be combined in a linear sequence having the necessary information for the generation
of an unique tri-dimensional structure. The comparison of two protein sequences
is known as pairwise alignment (or, sometimes, as string editing), and a group of
them is known as multiple sequence alignment (MSA). Such alignment consists of
an ordered and systematic comparison of the amino acids belonging to the sequences
throughout their whole extension (or specific regions), and then computing a simi-
larity score. From the computational viewpoint, the MSA of proteins or DNA is
a very difficult problem and was proved to be NP-complete [10, 20]. However, align-
ment is still the most important tool for discovering and representing similarities
between sequences, capable of unraveling the evolutionary history, critical preserved
motifs, details of the tertiary structure and important clues about function. Real-
world proteins can have up to several hundreds of amino acids and researchers often
have to align a large number of them. Consequently, MSA is a recurrent topic of
extensive research in bioinformatics and computer science, aiming at finding more
efficient algorithms, as well as speeding-up existing ones [1, 3, 4, 12, 13, 14].

Several efficient algorithms have been proposed for the pairwise alignment prob-
lem (either for local or global alignment) [2, 3, 7, 18], including some that use parallel
approaches. Due to the high level of complexity of the MSA, when compared with
pairwise alignment, it has been addressed much more sparsely in recent literature,
usually by using heuristic approaches [14, 16, 21]. In general, apart from the compu-
tational efficiency, the main difference between alignment algorithms is the quality
of the alignment. Frequently, algorithms that give good alignments (regarding the
similarity score) are computationally expensive and tend to be unfeasible for a large
number of sequences.

Parallel computing has been used do deal more efficiently with several problems
in bioinformatics. Amongst the many parallel processing resources, PVM (Parallel
Virtual Machine) [6] is an environment frequently used for scientific applications.
PVM is a software library that offers message-passing support and allows the ex-
ploitation of distributed computing across a network of heterogeneous computers.
PVM is efficient and easy to use and, thanks to its explicit communication model
and process-based computation, it has become a standard in parallel computation.

In this work, a methodology for the parallelization of a MSA task was developed.
It was designed to establish a tradeoff between the quality of the alignment and
the processing speed. The methodology is inspired by Clustal [9], a well-known
algorithm for MSA, and is based on a parallel processing environment.

1.1 The ClustalW Algorithm

The Clustal algorithm [9] is based on a progressive alignment of sequences, using
a distance tree between related alignments. In this work, we used a further improve-
ment of the original Clustal algorithm: the ClustalW [19].The algorithm is divided
into three basic steps as follows: The first step is the pairwise alignment, where a pair
of sequences is aligned using a dynamic programming algorithm for global alignment.
It builds am×nmatrix (m and n are the lengths of the two sequences) and computes

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1235

a score by means of a backward walk in the matrix, looking for the minimal cost asso-
ciated with substitutions, insertions and deletions. This step is repeated iteratively
for all n(n − 1)/2 pairs of sequences to be aligned. The computed score is meant
as the similarity degree between two sequences. The scores are computed as evolu-
tionary distances using the model of Kimura [11]. In the next step a distance tree
(a kind of phylogenetic tree) is constructed using all pairs of alignments. This tree
shows the evolution of the sequences, grouped in pairs of minimum distances (scores)
using the neighbor-joining clustering algorithm by Saitou and Nei [17]. This tree is
a profile of the order in which sequences should be aligned for maximal efficiency of
the next step. Finally, a progressive alignment of the previous alignments is done,
traversing the distance tree in order of decreasing similarity: sequence-sequence,
sequence-profile, and profile-profile alignment, thus reaching the final result. This
result does not have a score and it is not necessarily the best possible alignment
for the sequences under study. The optimum multiple sequence alignment can be
obtained with multidimensional dynamic programming [12, 18]. However, its time
complexity O(2NLN) (N is the number of sequences and L the average length of
the sequences) makes it unfeasible even for a moderate number of sequences.

2 METHODOLOGY

2.1 Architecture of the System

The proposed architecture is based on a Master-Slaves approach. At the low level,
the system is divided into modules. A central module (Manager), running in the
Master computer, controls the PVM environment and the data flow to/from the
Slaves. It also constructs the distance tree (see below). The Manager enquires Slaves
cyclically for completion of every task allowing a dynamical adaptation of the system
to the load. Such dynamical adaptation to hosts availability is illustrated in the two
possible configurations of the system, shown in Figure 1. The system can operate
with a Master controlling several Slaves, which can be either active or inactive in
a given moment (Figure 1-left). Alternatively, a given Slave can be transformed
into a kind of “second-class” Master (running as Din2-Master, see below) to control
some active Slaves, thus dividing tasks (1-left)-right).

Figure 2 shows a flowchart of the process in both Master and Slave hosts. The
interrupted lines represent actions that change the current state in another process
(host). Full lines represent the program flow within a given process (host). At the
end of this process, the Manager will have the score matrix (see below) required for
the next step.

In the Slaves, the running modules are:

ReceiveX: It manages the computation of pairwise scoring in each Slave host.

ReceiveP: It receives two files that can be either sequence files (to be aligned) or
alignment files. The latter file type is used by Pairwise-aligner and Din2 modules
to create a new alignment.

1236 H. S. Lopes, C.R. E. Lima, G. L. Moritz

Fig. 1. Two possible operational configurations of the system

Send Protein

Sequence

Wait for

Completion

Start Pairwise

Aligment

Wait for

Completion

All

Sequences

Scored?

End

Wait for

Sequence

Confirm

Receipt

Master Slave
ReceiveX

Wait Start

Command

Computes

Pairwise

Score

Send

Score

Pairwise Scorer

Fig. 2. Flowchart of the process in both Master and Slave hosts

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1237

Pairwise-scorer: This module operates over a pair of sequences and returns only
the score of the alignment.

Pairwise-aligner: A modified version of the dynamic programming algorithm that
operates over a pair of sequences, but returning a file with the alignment itself.

Din2: This module is responsible for managing the parallelization of the Smith-
Waterman algorithm [18], using up to three hosts. It is he heart of the system
and shall be explained later.

2.2 Scoring Pairwise Alignments

When the Manager is started in the Master host, it will seek for the Slaves hosts
added to the PVM environment that are ready to run tasks [6]. It initializes the
ReceiveX and Pairwise-scorer modules in the Slaves. In principle, the system will
use all available Slave hosts. Then the Manager sends to the Slaves a file with all
the sequences to be aligned. Next, it computes the total number of score-computing
operations, that is, the number of all possible pairs of sequences. This value is
divided by the current number of Slaves able to be allocated. Therefore, each Slave
will receive a vector of N ordered pairs, corresponding to the sequences the current
host is in charge of aligning. N is obtained according to the Equation (1):

N = int
{

NProc

NSlaves

× [1± rand(0.1)]
}

(1)

where

• int{.} is a function that returns the integer part of the argument;

• NProc is the number of processes;

• NSlaves is the number of available hosts, except the one where Manager runs;
and

• rand(0.1) is a random generated number in the range 0 to 0.1.

The small perturbation in N , that is, ±10%, is aimed at giving a small, but impor-
tant, difference in load distributed between hosts. When running in a network of
homogeneous processors, the purpose of this procedure is to avoid Slaves finishing
their jobs at about the same time, thus overwhelming the communication with the
Master. For the experiments described in Section 3, we used ±10% of random varia-
tion in the load balancing. This value was obtained empirically, and turned out to
be adequate for the range of experiments done. However, more efficient mechanisms
for load balancing shall be investigated in future implementations.

Next, Manager enters in an idle state, waiting for further communication from
Slaves. ReceiveX modules on Slaves send a pair of sequences (pointed by the vector
of ordered pairs) to the Pairwise-scorer module. Recall that Pairwise-scorer is based
on the first step of CLUSTALW algorithm [19], when dynamic programming is used
to compute the pairwise evolutionary distance between two sequences using the

1238 H. S. Lopes, C.R. E. Lima, G. L. Moritz

Kimura approach [11]. The computed evolutionary distance is returned back to
ReceiveX module.

This process is repeated until all pairs of sequences are processed. Then, Re-
ceiveX contacts the Manager and sends back a triplet composed by: a vector contain-
ing the sameN ordered pairs previously received and the corresponding evolutionary
distance for each pair. After sending those data, the Slave gets idle. After receiving
all replies from Slaves, Manager has all the information necessary to build a score
matrix.

2.3 Distance Tree Building

After scoring all the pairwise alignments, the next step of the ClustalW algorithm
is the construction of the distance tree. This procedure is, by itself, essentially
sequential and is executed only by the Master. The result of this step is a guide to
the successive alignments of the next step (Profile Alignment).

There are two possible ways to construct the distance tree. The construction
of the branches of the tree follows the decreasing order of scores obtained before.
Therefore, the highest scores will be leaf nodes of the tree. Then, the branches of
this level are analyzed to find the next highest scores, which, in turn, will constitute
an internal node of the tree, at a level just above the leaves. This process is repeated
until all branches converge to the root. Constructing the distance tree in this way
enables the parallelization of the profile alignment (next step), since each pair of
leaf nodes can be processed separately in a Slave, and several processes can be done
in parallel. Notwithstanding, this procedure imposes an important drawback. As
one traverses the tree upwards, the size of the profiles to be aligned increases, since
more sequences are added. Sequences to be aligned are added (2n− 1) by (2n− 1),
where n is the depth of the node in the tree. This fact makes the computational
effort grow exponentially and become unfeasible even for a moderate number of
sequences.

Another way to construct the tree is that used by ClustalW. The two most
similar sequences are connected by the first branch of the tree. The next sequence
most similar to the previous ones is then connected by the second branch and so
on until reaching the root. By using this procedure, the computational effort grows
linearly with the number of sequences. On the other hand, only a single process can
be run at a time, since its branch depends upon the previous one. In this work we
used a modified version of this approach, as shown later.

2.4 Profile Alignment

Profile alignment uses the distance tree built in the previous step. It is divided into
phases that use different modules based on the dynamic programming algorithm
adapted for profile alignment, as follows.

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1239

2.4.1 Dynamic Programming for Profile Alignment

The dynamic programming algorithm is based on the Smith-Waterman algo-
rithm [18] and uses a H ×W matrix, where H is the length of the profile sequence
placed in the column, and W is the length of the profile sequence placed in the row,
both with a gap added in the first cell. Due to the data dependency inherent to
the algorithm, the elements of the matrix (M(i, j)) are computed sequentially. The
computation of M(i, j) is based on the sum of all evolutionary distances between all
possible combinations between amino acids of the row and the column. In this work
we used BLOSUM62 [8] as the evolutionary distance matrix. It should be noted
that other evolutionary distance matrices could be used as well, depending on the
nature of the sequences to be aligned.

The elements of M(i, j) are computed as follows. Cell M(1, 1) is set to zero,
since the evolutionary distance between any number of gaps is null. Let Gp be
the gap penalty, Naa the number of elements in the row (row) or column (col)
profiles, NG(i) the number of gaps in the i-th position of a profile. Cells M(1, i),
i = 2, . . . ,W are calculated using Equation (2), and cells M(i, 1), i = 2, . . . , H are
calculated using Equation (3):

M(1, i) = Gp.Naacol.[Naarow −NGrow(i)] +M(1, i− 1) (2)

M(i, 1) = Gp.Naarow.[Naacol −NGcol(i)] +M(i− 1, 1) (3)

The inner cells of the matrix are calculated using Equation (4) below. In this
equation, D(i, j) is defined as the sum of all evolutionary distances between all
possible combinations between amino acids of the row and the column. For example,
in Figure 3, the value of M(2, 2) would be the sum B(−, S) +B(W,S) +B(I, S) +
B(I, S) + B(−, K) + B(W,K) + . . . + B(I, S), where B(x, y) is the value of the
evolutionary matrix for a pair of amino acids x and y. The value of a gap penalty is
an user-defined parameter. By default, it is set to −10, if a value is a gap and the
other is an amino acid, and set to zero if both are gaps.

M(i, j) = max(A,B, C)
A = [M(i, j − 1) +Gp.Naarow]
B = [M(i− 1, j) +Gp.Naacol]
C = [M(i− 1, j − 1) +D(i, j)]

(4)

2.4.2 Parallelizing the Dynamic Programming Algorithm

For the leaf nodes of the distance tree constructed in Section 2.3, several processes
run in parallel, each one in a Slave host. For the remaining levels of the tree, be-
sides the regular parallelizing approach, a further level of parallelization is possible:
a single process can be run in more than one host. In the beginning, the Manager
starts modules ReceiveP and Pairwise-aligner in all the Slave hosts available at the
moment. When all leaf nodes of the tree are already processed, the Pairwise-aligner

1240 H. S. Lopes, C.R. E. Lima, G. L. Moritz

0 -30 -10 -100

-40 0

-80 0

-110 0

 1 2 3 4 ...

1

2

3

4

- - - -

S K I S

M T G S

S Q P -

- - S -

- K Q Q

- I F K

- I A T

..
.

Fig. 3. A detail of the dynamic programming matrix for profile alignment

is deactivated. In the subsequent levels of the tree (inner branches), a new way to
process multiple sequences is accomplished by means of module Din2.

2.4.3 Partition of the Dynamic Programming Matrix

The construction of the dynamic programming matrix for profile alignment is a re-
cursive process (following [18]) and, therefore, massive parallelization is not possible.
In this section we show how the matrix can be partitioned so as to allow concomitant
processes to compute it.

Figure 4-left shows how the matrix can be partitioned in three regions. In re-
gion 1 (in white), edge cells must be calculated first. Next, cell M(2, 2) is computed.
At this point it is possible to start two additional parallel processes, for computing
cells in regions 2 and 3 at the same time. Using such approach, up to three pro-
cessors can be employed, exploiting the potential of parallel computation. When
these processes are started, the first processor takes control of the task division and
computation of the cells necessary for the recursivity (top row, leftmost column and
main diagonal) and other two are responsible for computing cells in regions 2 and 3.

1 2 3 4 5 6 7 8 9

1 a a a a a a a a a

2 a b d d'

3 a c e

4 a e

5 a e

6 a e

7 a c' e

Fig. 4. Partition of the dynamic programming matrix for parallel processing (left). Steps
for computing cells of the matrix (right)

2.4.4 Din2 Module

In the original algorithm, sequences to be aligned were added (2n − 1) by (2n −
1), where n is the reverse depth of the node in the tree. As mentioned before,

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1241

this fact makes the computational effort grow exponentially. To circumvent such
problem, module Din2 was developed. Actually, this module applies the dynamic
programming algorithm in parallel, adapting itself dynamically to the availability of
processors for the current level of the distance tree. This module is able to start up
to three processors to do the task, as explained before, and behaves transparently
to the Manager. For the progressive alignment, cells marked with “a” are computed
first (see Figure 4-right), by the Din2 module started the host. As soon as the cell
marked with “b” is computed, two parallel processes (in the Slaves) can be started,
just to compute either cells in the column (marked with “c”) or those in the row
(marked with “d”). As soon as the first elements of column and row are computed,
the next diagonal cell can be processed (marked with “e”) and so on.

Figures 6 and 5 show the state machines that control the communication between
processes. Tables 1 and 2 show the finite state machines (FSM) corresponding
to Figures 6 and 5, respectively. In these tables, CS is the current state, SD is
the state description, EV is the event that causes a transition, ED is the event
description, and NS is next state. Figure 6 illustrates the behavior of the Manager
module when it commands a profile alignment process using a Din2 module and
when it commands pairwise alignments using Pairwise-Aligner module. Figure 5
shows the behavior of the Din2 module operating like a Din2-Master or a Din2-
Slave.

S2

S3

S4

T2

T3
S5

S6

S1 T1

T4

T5

T6

Fig. 5. State machine of Manager module

In the beginning of the second step of profile alignment, a Din2 module is started
in all hosts currently available in the PVM environment. Then, start commands are
sent out by the Manager to them. While the number of alignments is larger than
the number of available hosts, everything happens exactly like the Pairwise-aligner
mentioned before. However, as the alignments are done, more hosts get idle. At this
point, tasks are divided to be run in parallel. The parallel processing is controlled
by Din2 module, although hosts are allocated by the Manager.

1242 H. S. Lopes, C.R. E. Lima, G. L. Moritz

S8

S10

S13
T9

T14

S15
S7

T7

T17

S14

T15

S16
S17

S18

T18

T20

S20

S21

S19

T23

T25

S11

S12

T8

S9

T11

T16

T26

T21

T22

T24

T13

T10

T12

T19

Fig. 6. State machine of Din2 module

Firstly, all hosts are idle waiting for a command from Manager, and they all
have the same hierarchical level, that is, Slaves of the main process (Manager) –
state S7 in Figure 6. Then, Manager sends out two files to a given host (state
S2), with profiles to be aligned. Next, Manager sends a start command (state S3)
to module Din2 of the host to whose profile files were sent. After receiving the
acknowledgement of the command, Manager sends a list of the hosts currently idle

CS SD EV ED NS

S1 Master-Start T1 New sequences S2
S2 Send sequences T2 ReceiveP Ack S3
S3 Send Master Start T3 Request Idle machine list S4
S4 Send Idle host list T4 End of S3 S5
S5 Lock Din2-slave hosts T5 Results received S6
S6 Unlock Din2-slave hosts T6 End of S5 S1

Table 1. Tabular description of the FSM of the Manager process

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1243

CS SD EV ED NS

S7 Din2-Start T7 Receive sequences from Mas-
ter

S8

T8 Receive sequences from Din2-
master

S9

S8 Send Ack T9 Receive Master Start S10
S9 Wait Command T10 Command = End S7

T11 Command = Coordinates S11
S10 Request Idle machine list T14 Idle host list (4) and Host idle S13

T15 Idle host list (4) and Host is

not idle

S14

S11 Compute Vertical Cells T12 End of S11 S12
S12 Send Cells T13 End of S12 S9
S13 Compute alignment sequentially T16 End of S13 S15
S14 Start Slave T18 End of S14 S16
S15 Send Results T17 End of S15 S7
S16 Send sequences T19 End of S16 S17
S17 Compute Recursive Cells T20 End of Cells S15

T21 More Cells S18
S18 Send vertical CR command T22 More hosts S19

T23 No more hosts S20
S19 Send Horizontal CR command T24 End of S19 S21
S20 Compute horizontal cells T25 End of S20 S21
S21 Wait for Vertical and/or T26 Receive Vertical and/or

Horizontal Cells Horizontal Cells S17

Table 2. Tabular description of the FSM of the Din2 process

(state S4). Module Din2 that has just received the list sends out a “ping” command
to all listed hosts until it finds two ones available for processing (if possible). Those
hosts that reply the “ping” will be used as auxiliary in the computation of dynamic
programming for profile alignment, thus working at a lower level of parallelization.
The same Din2 module requests Master to lock the auxiliary hosts (state S5), ending
its iteration with the Master. Notice that now on Din2 modules do not have the same
hierarchical level as before. The first Din2 module (that contacted by the Manager)
is considered as a “Din2-Master” and those that replied the “ping” command are
considered as “Din2-Slaves”.

Now, the configuration phase begins, and the behavior of module Din2-Master
depends on the number of hosts that replied the “ping” command (state S10). If
no reply was obtained, the process will be essentially sequential. In this case, Din2-
Master needs only to read the file with the sequences to be aligned and to start the
computation (state S11). In the case that one or two auxiliary hosts have replied,
they have to be configured as follows. Din2-Master sends the file with sequences to
be aligned to the Din2-Slaves (state S12). After receiving the file, they will be in
standby mode until receiving a command from Din2-Master. This command can be

1244 H. S. Lopes, C.R. E. Lima, G. L. Moritz

a “Compute Request” (CR) to start computation, or “End of Process” (EOP) to go
back to the beginning (state S9).

The progressive alignment is done as follows. Din2-Master computes all edge
penalty values of the dynamic programming matrix. The corresponding cells of
the matrix are marked with “a” in Figure 4-right. These cells are necessary for
recursivity and must be calculated prior to the remaining cells, by the Din2-Master
(state S17 in Figure 5). Next, Din2-Master starts sending CR commands to the
enabled Din2-Slaves (state S18). In Figure 4-right it is supposed that two auxiliary
hosts are available for computation of the second row and second column of the
matrix. Hence, Din2-Master will issue two CR commands, one to each Din2-Slave.
A CR command is composed by three elements:

• The value of the cell necessary for recursivity (marked with “b” in figure 4-right);

• The initial coordinates of the matrix from where Din2-Slave have to start com-
puting cells (marked with “c” in Figure 4-right, in the case of computing a co-
lumn; or with “d”, in the case of computing a row);

• The final coordinates of the matrix up to where Din2-Slave have to compute
cells (marked with “c” in Figure 4-right, in the case of computing a column; or
with “d”, in the case of computing a row).

After managing the computation of cells of the current row and column by
the Din2-Slaves, Din2-Master computes the next cell required for recursivity and
the whole process is repeated. The required cells for recursivity at each step are
marked with “e” in Figure 4-right. The number of cells computed by each of the
two auxiliary hosts is given by Equation (5) when the horizontal (row) profile is
larger than the vertical (column) one. Similarly, Equation (6) gives the number of
cells computed when the vertical (column) profile is larger than the horizontal (row)
one.

Master = 2(H − 1) +W
Vertical = H(H − 3)/2 + 1
Horizontal = W (H − 1)−H(H + 1)/2 + 1

(5)

Master = 2(W − 1) +H
Vertical = H(W − 1)−W (W + 1)/2 + 1
Horizontal = W (W − 3)/2 + 1.

(6)

The number of CR commands issued at each step of the MSA process depends
upon the number of hosts available. For instance, if two slave hosts are available,
two CRs are issued at a time, as in state S19 of Figure 5, totalizing, at the end
of the process, (H − 2) CR for each host. In the case that only one slave host is
available, Din2-Master issues only one CR, corresponding to a row in the matrix,
while the column is computed by Din2-Master itself – see (state S20). After sending
CRs, Din2-Master waits for completion of the task (state S21) and, further, incre-
ments indices i and j and restarts the procedure until all the cells of the matrix are
computed.

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1245

As soon as this procedure is finished, Din2-Master releases all Din2-Slaves (state
S20), which, in turn, get idle and wait for commands from the Manager or other
Din2 modules. Finally, a signal is sent to the Manager causing the end of the
algorithm (state S9).

3 COMPUTATIONAL EXPERIMENTS AND RESULTS

Several experiments were done to evaluate the performance of the proposed pa-
rallelization methodology. Experiments focused on the number of sequences to be
aligned and on their length. The reduction of processing time due to parallelism
was also investigated. Although PVM supports heterogeneous networks, we used
a homogeneous set of computers in this work, formed by desktop PC computers with
AMD Athlon XP 2.4+ processors and 512MB RAM, running Microsoft Windows
2000 Server-SP4, connected in a switched 100Mbps local area network. Since PVM
uses the Remote Shell protocol (RSH) (native for the UNIX operating system), some
adaptations in the environment were needed to run under Windows 2000.

For all experiments, the data set used was constructed using protein data ran-
domly extracted from the PDB – Protein Data Bank [5]. The length of sequences
was properly adjusted for the experiments either by clipping sequences being too
long, or by copying and pasting sequences being too short. For all experiments,
results reported are the average of 10 independent runs, under the same conditions
and with the same computers. No processes were running in the hosts other than
those native of the operating system.

The first experiment is aimed at discovering how the number of sequences affects
the performance of the system, as a function of the number of hosts available for
processing the Pairwise-score module. It should be noted that a minimal system
comprises 2 hosts: the Master and a single Slave, because the former does not
process (just manages) and the latter does not process without the first. In this
experiment, the number of sequences to be aligned (Nseq) was varied between 40 to
800, and the length of profiles was arbitrarily fixed in 1 200 columns. Processing time
was recorded for 2, 3 and 4 hosts. Figure 7 shows how the use of parallel computation
speeds up the process, by using 3 and 4 hosts, relative to a basic 2-hosts system.

The next experiment investigated how the processing time is affected as the
number of sequences per profile grows. Again, the length of profiles was arbitrarily
fixed in 1 200 columns and the number of sequences in each profile varied between
20 and 1 000. The results for this experiment are shown in Figure 8, where N is the
number of sequences per group to be aligned.

The next experiment investigated how the processing time was affected as the
length of the profiles grow. For this experiment, the lengths of both profiles were
changed and the number of sequences per profile was kept constant at 50 (that
is, two profiles of 50 sequences each were aligned at a time). Profiles used in this
experiment come from the previous step of the multiple sequence alignment process,
and so they do not represent the final alignment. Results are presented in Figure 9,

1246 H. S. Lopes, C.R. E. Lima, G. L. Moritz

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

N

S
p

ee
d

-u
p

 (
%

)

3 hosts

4 hosts

Fig. 7. Speedup of Pairwise-score, relative to a 2-hosts system: 4 hosts (upper line), 3 hosts
(lower line)

for profile lengths in the range 500 to 2 500. This figure shows the time needed by
the sequential process (ClustalW running sequentially), and the time needed by the
parallel process simulated in a single host.

4 DISCUSSION AND CONCLUSIONS

In this paper we proposed a methodology for parallelizing a multiple sequence align-
ment algorithm using a network of PCs. The parallelization is achieved by exploiting
a suitable partition of the dynamic programming matrix. This system has two le-
vels of parallelization and self-adjusts to the number of available processing hosts
(from one to three), managing all necessary operations for the global alignment of
sequences.

For a small number of sequences to be aligned (say, < 200), there is no significant
difference between parallel and sequential processing. The same holds for profile
length and number of sequences per profile. This is due to the communication
overhead between hosts, necessary for data and control flow. For all experiments,
as the size of the problem (that is, the number os sequences, or length of profiles)
increases, the difference in performance along the number of available hosts becomes
more significant. A deeper analysis of the performance reveals that this improvement
by using the parallel algorithm can achieve around 80% of speed-up, when compared
with the sequential processing. In fact, the speed-up does not grow monotonically as
the problem size grows. It displays an asymptotic behavior, tending to a maximum
gain of around 80%. Future investigation will address this issue.

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1247

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700 800

N

p
ro

ce
ss

in
g

 t
im

e
(s

)

2 hosts

3 hosts

4 hosts

Fig. 8. Processing time of Din2 as function of the number of sequences per profile, using

only the Master host (upper line) and using one or two hosts besides the Master
(lower lines)

Curves shown in Figures 8 and 9 indicate that the processing time tends to grow
polynomially as the size of the problem (number of sequences per profile and length
of profiles) increases. This is a remarkable fact, since processing time can become
prohibitive for large-scale problems, usually found in real-world problems.

No serious effort was done to optimize the running parameters of the system,
since the focus of the research at this moment was the parallelization methodology

0

400

800

1200

1600

2000

500 1000 1500 2000 2500

sequence length

p
ro

ce
ss

in
g

 t
im

e
(s

)

Fig. 9. Processing time as function of the length of profiles, running sequentially (upper
line) and simulating parallel processing in a single host (lower line)

1248 H. S. Lopes, C.R. E. Lima, G. L. Moritz

itself. Certainly, there are still some bottlenecks that affect performance, such as
load balancing mechanisms or communication policy between processes. These and
other parallelization issues will be considered in future improvements of the system,
expecting better performances.

Recently, the methodology proposed here was successfully adapted to be used
in a reconfigurable hardware [13]. The outstanding results encourage future work
towards the use of hybrid networks, with desktops and reconfigurable logic for MSA.
Such combination was proved to yield high throughoutput for bioinformatics appli-
cations [15].

Multiple sequence comparison by alignment is an important, and still open ques-
tion, in computational biology. We believe that the proposed methodology is a useful
contribution to the area of research, especially considering that cluster computing
is a reality nowadays in many research laboratories. In the near future we intend
to do more extensive experiments and put the system freely available for research
purposes.

Acknowledgements

This work was partially supported by the Brazilian National Research Council –
CNPq, under grants 506479/04-8 and 309262/07-0.

REFERENCES

[1] Abdeddäım, S.—Morgenstern, B.: Speeding up the DIALIGN Multiple Align-

ment Program by Using the ‘Greedy Alignment of BIOlogical Sequences LIBrary’
(GABIOS-LIB). Lecture Notes in Computer Science, Vol. 2066, 2001, pp. 1–8.

[2] Akutsu, T.—Arimura, H.—Shimozono, S.: On Approximation Algorithms for
Local Multiple Alignment. In: Proceedings of 4th International Conference on Com-
putational Molecular Biology, 2000, pp. 1–7.

[3] Aluru, S.—Futamura, N.—Mehrotra, K.: Parallel Biological Sequence Com-
parison Using Prefix Computations. Journal of Parallel and Distributed Computing,
Vol. 63, 2003, pp. 264–272.

[4] Alves, C. E.R.—Caceres, E.—Dehne, F.—Song, S.W.: A Parallel Wavefront
Algorithm for Efficient Biological Sequence Comparison. Lecture Notes in Computer
Science, Vol. 2668, 2003, pp. 249–258.

[5] Berman, H.M.—Westbrook, J.—Feng, Z.—Gilliland, G.—Bhat, T.N.—

Weissig, H.—Shindyalov, I. N.—Bourne, P. E.: The Protein Data Bank. Nu-
cleic Acids Research, Vol. 28, 2000, pp. 235–242.

[6] Dongarra, J.—Foster, I.—Fox, G. et al.: Sourcebook of Parallel Computing.
Morgan Kaufmann, San Francisco 2003.

[7] Edmilson, E.W.—Core, N.G.—Saltz, J.H.—Smith, R.M.: Parallel Proces-
sing of Biological Sequence Comparison Algorithms. International Journal of Parallel
Programming, Vol. 17, 1988, pp. 259–275.

A Parallel Algorithm for Large-Scale Multiple Sequence Alignment 1249

[8] Henikoff, S.—Nenikoff, J.G.: Amino Acid Substitution Matrices from Pro-

tein Blocks. Proceedings of the National Academy of Sciences U.S.A., Vol. 89, 1992,
pp. 10915–10919.

[9] Higgins, D.G.—Sharp, P.M.: CLUSTAL: A Package for Performing Multiple

Sequence Alignments on a Microcomputer. Gene, Vol. 73, 1988, pp. 237–244.

[10] Just, W.: Computational Complexity of Multiple Sequence Alignment with SPscore.
Journal of Computational Biology, Vol. 8, 2001, pp. 615–623.

[11] Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University
Press, New York 1983.

[12] Leach, A.R.: Molecular Modelling: Principles and Applications. 2nd ed., Prentice-
Hall, Dorset 2001.

[13] Lima, C.R. E.—Lopes, H. S.—Moroz, M.R.—Meneses, R.M.: Multiple Se-
quence Alignment Using Reconfigurable Computing. Lecture Notes in Computer
Science, Vol. 4419, 2007, pp. 379–384.

[14] Lopes, H. S.—Moritz, G. L.: A Graph-Based Genetic Algorithm for the Multiple
Sequence Alignment Problem. Lecture Notes in Artificial Intelligence, Vol. 4029, 2006,
pp. 420–429.

[15] Lopes, H. S.—Lima, C.R.E.—Murata, N. J.: A Configware Approach for High-
speed Parallel Analysis of Genomic Data. Journal of Circuits, Systems, and Compu-
ters, Vol. 16, 2007, pp. 1–15.

[16] Notredame, C.: Recent Progresses in Multiple Sequence Alignment: A Survey.
Pharmacogenetics, Vol. 3, 2002, pp. 131–144.

[17] Saitou, N.—Nei, M.: The Neighbor-Joining Method: a New Method for Re-
constructing Phylogenetc Trees. Molecular Biology and Evolution, Vol. 4, 1987,
pp. 406–425.

[18] Smith, T. F.—Waterman, M. S.: Comparison of Bio-Sequences. Advances on Ap-
plied Mathematics, Vol. 2, 1981, pp. 482–489.

[19] Thompson, J.D.—Higgins, D.G.—Gibson, T. J.: CLUSTALW: Improving the
Sensitivity of ProgressiveMultiple Sequence Alignment Through Sequence Weighting,
Position Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Research,
Vol. 22, 1994, pp. 4673–4680.

[20] Wang, L.—Jiang, T.: On The Complexity of Multiple Sequence Alignment. Jour-
nal of Computational Biology, Vol. 1, 1994, pp. 337–348.

[21] Zhang, M.—Fang, W.—Zhang, J.—Chi, Z.: MSAID: Multiple Sequence Align-
ment Based on a Measure of Information Discrepancy. Computational Biology and
Chemistry, Vol. 29, 2000, pp. 175–181.

1250 H. S. Lopes, C.R. E. Lima, G. L. Moritz

Heitor Silv�erio Lopes is Associate Professor at the Federal

University of Technology Paraná (UTFPR), Curitiba, Brazil. He
is the Head of Laboratory of Bioinformatics. His research inter-
ests include bioinformatics, evolutionary computation, compu-
tational intelligence and high-performance computing.

Carlos Raimundo Erig Lima is Adjunct Professor at the

Federal University of Technology – Paraná (UTFPR), Curitiba,
Brazil. His research interests include computational intelligence,
bioinformatics and reconfigurable computing.

Guilherme Luiz Moritz graduated in electrical engineering

from the Federal University of Technology Paraná (UTFPR) and
currently works as development engineer.

