
E
o

W
a

b

a

A
R
R
A

K
C
D
D
E

1

s
m
c
t
i
W
b
P

p
t
f
i
o

r

h

0
d

BioSystems 99 (2010) 6–16

Contents lists available at ScienceDirect

BioSystems

journa l homepage: www.e lsev ier .com/ locate /b iosystems

valuation of dynamic behavior forecasting parameters in the process
f transition rule induction of unidimensional cellular automata

agner Rodrigo Weinerta, Heitor Silvério Lopesb,∗

Federal Institute of Education Science and Technology of Paraná (IFPR), R. Antônio Carlos Rodrigues 453, 83215-750 Paranaguá (PR), Brazil
Bioinformatics Laboratory/CPGEI, Federal University of Technology – Paraná (UTFPR), Av. 7 de setembro 3165, 80230-901 Curitiba (PR), Brazil

r t i c l e i n f o

rticle history:
eceived 17 January 2009
eceived in revised form 3 August 2009
ccepted 6 August 2009

eywords:
ellular automata
ynamic behavior forecasting parameters
ynamic systems

a b s t r a c t

The simulation of the dynamics of a cellular systems based on cellular automata (CA) can be computa-
tionally expensive. This is particularly true when such simulation is part of a procedure of rule induction
to find suitable transition rules for the CA. Several efforts have been described in the literature to make
this problem more treatable. This work presents a study about the efficiency of dynamic behavior fore-
casting parameters (DBFPs) used for the induction of transition rules of CA for a specific problem: the
classification by the majority rule. A total of 8 DBFPs were analyzed for the 31 best-performing rules
found in the literature. Some of these DBFPs were highly correlated each other, meaning they yield the
same information. Also, most rules presented values of the DBFPs very close each other. An evolutionary
volutionary computation algorithm, based on gene expression programming, was developed for finding transition rules according
a given preestablished behavior. The simulation of the dynamic behavior of the CA is not used to evaluate
candidate transition rules. Instead, the average values for the DBFPs were used as reference. Experiments
were done using the DBFPs separately and together. In both cases, the best induced transition rules were
not acceptable solutions for the desired behavior of the CA. We conclude that, although the DBFPs repre-
sent interesting aspects of the dynamic behavior of CAs, the transition rule induction process still requires

amic
the simulation of the dyn

. Introduction

Cellular automata (CAs) are discrete dynamic systems formed by
imple and identical components. The dynamics of a CA is deter-
ined by its state transition rule. The application of such rule in the

urrent configuration of the CA leads to another configuration and,
hus successively changing along time. The overall dynamic behav-
or presents certain characteristics that can classify it. In the past,

olfram (1984) proposed a standard classification for the dynamic
ehavior of CAs, qualitatively divided into four classes. Later, Li and
arckard (1990) improved Wolfram’s classification to six classes.

The computational simulation of a CA system is relatively sim-
le, provided the transition rule is known. However, finding a
ransition rule for a given dynamic behavior is a very difficult task,
or which there is no efficient method to date. This work is focused

n this gap, presenting and evaluating an approach for the induction
f transition rules for CAs.

The classical problem known as classification by the majority
ule (Juillé et al., 1998) (see Section 2.3) is frequently studied in the

∗ Corresponding author.
E-mail addresses: wrweinert@gmail.com (W.R. Weinert), hslopes@utfpr.edu.br,

slopes@pesquisador.cnpq.br (H.S. Lopes).

303-2647/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2009.08.002
s and cannot rely only on the DBFPs.
© 2009 Elsevier Ireland Ltd. All rights reserved.

CAs theory. Basically, this problem consists in finding a transition
rule that, when applied to all the initial cells of a d-dimensional
lattice, will lead them either to state 0 or state 1, after n time-steps.
This feature assures that all possible solutions (rules) to this prob-
lem will exhibit a behavior defined as “null”, according to Li and
Parckard (1990) classification. The expected final state of the lattice
depends on the density of the CA in its original configuration.

It is important to point out that every transition rule that is
said a solution for the problem presents a “null” behavior. How-
ever, the opposite does not hold, since a many rules that present a
“null” behavior are not solution for the classification by the majority
problem.

Several authors have proposed the use of computational intel-
ligence techniques (more specifically, evolutionary computation),
for determining appropriate transition rules for the classification by
the majority rule problem (Richards et al., 1990; David et al., 1996;
Juillé et al., 1998; Morales et al., 2001; Ferreira, 2002; Oliveira et al.,
2002b). The general approach used by those works is the evolution
of a population of individuals (in this case, rules) for y generations.

At each generation a set of genetic operators actuate in the pop-
ulation generating hopefully better individuals. The quality of the
individuals is systematically evaluated by a fitness function. The
evolution process is ended when a satisfactory solution is found
or a maximum number of generations is reached. In general, the

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:wrweinert@gmail.com
mailto:hslopes@utfpr.edu.br
mailto:hslopes@pesquisador.cnpq.br
dx.doi.org/10.1016/j.biosystems.2009.08.002

s / BioS

p
s
o
s
d
a
C
t
i
h
r
t
d
d
w
u
v
i
a
C

C
s
g
p
p
e
a
s
o
i
p
a
fi
u
d
a
i
o

t
p
r
t
i

s
c
p
i
c
D
m
p
a
a

1

b
T
2
a
i

W.R. Weinert, H.S. Lope

roblem of rule induction for CAs uses as fitness function a mea-
ure of the performance obtained by the analysis of the dynamics
f the system. Every possible candidate solution (transition rule) is
ubmitted to a simulation procedure. The rule is applied to a ran-
om initial configuration of the CA and them iterated n times, thus
chieving its final configuration. Both initial and final states of the
A are compared. If both are the same, thus the rule is a solution for
he problem. Otherwise, a similarity measure quantifies the qual-
ty of the rule. Using this approach, obtaining the fitness of a rule
as a high computational cost, since a very large number of initial
andom configuration have to be simulated. For some applications,
his fact makes unfeasible the evolutionary approach previously
escribed, since it is necessary to evaluate a large number of candi-
ate solutions. More recently, a dedicated reconfigurable hardware
as proposed to compute the fitness of transition rules for the sim-
lation of CAs (Weinert et al., 2007). Although this seems to be a
iable alternative, regarding computational cost, this methodology
s restricted to a single problem (classification by the majority rule),
nd it is quite difficult to adapt to other rule-induction problems in
As.

Several measures that can be used to forecast the behavior of a
A can be found in the recent literature. These include for instance:
ensitivity (Binder, 1993), neighborhood domain, activity propa-
ation and absolute activity (Oliveira et al., 2001), Wuensche’s Z
arameter (Wuensche, 1999), activity (Langton, 1990), mean field
arameters (Li, 1991) and Li’s Z parameter (Li, 1991). These param-
ters, known as dynamic behavior forecasting parameters (DBFPs),
re computed for a given transition rule without the necessity of
imulating the dynamics of the CA for many iterations. The values
btained by the DBFPs are them used to classify the dynamic behav-
or of the CA. However, Oliveira et al. (2002a) demonstrated that
arameters sensitivity, absolute activity, neighborhood domain
nd activity propagation can be useful for a genetic algorithm to
nd rules for the majority classification rule problem. The eval-
ation of rules is obtained as a function of two parameters with
ifferent weights. The first parameter considers the DBFPs values
nd causes the search to be filtered towards rules with “null” behav-
or. The second parameter is computed by simulating the dynamics
f the CA, and verifies if the rule satisfactory solves the problem.

The objective of this work is to develop an evolutionary compu-
ation method for the induction of transition rules of CAs capable of
resenting a “null” behavior, for the classification by the majority
ule problem. The central idea is to find a set of DBFPs and combine
hem in such a way to be useful for the evolutionary process of rule
nduction.

This work is organized as follows. The next subsection presents
ome selected references about applications of CAs, with spe-
ial emphasis on the simulation of biological systems. Section 2
resents a short introduction about the concepts pertaining CAs,

ncluding the features of the dynamic behavior, the DBFPs and the
lassification by the majority problem. A correlation analysis of the
BFPs is presented in Section 3, aiming at gathering useful infor-
ation for the rule induction procedure using a gene expression

rogramming algorithm described in Section 4. Results are shown
nd commented in Section 5. Finally, Section 6 concludes the work
nd points out future directions of research.

.1. Related Work

Many different problems can be modeled by CAs and, thus, can

e applied to many areas such as cryptography (Wolfram, 1986;
omassini and Perrenoud, 2001; Benkiniouar and Benmohamed,
004),text compression (Khan et al., 1999), scheduling (Swiecicka
nd Seredynski, 2000), task synchronization (Das et al., 1995),
mage processing (Rosin, 2005), data classification (David et al.,
ystems 99 (2010) 6–16 7

1996), stock market behavior (Wei et al., 2003) and earthquake
activity (Georgoudas et al., 2007).

There has been a growing interest in using CAs for modeling and
simulation of biological systems. For instance, Kansal et al. (2000)
presented a CA-based model capable of simulating the growth of
brain tumors. Authors used this model to simulate the Gompertzian
tumor growth. The predicted composition and growth rates were in
agreement with a test case from the medical literature. The dynam-
ical simulation allowed the identification of clonal competition in
the system, an important property of tumor growth.

Genetic algorithms and CAs were used by Mizas et al. (2008) for
reconstructing the evolution of DNA sequences. This work is par-
ticularly interesting due to its complexity and its contribution to
the biological sciences. They modeled a DNA chain using an uni-
dimensional CA, which alphabet represents the four bases of DNA
(A, C, G and T). The genetic algorithm was used to find a transi-
tion rule for the CA, capable of leading the chain to the desired
dynamic behavior. By starting with two DNA sequences previously
identified in different evolutionary moments, the rule found by the
algorithm was capable of explaining the evolutionary changes of
the sequences. This system can be particularly interesting for the
identification of mutations that take place in the DNA throughout
evolutionary periods.

Kiera et al. (1996) developed a CA model of an enzyme reaction
with water substrate. The ease of simulation and the illustrative
value of the model showed that CA models can be useful in the study
of dynamic phenomena such as enzyme kinetics. This study opened
up opportunities for the study of a general enzyme model and the
effects on its behavior, including the interaction of ingredients with
the solvent.

Spatial characteristics such as localized populations of dead cells
might adversely affect the spread of an infection. Beauchemina et al.
(2005) used a simple bidimensional CA model of a viral infection
to investigate, through dynamic simulation, the influence of spa-
tial heterogeneities on viral spread. The CA model was validated
against clinical immunological data for uncomplicated influenza A
infections.

Malleta and Pillisb (2006) presented a hybrid cellular automata-
partial differential equation model to describe, through dynamic
simulation, the interactions between a growing tumor next to a
nutrient source and the immune system of the host organism.

Gangadhar (2005) presented an innovative method for protein
sequence alignment using a bidimensional CA. Starting from an
initial unaligned state, the CA evolves for a number of iterations
according to a dynamic behavior defined by a set of transition rules.
The emerged behavior leaded to the alignment of the sequences.

A novel way to visualize biological sequences using CAs was
devised by Xiao et al. (2005). In this work, a sequence of amino acids
is transformed into a digital encoding and a transition rule system-
atically applied over it creates a spatio-temporal diagram. Using
such dynamic approach, it is possible to observe characteristics that
were originally hidden in the amino acids chain.

Laurio et al. (2007) showed how to create CAs for recognizing
regular patterns in protein sequences in such a way to identify fami-
lies and functional sites. Starting from a regular pattern from Prosite
(Hofman et al., 1999), a rule is determined using regular grammars
which, in turn, is converted to a transition rule characterizing the
dynamic behavior of a CA.

There are other works in the recent literature that employed
CAs to model the dynamics of biological systems, for instance: epi-
demic propagation (Fu and Milne, 2003), simulation of cell infection

caused by the HIV virus (Corne and Frisco, 2008) and pray–predator
modeling (Chen and Mynett, 2003).

In the previous mentioned works, the models generated by
CAs allowed a better comprehension of the dynamical behavior of
specific biological systems. Usually, the computational cost of the

8 W.R. Weinert, H.S. Lopes / BioSystems 99 (2010) 6–16

s
T
b
a

2

A
h
(
E

m

B
e
t
b
a
s
t
b
t

–
–
–
–
–

–

o
c
c
f
r
(
i

i
i
t
s
t
s

b
z
b
0
c
r
d
T
t

fiable. However, the distinction between behaviors of class 3 and
Fig. 1. Definition of an unidimensional CA.

imulation of the dynamic behavior of CA is high (see Section 2.1).
herefore, the study of methods that give some insight about the
ehavior of CAs, the focus of this work, may have large practical
pplicability in complex biological systems.

. Cellular Automata

A CA can be represented by a d-dimensional matrix structure.
ll the cells of this structure are identical and they keep a neighbor-
ood relationship determined by a predefined radius (r). The size
m) of this neighborhood is defined as a function of r, according to
q. (1):

= 2r + 1 (1)

oundary conditions are set so as to allow cells situated at the
xtremities of the matrix to be connected each other. All cells of
he d-dimensional matrix are updated at the same time, in parallel,
y a state transition rule. The transition rule is applied to each cell
nd determines the next state of the cell, considering its current
tate and the state of the neighboring cells. Successive iterations of
he transition rule with the CA will lead to an observable dynamic
ehavior. Mitchell et al. (1996) defined the following formal nota-
ion for CAs:

�: set of possible states of a cell;
k: number of elements of the set �;
i: index of a specific cell;
St

i
: state of a cell in a given time t, such that St

i
∈ �;

�t
i
: neighborhood of cell i, that is, state St

i
of cell i together with

the states of cells to which cell i is connected;
�(�i): transition rule de that gives the next state St+1

i
for each

cell i, as function of �t
i
.

An unidimensional CA is defined as a matrix data structure C
f size k(C1×k). For each cell ci, its neighborhood is defined as the
ells standing at its left ci(ci−1, ci−2, . . . , ci−k) and those at its right
i(ci+1, ci+2, . . . , ci+k). For the r = 1, the neighborhood of cell ci is
ormed by its left and right neighbors, that is, (ci−1) and (ci+1),
espectively (see Fig. 1). For r = 2, the neighborhood comprehends
ci−2 and ci−1) to the left, and (ci+1 and ci+2) de ci to the right. Sim-
larly, higher-order neighborhoods is straightforwardly defined.

The state of a CA is the configuration of the lattice in a given
nstant of time. The initial state in t0 will take to successive states
n subsequent time steps t1, t2, . . . , tn, by successive iteration of
he transition rule of the automaton. A state of the CA has a single
uccessor state, as a consequence of the application of the transi-
ion rule. However, it can have an arbitrary number of predecessor
tates, known as pre-images.

Fig. 2 exemplifies the evolution of a unidimensional CA formed
y 10 cells (C1×10), during four time steps. Initially, at time
ero, cells are randomly initialized by elements belonging to the
inary set (� = {0, 1}) : c1 = 1; c2 = 0; c3 = 0; c4 = 1; c5 = 0; c6 =
; c7 = 1; c8 = 1; c9 = 1; c10 = 0. In this example we consider r = 1,

onsequently, m = 3, according to Eq. (1). Since the graphical rep-
esentation of this CA is linear, its first (c1) and last (c10) cells
o not have neighbors to the left and to the right, respectively.
herefore, according to the boundary condition, cell c1 becomes
he neighbor of cell c10. This procedure assures that the transition
Fig. 2. Evolution of a unidimensional CA.

rule �(�i) can be applied over all cells of the CA, without continuity
failure.

An important issue of CAs is the number of transitions that com-
poses the rule � is obtained by k2r+1, and the number of rules
represented by those transitions is kk2r+1

. The CA presented in Fig. 2
can be evolved for 256 (kk2r+1 = 222∗1+1 = 256) different rules. For
the take of example, it is shown rule 169. This number represents
a rule according to the concept of elementary automata pro-
posed by Wolfram (1983). Therefore, the binary number 10101001,
extracted from the concatenation (from right to left, that is, from
transition 111 → 1 to transition 000 → 1) of the eight outputs spec-
ified by rule � ([000 → 1; 001 → 0; 010 → 0; 011 → 1; 100 → 0;
101 → 1; 110 → 0; 111 → 1]) is equivalent to the number 169 in
decimal.

2.1. Dynamic Behavior of a CA

The dynamic behavior of a CA can be illustrated by a spatio-
temporal diagram, in which the configuration of the states in a d-
dimensional lattice is plotted as function of time. Usually, cells in
state 0 are represented in white, and those in state 1 are represented
in black, as shown in Fig. 3.

According to Wuensche and Lesser (1992), this diagram repre-
sents the local behavior of the system, since its global behavior
is independent on the initial state. The global behavior can be
obtained by the analysis of a (large) set of overlapped spatio-
temporal diagrams, each one constructed starting from different
initial state.

Wolfram (1984) proposed a standard terminology for classi-
fying the dynamic behavior of CAs. By studying spatio-temporal
diagrams, he has demonstrated that CAs can exhibit extremely
complex behaviors, and he grouped them into four qualitative
classes:

– Class 1: The evolution of the CA takes to homogeneous states in
which, for instance, all cells have state 1 (Fig. 3a).

– Class 2: The evolution of the CA takes to a set of simple, periodic
and stable structures (Fig. 3b).

– Class 3: The evolution of the CA takes to chaotic patterns (Fig. 3c).
– Class 4: The evolution of the CA takes to complex structures and,

sometimes, with long periods (Fig. 3d).

Dynamic behaviors of class 1 and class 2 can be visually identi-
4 is quite difficult, since there is no clear boundary between these
classes.

Li and Parckard (1990) extended the classification previously
proposed by Wolfram into six classes, using a more specific defini-
tion, as follows:

W.R. Weinert, H.S. Lopes / BioS

Fig. 3. Classification of the dynamic behaviors according to Wolfram (2002) (pp.
5

–

–

–

–

–
–

5–56). Time t = 0 is represented in the top of each figure and grows downwards.

Null rules: After t iterations, all cells of the CA converge either to
state 0 or state 1.
Fixed-point rules: After t iterations, the application of a given rule
maintains constant the configuration of the CA.
Double-cycle rules: After t iterations, every two applications of
the rule the CA returns to the same configuration.

Periodic rules: After t iterations, each n repetitive applications of
the rule, the CA returns to a given configuration, with n ≥ 3.
Chaotic rules: can produce non-periodic dynamic behaviors.
Complex rules: can produce periodic dynamic behaviors,
although they can have extremely long periods.
ystems 99 (2010) 6–16 9

2.2. Parameters for Forecasting the Dynamic Behavior of CAs

The dynamic behavior forecasting parameters (DBFPs) are mea-
sures that give a quantitative evaluation of the effect of a transition
rule in a CA, throughout iterations. The basic idea behind such
parameters is to infer particular aspects of the dynamic behavior of
a CA without the need to simulate them.

Next, a brief description of the main DBFPs found in recent
literature is given, including: sensitivity (Binder, 1993), neighbor-
hood domain, activity propagation and absolute activity (Oliveira
et al., 2001), Wuensche’s Z parameter (Wuensche, 1999), activity
(Langton, 1990), mean field parameters (Li, 1991) and Li’s Z param-
eter (Li, 1991). The mathematical formalization of such parameters
can be found in the refereed citations.

Sensitivity measures the percent of similar transitions that are
mapped to different states (Binder, 1993). A transition can be com-
posed by n cells sequentially associated with a single output (s) in
the form: n1, . . . , nn → s. Similar transitions to n1, . . . , nn → s are
all transitions that present a single neighbor cell different from the
original transition. The analysis of similar transitions consists in
counting the transitions that change s for a change in a single cell
n, relative to the original transition.

The neighborhood domain (Oliveira et al., 2001) is a parameter
used for quantifying the changes, due to the transition rule, in the
central cell, taking into account the predominant state of the overall
neighborhood.

The activity parameter was defined by Langton (1990), and
refers to a statistical measure about the transitions of a rule. For
binary CAs, the computation of this parameter consists in the sum
of the output values of each transition, divided by the number of
transitions that composes the rule.

The absolute activity (Oliveira et al., 2001) is based on the
parameter activity, previously mentioned. It counts the number of
transitions that takes to a state different from the current state of
the central cell or of its neighbor cells.

The objective of the parameter Wuensche’s Z parameter
(Wuensche, 1999) is to quantify the propagation of perturbations
in a given rule (Wuensche and Lesser, 1992; Wuensche, 1994). Such
perturbation is computed as function of the pre-images in the state
space. This parameter indicates whether the amount of pre-images
is high (low Z) or low (high Z), for an arbitrary lattice configuration.

The concept of activity propagation is based on the two previous
measures, and it is defined as the possibility of transition of a given
cell, following the dominant state of the neighboring cells, and the
possibility of this transition be sensitive to a minimal state change
of its neighborhood.

Mean field parameters (Li, 1991) are formed by p components,
such that p = n + 1, and n is the number of cells of the neighbor-
hood. Each component is labeled as cmp and stores the number of
configurations (neighborhoods) that present p occurrences of state
1 in the n cells, and map this configuration to output with value 1.

The Z parameter defined by Li (1991) uses the same concept
proposed by Binder (1993) for the parameter sensitivity. Although
these parameters have been emerged in different works, both quan-
tify the same information (Table 2 demonstrates this fact).

2.3. The Problem of Classification by the Majority Rule

The classical problem in CA literature known as classification by
the majority rule can be modeled in different ways. In this work,

we adopt a particular approach presented by Juillé et al. (1998), in
which cells have binary states (k = 2), the unidimensional matrix
structure of the CA is composed by a constant and predefined num-
ber of cells (N = 149), and the neighborhood radius is 3 (r = 3).
Consequently, for this approach, the rule space of the CA is 2128.

10 W.R. Weinert, H.S. Lopes / BioSystems 99 (2010) 6–16

Table 1
Most efficient transition rules found in the literature, for the classification by the majority rule problem.

Rule Hexadecimal Reference Efficiency

GKL 005F005F005F005F005FFF5F005FFF5F Gacs et al. (1978) 81.60%
MHC 0504058705000F77037755837BFFB77F Mitchell et al. (1993) 76.90%
DAV 002F035F001FCF1F002FFC5F001FFF1F Davis (1991) 81.80%
DAS 070007FF0F000FFF0F0007FF0F310FFF Das et al. (1995) 82.20%
ABK 050055050500550555FF55FF55FF55FF David et al. (1996) 82.30%
CRA 00550055005500571F55FF57FF55FF57 Cranny and Bossomaier (1999) 82.50%

JP1 011430D7110F395705B4FF17F13DF957 Juillé et al. (1998) 85.10%
JP2 1451305C0050CE5F1711FF5F0F53CF5F 86.00%

BOO1 145500CC0F14021F1715FFCF0F17FF1F 86.16%
BOO2 070017070C0057DF07BFD707CCFF559F 85.97%
BOO3 070017070C0057D707BFD707CDFF55D7 Bortot et al. (2004) 85.39%
BOO4 002F131F010FF91F00ECFF1F013DF91F 85.38%
BOO5 1071307C0000286F17313F7FF33F2B7F 85.35%

R1 015E0012005500571F5FFFFF0F55CF5F 82.70%
R2 10111000531512531F15FF5FDF5DDF5F 82.60%
R3 00010355015511571F150F77FFF5FF57 81.50%
R4 070447470700460705774757F777FF77 82.70%
R5 015400550050045F055FFFDF5557FF5F 81.90%
R6 0445004C37770E3F044500CDF7773FFF 81.50%
R7 15005000350077071553775FF5F77F7F 81.70%
R8 000104171DDF555704DF441FDDDFD557 81.60%
R9 01000030011311370DFFBFFBDDFF11FF Oliveira et al. (2007) 81.50%
R10 0001090703030B031F1F6F37FF776F77 79.20%
R11 0100050D1D9D155F05FD555FDDFF5557 78.90%
R12 000103021111011317F5FFFFDDFF11FF 78.70%
R13 0001017D2113C35F4B15DF75275B9FD7 78.80%
R14 015500400054563F1057BF0FB7FFFB7F 77.80%

1
fi
c
o
s
t
u

3
F

b
i
r
t
i
a
d
f
a
c
c
c

t
a
f
a

w
c
f

R15 0071023C00224D170379B53747BFFF7F
R16 10041383005313DD3357CFED875F1FDF
R17 040305502F06457D05013757D5F7FF7F
R18 050470000006516D053FF5FF977FE77F

The problem states that all cells must reach either state 0 or state
after M time steps, depending upon the density of the initial con-
guration of the CA. According to Mitchell et al. (1994), parameter
denotes a threshold for the classification. That is, if the number
f 1’s in the initial CA divided by the number of total cells of the
ame automaton if larger or equal to c, then all cells shall converge
o state 1 after M time steps, otherwise, to state 0. In this work, we
sed c = 0.5, in the same way as in Juillé et al. (1998).

. Correlation Analysis of the Dynamic Behavior
orecasting Parameters

This section aims at identifying possible statistical relationships
etween the DBFPs previously presented in Section 2.2. Consider-

ng that such parameters are computed as function of the transition
ules of the CA, this analysis will use rules for the classification by
he majority rule problem, according to the approach described
n Section 2.3. This particular problem was chosen due to the
vailability of a large number of publications that present several
ifferent computational methods for finding interesting solutions
or it. Therefore, it is possible to have a comparison of our proposed
pproach with another works. Another interesting feature of the
ited problem is regarding the transition rules that are currently
onsidered as good solutions for it. These rules have a behavior
lassified as “null”, according to Li and Parckard (1990).

The rule space for the classification by the majority rule problem
reated here is 2128 rules. This number of possibilities is too high to
llow the systematic computation of the DBFPs for all rules. There-
ore, after a deep search in recent literature, 31 rules were found,

nd all of them were submitted to the forthcoming analysis.

Table 1 presents these rules in hexadecimal format, together
ith the corresponding reference and their efficiency measure. Effi-

iency, in this context, was computed by evolving 104 random CAs
or 200 iterations, for each rule. After, the final configuration is
77.30%
78.70%
78.20%
77.30%

examined, and two particular situations are of interest:

– If the density of the initial configuration of the CA is lower than
0.5 and, after 200 iterations, all cells converge to 0.

– If the density of the initial configuration of the CA is higher or
equal to 0.5 and, after 200 iterations, all cells converge to 1.

For these two situations, the score of the rule is increased, since
its application to the CA really leads to the desired result. Any
other situation is considered failed and the score of the rule is not
increased. The efficiency of the rule is obtained by the division of
the score divided by the number of trials (in our case, 104), therefore
representing the percent of success of the rule.

Table 2 presents the computed values of the DBFPs for the ref-
erence rules presented in Table 1. The acronyms in Table 2 are:
sensitivity (S), neighborhood dominance (DV), activity propagation
(PA), absolute activity (AA), Wuensche’s Z (Z W), activity (A), mean
field parameters (CM) and Li’s Z (Z Li). This table also shows the
average values (that is, Sm, DVm, PAm, AAm, Z Wm, Am, CMm, Z Lim),
the standard deviation, the maximum and the minimum of these
parameters, computed over the 104 CAs. Finally, this table also
shows the Euclidean distance (DE) between values of the DBFP set
and the corresponding average values. DE is defined by Eq. (2) and
is aimed as a measure of similarity between the values of the indi-
vidual parameters of each rule (Pi) and the average values (Pmi). In
this procedure, 8 dimensions are considered, each one correspond-
ing to a parameter. The smaller the value of DE, the more similar
will be the rule parameters regarding the average values:
DE =

√√√√ 8∑
i=1

(Pi − Pmi)
2 (2)

W.R. Weinert, H.S. Lopes / BioS

Table 2
Computation of the dynamic behavior forecasting parameters—DBFPs.

Rule S DV PA AA Z W A CM Z Li DE

GKL 0.23 0.91 0.07 0.10 0.25 0.50 0.50 0.23 0.27
MHC 0.37 0.91 0.08 0.18 0.54 0.49 0.49 0.37 0.11
DAV 0.30 0.88 0.09 0.16 0.24 0.50 0.50 0.30 0.23
DAS 0.25 0.87 0.10 0.22 0.38 0.50 0.50 0.25 0.13
ABK 0.23 0.88 0.09 0.20 0.50 0.50 0.50 0.23 0.13
CRA 0.25 0.88 0.09 0.21 0.47 0.50 0.50 0.25 0.10
JP1 0.40 0.85 0.11 0.25 0.48 0.51 0.51 0.40 0.13
JP2 0.33 0.84 0.11 0.26 0.48 0.50 0.50 0.33 0.08
BOO1 0.33 0.84 0.11 0.26 0.48 0.50 0.50 0.33 0.08
BOO2 0.34 0.84 0.10 0.26 0.49 0.51 0.51 0.34 0.08
BOO3 0.33 0.85 0.10 0.26 0.47 0.51 0.51 0.33 0.07
BOO4 0.34 0.85 0.12 0.22 0.34 0.50 0.50 0.34 0.14
BOO5 0.35 0.85 0.11 0.22 0.41 0.49 0.49 0.35 0.08
R1 0.29 0.87 0.11 0.19 0.50 0.50 0.50 0.29 0.06
R2 0.30 0.87 0.10 0.26 0.49 0.50 0.50 0.30 0.07
R3 0.30 0.92 0.06 0.17 0.46 0.50 0.50 0.30 0.07
R4 0.30 0.88 0.09 0.24 0.39 0.51 0.51 0.30 0.09
R5 0.28 0.91 0.08 0.15 0.45 0.49 0.49 0.28 0.08
R6 0.30 0.88 0.09 0.18 0.52 0.49 0.49 0.30 0.06
R7 0.30 0.88 0.10 0.26 0.46 0.50 0.50 0.30 0.07
R8 0.30 0.88 0.10 0.17 0.44 0.50 0.50 0.30 0.05
R9 0.30 0.89 0.08 0.16 0.56 0.49 0.49 0.30 0.11
R10 0.30 0.90 0.08 0.21 0.50 0.48 0.48 0.30 0.05
R11 0.30 0.90 0.07 0.17 0.50 0.52 0.52 0.30 0.07
R12 0.29 0.89 0.08 0.18 0.61 0.48 0.48 0.29 0.15
R13 0.40 0.89 0.07 0.19 0.48 0.49 0.49 0.40 0.12
R14 0.36 0.89 0.08 0.17 0.55 0.50 0.50 0.36 0.11
R15 0.40 0.91 0.10 0.17 0.51 0.48 0.48 0.40 0.13
R16 0.38 0.88 0.06 0.18 0.48 0.50 0.50 0.38 0.10
R17 0.36 0.90 0.06 0.20 0.47 0.49 0.49 0.36 0.07
R18 0.36 0.87 0.08 0.20 0.55 0.49 0.49 0.36 0.10

Sm DVm PAm AAm Z Wm Am CMm Z Lim

Average 0.32 0.88 0.09 0.20 0.47 0.50 0.50 0.32

T
p
r
A
s
f
b
p

i
b
e

p
r
P

r
m

T
C

Standard-deviation 0.05 0.02 0.02 0.04 0.08 0.01 0.01 0.05

Maximum 0.40 0.92 0.12 0.26 0.61 0.52 0.52 0.40
Minimum 0.23 0.84 0.06 0.10 0.24 0.48 0.48 0.23

he analysis of Table 2 shows a straight relationship between
arameters S and Z Li and parameters A and CM. The values of S
emain identical to the values of Z Li. In the same way, values of

are identical to CM, for all rules under analysis. This relation-
hip between parameters suggest the exclusion of some parameters
rom further analysis. We choose to exclude Z Li and CM because
oth present a high complexity level for computation, when com-
ared with S and A respectively.

Observing the average, standard deviation, maximum and min-
mum values for each parameter, as well as DE in Table 2, it can
e concluded that most rules present values very close each other,
xcept for parameter Z W , which has high variation.

For a deeper analysis of correlations between the values of DBFPs
reviously presented (excluding Z Li and CM), Table 3 shows a cor-
elation matrix. The computation of this matrix is based on the

earson’s correlation coefficient (r) (Ahlgren et al., 2003).

According to the correlation matrix shown, there is no high cor-
elation between parameters S, DV, PA, AA, Z W and A. It is worth to
ention that Vincent (2005) defined high correlation for absolute

able 3
orrelation matrix of the DBFPs.

S DV PA AA Z W A

S 1.00 −0.16 0.02 0.21 0.30 −0.14
DV 1.00 −0.75 −0.76 0.06 −0.39
PA 1.00 0.60 −0.14 0.18
AA 1.00 0.15 0.32
Z W 1.00 −0.30
A 1.00
ystems 99 (2010) 6–16 11

values higher than 0.9 in the matrix. This suggests the hypothe-
sis that all the mentioned parameters are equally important for
describing the dynamic forecasting behavior of a CA.

4. Transition Rule Induction Using DBFPs

In this section two basic issues are addressed: (a) what is the real
usefulness of the DBFPs for identifying specific dynamic behaviors?
and (b) Is it possible to emerge different behaviors for rules with
the same DBFPs values?

The objective of these questions is to evaluate how the DBFPs
can be used in the process of rule induction. That is, if it is possible
to use previous knowledge about the desired dynamic behavior to
devise transition rules, without the need of exhaustive simulation
of the CA.

To answer the questions, an evolutionary rule induction system
was developed to find transition rules that present “null” behaviors.
The proposed system is described in details in the next subsection.

4.1. Rule Induction with Evolutionary Computation

In mathematics, the term “induction” is understood as a rea-
soning by which a given property of one element is extended to all
elements of a set. In this context, it is possible to generalize con-
clusions obtained from the analysis of a set of premises. According
to Quinlan (1986), the rule induction problem consists in finding
classification rules capable of determining the class of objects by
analyzing the values of their attributes. The set of attributes that
describe an object usually measure or identify a relevant feature
of it. Many algorithms were proposed for rule induction, including
evolutionary computation (EC) methods.

EC is a growing field of research in computer science, with
many successful applications to real-world problems. Most of
paradigms in EC borrow inspiration from natural process of evo-
lution. Amongst those paradigms, the genetic algorithm (GA) is,
possibly, the most widely known (Holland, 1975; Goldberg, 1989),
since it has been successfully applied to many optimization prob-
lems. A direct descendent of GAs is genetic programming (GP),
devised by Koza (1992, 1994). The idea behind GP is induce comput-
ers to find solutions, in the form of programs, to problems for which
they were not previously programmed to. That is, based on a set of
pairs inputs, output, induce a program capable of incorporating a
model of the problem and generating outputs for other, previously
unseen inputs. To each program a fitness value is associated, based
on its ability to provide good solutions to the problem in hand.
Due to its distinguishing characteristics, genetic programming have
been used for complex rule-induction problems in several domains
(see, for instance, Bojarczuk et al., 2004), thus suggesting its appli-
cability in finding transition rules for CAs.

An extension of GP, known as gene-expression programming
(GEP) was proposed by Ferreira (2001), uses concepts from both
GP and GA. The fundamental difference between these three
approaches is how individuals are represented. In a GA, individuals
are usually represented as a linear fixed-size string of bits (although
other representations can also be found). In GP, individuals are non-
linear structures of different sizes and shapes, in the form of a tree.
In GEP, individuals are first encoded as a linear string of fixed-size
(genome or chromosome), which is later expressed as non-linear
structures of different sizes and shapes (expression trees).

GEPCLASS (Weinert and Lopes, 2006) is an implementation of

GEP specifically designed for finding rules for classification prob-
lems based on supervised learning. In classification problems it is
aimed to find a rule or a set of them capable of model a given domain
of known samples, and then classify unseen sets of data of the same
nature.

12 W.R. Weinert, H.S. Lopes / BioS

F
r

v
s
p
q
l
c
d
h
s
e
n
p

e
t
n
a
m

r
v
c
r
w
s
o
c
b
e
F
i

tions is 128, obtained as shown in Section 2. The definition of these
ig. 4. Example of the structure of a chromosome, the expression tree and its cor-
esponding rule in GEPCLASS.

GEPCLASS implements a structure where a population of indi-
iduals is evolved for a number of generations. At each generation
everal genetic operators is applied to selected individuals of the
opulation, generating diversity and, hopefully, improving the
uality of the overall population, regarding a given problem. Fol-

owing Ferreira (2001), an individual is composed of a single
hromosome that, in turn, is composed of n genes. Each gene is
ivided into two parts: head and tail. The head of the gene can
ave elements belonging only to the set of functions (operations),
uch as: AND, OR, NOT, =, /= , > and <. The tail, in turn, can have
lements either from the set of functions or from the set of termi-
als. The set of terminals includes the attributes that describe the
roblem and particular values (such as constants).

GEP uses the biological concept of open read frame ORF as
ncoding principle. That is, the sequence of elements at the geno-
ypical level has the potential to express phenotypically, but not
ecessarily all them will be used. Therefore, the encoding region of
gene (ORF) can “activate” or “deactivate” portions of the genetic
aterial during evolution.
The mapping between the genotype to the phenotype is car-

ied out as follows. The whole chromosome is transcribed into a
ariable-size expression tree. The genetic material used in this pro-
ess is that one defined by the ORF in each gene. The transcription
ules follow the standard of the Karva language (Ferreira, 2001),
here each gene is transcribed to a separated sub-tree. Next, all

ub-trees are joined together by a linking function (usually, AND
r OR), thus composing the expression tree. This tree represents a
andidate solution for the problem in hand and, when evaluated

y a fitness function, the quality of this solution will be objectively
stimated. The transcription process in GEP is illustrated in Fig. 4.
or gene 1 of this figure the ORF ends at position 6, and for gene 2,
t ends at position 11. The ORF of a gene is determined by the func-
ystems 99 (2010) 6–16

tions and their respective arities (number of arguments) encoded
in the head of the gene. The elements of a gene are read from left-
most position towards right. For instance, in gene 1 of the figure
there is a logical operator (OR), which arity is 2, meaning that two
arguments are necessary for evaluating this function. Therefore,
the next two operators after OR (that is, NOT at position 2 and = at
position 3) belong their arguments. Recursively, one can determine
the arguments of NOT and =, and so on. This procedure is repeated
until there are no more functions without arguments. The size of
the tail of the gene is determined according to the size of the head
(Weinert and Lopes, 2006). Therefore, it is warranted that there will
not be functions with missing attributes encoded in the head of the
gene. It is important to noted that a precedence relationship must
be defined for logical operators, relational operators and terminals.

The genetic operators implemented in GEPCLASS are: mutation,
recombination and transposition. All of them comply with the clo-
sure property (Koza, 1992), thus finding valid rules. That is, the
hierarchical structure of the expression trees is always maintained
after the application of the operators (Weinert and Lopes, 2006).
The fitness function implemented in GEPCLASS was the same used
for other rule induction problems, and is shown in Eq. (3):

fitness = tp

tp + fn
∗ tn

tn + fp
(3)

where

– tp (true positive): the rule predicts that the instance belongs to a
class, and it indeed belongs;

– fp (false positive): the rule predicts that the instance belongs to
a class, but in fact it does not;

– tn (true negative): the rule predicts that the instance does not
belong to a class, and indeed it does not;

– fn (false negative): the rule predicts that the instance does not
belong to a class, but in fact it does.

Further details of the genetic operators of GEPCLASS and their
closure property, as well as the fitness function implemented for
classification problems can be found in Weinert and Lopes (2006).

4.2. Implementation

GEPCLASS was modified to be applied to the classification by
the majority rule problem. The instance of this problem used in our
work was the same suggested by Juillé et al. (1998): a unidimen-
sional CA with 149 cells and radius 3. The running parameters of
GEPCLASS were:

– Number of individuals: 50.
– Number of generations: 50.
– Linking function: AND.
– Function set: AND, OR, NOT, = and /= .
– Terminal set: a, b, c, d, e, f, g.
– Number of genes per chromosome: 3.
– Size of head: 6–15.
– Selection method: stochastic tournament.
– Genetic operators: the same defined in Ferreira (2001), with the

same probabilities.

The terminal set (a, b, c, d, e, f, g) are binary and represent all
the possible combinations of neighborhood of the problem, thus
mapping all transitions of a given rule. The number of combina-
128 binary combinations, each one with 7 bits (one bit for each
terminal), can be easily generated converting from binary to deci-
mal base. That is, the conversion of the decimal numbers present in
the interval 0 . . . 127 to their corresponding binary numbers, define

W.R. Weinert, H.S. Lopes / BioSystems 99 (2010) 6–16 13

Table 4
State transition table.

Transitions Rule

a b c d e f g

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1

t
F
w

I
t
n
n
n

t
t
i

P
t
s
w

fi

A
t
[
T
p
e
o
D
t

5

p
f

T
L

Fig. 5. Linear adjustment of the DBFPs.

Table 6
Transition rules found by GEPCLASS considering parameters individually.

Rule Hexadecimal Efficiency

Rule S 0505A5A50F0FF0F00505A5A50F0FF0F0 0.00%
Rule DV 00110033555555550515053755555555 50.30%
Rule PA 0000000007770FFF0000000007770FFF 50.33%
.

.

.
.
.
.

127 1 1 1 1 1 1 0 0
128 1 1 1 1 1 1 1 0

he 128 possible neighborhood combinations, according to Table 4.
or instance, a possible rule encoded in an individual of GEPCLASS
ould be:

if ((a = 0) AND (b = 1)) then
Rule:=1; else Rule:=0;

n fact, there is no restriction regarding the number of terminals
hat can appear in the rule. In this simple example only the termi-
als a and b (see Table 4) were considered. Any terminal that do
ot appear in a rule can effectively assume any value, since they do
ot influence the final outcome of the rule.

The concatenation of all 128 output (the last column of Table 4),
hat is, 00 . . . 10 forms the rule that is said a candidate solution to
he problem in hand (see Section 2.3). Next, the candidate solution
s submitted to the fitness computation procedure.

The fitness function is computed using the following DBFPs S, DV,
A, AA, Z W and A. Since there is no known optimal set of values for
hese parameters, the average values were adopted as reference, as
hown in Table 2. Eq. (4) presents the fitness function used in this
ork.

tness = Sn ∗ DVn ∗ PAn ∗ AAn ∗ Z Wn ∗ An (4)

cronyms in this equation are those defined in Section 3 and
he subscript n indicates that values are normalized in the range
0 . . . 1] according to Table 5 and the corresponding average values.
he fitness function has the property of returning 1 only when all
arameters are 1. The basic idea in this normalization is to find lin-
ar equations that return a high fitness for rules that have the values
f the DBFPs around to the average values, and low fitness when the
BFPs are far from average. Fig. 5 presents plots illustrating how

he linear adjustment of the DBFPs are done.
. Results and Discussion

In the analysis of the DBFPs in Section 3 it was observed that
arameters S and Z Li, and A and CM are numerically equivalent,
or the same rule. This finding allowed the exclusion of parameters

able 5
inear adjustment of the DBFPs.

Normalized parameter Pseudocode

Sn If (S <= Sm) Then Sn:=3.125 ∗ S;
Else Sn:= − 1.470 ∗ S + 1.470;

DVn If (DV <= DVm) Then DVn:=1.136 ∗ DV ;
Else DVn:= − 8.333 ∗ DV + 8.333;

PAn If (PA <= PAm) Then PAn:=11.112 ∗ PA;
Else PAn:= − 1.098 ∗ PA + 1.098;

AAn If (AA <= AAm) Then AAn:=5 ∗ AA;
Else AAn:= − 1.250 ∗ AA + 1.250;

Z Wn If (Z W <= Z Wm) Then Z Wn:=2.127 ∗ Z W;
Else Z Wn:= − 1.886 ∗ Z W + 1.886;

An If (A <= Am) Then An:=2 ∗ A;
Else An:= − 2 ∗ A + 2
Rule AA 0CFF0CFF0CFF0CFF3FFF3FFF3FFF3FFF 11.08%
Rule ZW FF33FF73FF33FF50FF33FF73FF33FF50 0.00%
Rule A AABB0031BBBB3333AABA0030BBBB3333 0.00%

Z Li and CM from the remaining analysis.
Once that all the 31 rules analyzed exhibit “null” behavior and

there are no reference values for the DBFPs computed with these
rules, the average values were adopted as reference. It is fair to use
average values since the Euclidean distance between the param-
eters of the 31 rules and the average values of the parameters is
small for most cases.

The analysis of correlation between parameters revealed that
parameters DV, PA, AA, Z W and A really provide distinct informa-
tion in the process of forecasting the dynamic behavior or CAs.

A GEP-based system (GEPCLASS) was developed for transition
rule induction, thus finding rules with “optimized” DBFPs. The fit-
ness function of GEPCLASS was changed according to the specific
forecasting parameter to be optimized.

Initially, GEPCLASS was run with the parameters mentioned in
Section 4.2. We obtained 6 rules for the classification by the major-
ity rule using a unidimensional CA with 149 cells and radius 3.
These rules are presented in Table 6 in hexadecimal format with the
respective values of efficiency. Efficiency was computed by means
of the simulation of 104 CAs during 200 iterations, starting with
random configurations.

Each one of the rules presented in Table 6 is regarding the opti-
mization of a given DBFP. For instance, for Rule S GEPCLASS found a
rule whose S value is as near as possible to the value of Sm. Since that

other parameters were not considered in this experiment, the fit-
ness function shown in Eq. (4) was reduced to: fitness = Sn. Similar
procedure was adopted for all the other DBFPs.

Table 7
Values for the parameters of rules presented in Table 6.

Rule S DV PA AA Z W A DE

Rule S 0.32 0.62 0.19 0.40 0.69 0.44 0.41
Rule DV 0.22 0.88 0.08 0.18 0.69 0.39 0.27
Rule PA 0.20 0.87 0.09 0.18 0.66 0.33 0.28
Rule AA 0.18 0.79 0.16 0.20 0.44 0.75 0.31
Rule Z W 0.19 0.38 0.33 0.67 0.47 0.73 0.77
Rule A 0.24 0.52 0.27 0.45 0.55 0.50 0.49

14 W.R. Weinert, H.S. Lopes / BioSystems 99 (2010) 6–16

p

b

t
t
r
f
t
i

e
c
t
i
o
d
fi
l
s

t
o

Table 8
Transition rules found by GEPCLASS considering all parameters together.

Rule Hexadecimal Efficiency

Rule 1 111110101111F3101F1F1F1F1F1FFF1F 2.83%
Rule 2 000F000F555F555FCCCFCCCFDDDFDDDF 0.00%
Rule 3 37370113377F015F37370113377F015F 49.96%
Rule 4 0AAA0FFF011105550AAA0FFF0BBB0FFF 0.00%
Rule 5 00000F0FFFFF0F1F00110F1FFFFF0F1F 1.83%
Rule 6 3333000000000F0F3F3F3F3F3F3F3F3F 49.33%
Rule 7 0A5F0A5F0A5FFFFF005500550A553B77 0.00%

According to the results obtained, it can be concluded that
the DBFPs studied in this work, when considered individually or
together, do not provide enough information for classifying effi-
ciently the dynamic behavior of a CA. Although this conclusion is

Table 9
Values of the DBFPs for rules presented in Table 8.

Rule S DV PA AA Z W A DE

Rule 1 0.26 0.86 0.09 0.26 0.46 0.47 0.09
Rule 2 0.24 0.82 0.13 0.22 0.49 0.58 0.14
Rule 3 0.26 0.82 0.13 0.22 0.46 0.52 0.10
Rule 4 0.27 0.80 0.13 0.22 0.49 0.52 0.11
Rule 5 0.24 0.84 0.11 0.24 0.46 0.54 0.11
Fig. 6. Simulation of the dynamic behavior of rules shown in Table 6.

Table 7 shows the values of the DBFPs regarding to the rules
reviously shown in Table 6.

Fig. 6 presents an example of the simulation of the dynamic
ehavior for each one of the rules previously shown in Table 6.

Although GEPCLASS did not have difficulty in finding the 6 rules,
he efficiency of them, as well as their dynamic behavior, indicate
hat they are not solutions for the classification by the majority
ule problem. Also, not all rules present a “null” behavior. There-
ore, these results indicate that the use of DBFPs individually, as
he only source of information for the rule induction procedure, is
nefficient.

The efficiency rate for the rules found were far bellow the
xpected values. For instance, rules Rule DV and Rule PA had effi-
iency rate around 50%. However, observing the simulations of
hese rules in Fig. 6 and the value of parameter “activity” in Table 7,
t becomes clear that such rules can take any initial configuration
f the CA to a state where all cells are 0, after 200 iterations. This
o not solve the problem, although a “null” behavior can be identi-
ed. Rule S, Rule AA, Rule Z W and Rule A besides presenting very

ow values for efficiency, they lead the CA to periodic behavior, as

hown in Fig. 6.

Another experiment was done using GEPCLASS to find rules for
he same problem. However, differently from those rules previ-
usly shown in Table 6, now all parameters were jointly considered
Rule 8 0033F0330033F0330033FFFF0033FFFF 49.73%
Rule 9 0A0F0A0F000F000F3F3F3F3F3F3F3F3F 1.62%
Rule 10 331133113311331111FF11FF11FF11FF 49.33%

by using the fitness function of Eq. (4). The top 10 rules found by
GEPCLASS are shown in Table 8 and the corresponding DBFPs com-
puted for these rules are shown in Table 9. Examples of the dynamic
behavior of CAs for these rules 2, 3, 4, 6, 8 and 10 are shown in Fig. 7.

The difficulty for GEPCLASS to find acceptable solutions was
significantly higher than in the previous experiment, since more
degrees of freedom were added to the problem. Only Rule 8 and
Rule 10 were capable of maintaining values within the [maximum,
minimum] range established as reference (see Table 2). Although
these rules presented a “null” behavior in the dynamic simulation,
they achieved an efficiency rate around 50%. Observing the simu-
lation of these rules (Fig. 7d–f) it is clear that these rules can take
any initial configuration of a CA to a state in which all cells are 0,
after 200 iterations.

For all the rules found in this experiment, the parameter “sen-
sitivity” was quite different from the reference value. However,
observing Table 2 we note that some rules, such as GKL, DAS, ABK
and CRA have values of the DBFPs very close to those of the 10 rules
found by GEPCLASS (Table 8). Therefore, the use of an “optimized”
set of DBFPs in the rule induction procedure do not take important
benefits to the quality of solutions.

6. Conclusions and Future Work

A total of 31 rules were used in the analysis of eight DBFPs. The
main objective of this analysis was to verify the capacity of each
parameter individually and the group of parameters, for forecasting
the dynamic behavior of CAs. A classical problem in CA literature
was selected for this study: the classification by the majority rule.
This problem is interesting because the solutions for it are known
as “null” behavior rules, according to Li and Parckard (1990). That
is, independently of the initial configuration of the system, it will
converge to a state where all cells of the CA will take the same value
(either 0 or 1) after a transient period of successive iterations.
Rule 6 0.25 0.85 0.10 0.25 0.50 0.50 0.10
Rule 7 0.27 0.81 0.13 0.21 0.47 0.51 0.10
Rule 8 0.23 0.85 0.10 0.20 0.45 0.50 0.10
Rule 9 0.22 0.86 0.09 0.20 0.47 0.53 0.11
Rule 10 0.25 0.85 0.10 0.20 0.50 0.50 0.08

W.R. Weinert, H.S. Lopes / BioS

F
T

s
f
d

o
b
n
s

a
s
t
o
e
w
e
f

p
f
u
h
a
p

ig. 7. Simulation of the dynamic behavior of rules 2, 3, 4, 6, 8 and 10, show in
able 8.

pecific for the problem of classification by the majority rule, it is
air to expect that it can be extended to other classes of problems
ealt by CAs.

It was observed that different transition rules having the values
f the DBFPs very close each other can display distinct dynamic
ehavior in the simulation. These results found suggest that it is
ot possible to identify a clear boundary of values for the DBFPs
tudied for identifying transition rules with “null” behavior.

Consequently, this fact may have a relevant impact in
pproaches that use DBFPs in the process of rule-induction for CAs,
uch as the evolutionary computation approaches previously men-
ioned. The way the DBFPs were used in this work requests a set
f reference values for them. Possibly, this reference set does not
xist for the problem treated here, and shall be addressed in future
ork. Results obtained in this work suggest the need of further

xploration in DBFPs. More expressive parameters, regarding the
ull dynamic behavior of CAs, are still needed.

A possible line of investigation is devising parameters not com-
letely dependent on the transition rules, but that take into account

eatures captured by sampling a simulation of the CA. Since sim-
lations are computationally expensive, further development will
ave to address this issue, either using reconfigurable hardware for
ccelerating simulations (such as in Weinert et al., 2007) or using
arallel computing.
ystems 99 (2010) 6–16 15

Acknowledgements

This work was partially supported by the Brazilian National
Research Council under grant no. 309262/2007-0 to H.S. Lopes.

References

Ahlgren, P., Jarneving, B., Rousseau, R., 2003. Requirements for a cocitation similarity
measure, with special reference to pearson’s correlation coefficient. Journal of
the American Society for Information Science and Technology 54 (6), 550–560.

Beauchemina, C., Samuelb, J., Tuszynskia, J., 2005. A simple cellular automaton model
for influenza a viral infections. Journal of Theoretical Biology 232, 223–234.

Benkiniouar, M., Benmohamed, M., 2004. Cellular automata for cryptograpy. In: Pro-
ceedings of the International Conference on Information and Communication
Technologies: From Theory to Applications, Damascus, Syria, pp. 423–424.

Binder, P., 1993. A phase diagram for elementary cellular automata. Complex Sys-
tems 7, 241–247.

Bojarczuk, J., Lopes, H., Freitas, A., 2004. A constrained-syntax genetic program-
ming system for discovering classification rules: application to medical data
sets. Artificial Intelligence in Medicine 30, 27–48.

Bortot, J., de Oliveira, P., Oliveira, G., 2004. Multiobjective, heuristic evolutionary
search in a cooperative environment leads to the best cellular automaton rule in
the density classification task. In: Proceedings of the VIIIth Brazilian Symposium
on Neural Networks. IEEE Press/SBC, São Luís (CD-ROM: Paper 3565).

Chen, Q., Mynett, A., 2003. Effects off cell size and configuration in cellular automata
based pray–predator modelling. Simulation Modelling Practice and Theory 11,
609–625.

Corne, D., Frisco, P., 2008. Dynamics of HIV infection studied with cellular automata
and conformon-p system. BioSystems (91), 531–544.

Cranny, T., Bossomaier, T., 1999. The density classification problem for cellular
automata: searching within structure. Tech. rep., Charles Sturt University.

Das, R., Crutchfield, J., Mitchell, M., Hanson, J., 1995. Evolving globally synchro-
nized cellular automata. In: Proceedings of the Sixth International Conference
on Genetic Algorithms, pp. 336–343.

David, A., Forrest, B., Koza, H., 1996. Discovery by genetic programming of a cellular
automata rule that is better than any known rule for the majority classification
problem. In: Proceedings of the First Annual Conference the Genetic Program-
ming 1996. MIT Press, Cambridge, MA, pp. 3–11.

Davis, L., 1991. Handbook of Genetic Algorithms, 1st edition. Van Nostrand Reinhold.
Ferreira, C., 2001. Gene expression programming: a new adaptative algorithm for

solving problems. Complex Systems 13, 87–129.
Ferreira, C., 2002. Discovery of the Boolean functions to the best density-

classification rules using gene expression programming. Lecture Notes in
Computer Science 2278, 51–60.

Fu, S., Milne, G., 2003. Epidemic modeling using cellular automata. In: Proceedings
of the 1st Australian Conference on Artificial Life, pp. 43–57.

Gacs, P., Kurdyumov, G., Levin, L., 1978. One dimensional uniform arrays that wash
out finite islands. Problemy Peredachi Informatsii 12, 92–98.

Gangadhar, D., 2005. Pelican - protein-structure alignment using cellular automata
models. In: Proceedings of the International Conference in Adaptive and Natural
Computing Algorithms, Coimbra, Portugal, pp. 308–311.

Georgoudas, I., Sirakoulis, G., Andreadis, I., 2007. Modelling earthquake activity
features using cellular automata. Mathematical and Computer Modelling 46,
124–137.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, 1st edition. Addison-Wesley Professional.

Hofman, K., Bucher, P., Falquet, L., Bairoch, A., 1999. The prosite database, its status
in 1999. Nucleic Acids Research 27, 215–219.

Holland, J., 1975. Adaptation in Natural and Artificial Systems, 1st edition. The Uni-
versity of Michigan Press.

Juillé, H., Pollack, J., 1998. Coevolving the ideal trainer: application to the discovery of
cellular automata rules. In: Koza, J. (Ed.), Proceedings of the Third Annual Confer-
ence in Genetic Programming. Morgan Kaufmann, San Francisco, pp. 519–527.

Kansal, A.R., Torquato, S., Harsh, G.R., IV, Chiocca, E.A., Deisboek, T.S., 2000. Cellular
automaton of idealized brain tumor growth dynamics. BioSystems 55, 119–127.

Khan, A., Choudhury, P., Dihidar, K., Verma, R., 1999. Text compression using two-
dimensional cellular automata. Computers and Mathematics with Applications
37 (6), 115–127.

Kiera, L., Chenga, C., Testab, B., Carruptb, P., 1996. A cellular automata model of
enzyme kinetics. Journal of Molecular Graphics 14, 227–231.

Koza, J., 1992. Genetic Programming: on the Programming of Computers by Means
of Natural Selection, 1st edition. MIT Press.

Koza, J., 1994. Genetic Programming. II. Automatic Discovery of Reusable Programs,
1st edition. MIT Press.

Langton, C., 1990. Computation at the edge of chaos: phase transitions and emergent
computation. Physica D 42, 12–37.

Laurio, K., Linaker, F., Narayanana, A., 2007. Regular biosequence pattern matching
with cellular automata. Information Sciences 146, 89–101.
Li, W., 1991. Parameterizations of cellular automata rule space. Tech. rep., Santa Fe
Institute Tech.

Li, W., Parckard, N., 1990. The structure of elementary cellular automata rule space.
Complex Systems 4 (3), 281–297.

Malleta, D., Pillisb, L.D., 2006. A cellular automata model of tumor–immune system
interactions. Journal of Theoretical Biology 239, 234–350.

1 / BioS

M

M

M

M

M

O

O

O

O

Q
R

6 W.R. Weinert, H.S. Lopes

itchell, M., 1996. Computation in cellular automata: a select review. In: Gramss,
T. (Ed.), Nonstandard Computation. VHC Verlagsgesellschaft, Weinheim, pp.
95–140.

itchell, M., Crutchfield, J., Hraber, P., 1994. Evolving cellular automata to perform
computations: mechanisms and impediments. Physica D 75, 361–391.

itchell, M., Hraber, P., Crutchfield, J., 1993. Revisiting the edge of chaos: evolving
cellular automata to perform computations. Complex Systems 7, 89–130.

izas, C., Sirakoulis, G.C., Mardires, V., Karafyllidis, I., Glykos, N., Sandaltzopou-
los, R., 2008. Reconstruction of DNA sequence using genetic algorithms
and cellular automata: towards mutation prediction? BioSystems 92,
61–68.

orales, F., Crutchfield, J., Mitchell, M., 2001. Evolving two-dimensional cellular
automata to perform density classification: a report on work in progress. Parallel
Computing 27, 571–585.

liveira, G., Asakura, O., de Oliveira, P., 2002a. Dynamic behaviour forecast as a
driving force in the coevolution of one-dimensional cellular automata. In: Pro-
ceedings of the VIIth Brazilian Symposium on Neural Networks, vol. 1. IEEE
Computer Society, Los Alamitos, CA, USA, pp. 98–103.

liveira, G., Bortot, J., de Oliveira, P., 2002b. Multiobjective evolutionary search
for one-dimensional cellular automata in the density classification task. In:
Proceedings of the 8th International Conference on Artificial Life. MIT Press,
Cambridge, MA, USA, pp. 202–206.

liveira, G., Bortot, J., de Oliveira, P., 2007. Heuristic search for cellular automata
density classifiers with a multiobjective evolutionary algorithm. In: Proceedings
of the VIth Congress of Logic Applied to Technology LAPTEC 2007, vol. 1, Santos,
SP, pp. 1–12.
liveira, G., Omar, N., de Oliveira, P., 2001. Definition and application of a five-
parameter characterization of one-dimensional cellular automata rule space.
Artificial Life 7, 277–301.

uinlan, J., 1986. Induction of decision tree. Machine Learning 1, 81–106.
ichards, F., Meyer, T., Packard, N., 1990. Extracting cellular automaton rules directly

from experimental data. Physica D 45, 189–202.
ystems 99 (2010) 6–16

Rosin, P., 2005. Training cellular automata for image processing. Lecture Notes in
Computer Science 3540, 195–204.

Swiecicka, A., Seredynski, F., 2000. Cellular automata approach to scheduling prob-
lem. In: Proceedings of the International Conference on Parallel Computing in
Electrical Engineering. IEEE Computer Society, Washington, DC, USA, pp. 29–33.

Tomassini, M., Perrenoud, M., 2001. Cryptography with cellular automata. Applied
Soft Computing 1, 151–160.

Vincent, W., 2005. Statistics in Kinesiology. Human Kinetics, Champaign.
Wei, Y., Ying, S., Fan, Y., Wang, B., 2003. The cellular automata model of investment

behavior in the stock market. Physica A 325, 507–516.
Weinert, W., Benitez, C., Lopes, H., Lima, C., 2007. Simulation of the dynamic behavior

of one-dimensional cellular automata using reconfigurable computing. Lecture
Notes in Computer Science 4419, 385–390.

Weinert, W., Lopes, H., 2006. GEPCLASS: a classification rule discovery tool using
gene expression programming. Lecture Notes in Computer Science 4093,
871–880.

Wolfram, S., 1983. Cellular automata. Los Alamos Science 9, 2–21.
Wolfram, S., 1984. Universality and complexity in cellular automata. Physica D 10,

1–35.
Wolfram, S., 1986. Advances in cryptology. Lecture Notes in Computer Science 218,

429–432.
Wolfram, S., 2002. A New Kind of Science, 1st edition. Champaign, Wolfram Media.
Wuensche, A., 1994. Complexity in one-D cellular automata: gliders, basins of attrac-

tion and the Z parameter. Tech. Re 94-04-025, Santa Fe Institute.
Wuensche, A., 1999. Classifying cellular automata automatically: finding gliders,

filtering, and relating space–time patterns, attractor basins and the Z parameter.

Complexity 3, 47–66.

Wuensche, A., Lesser, M., 1992. The Global Dynamics of Cellular Automata. Addison-
Wesley, Reading, USA.

Xiao, X., Shao, S., Ding, Y., Huang, A., Chen, X., Chou, K.-C., 2005. Using cellular
automata to generate image representation for biological sequences. Amino
Acids 28, 29–35.

	Evaluation of dynamic behavior forecasting parameters in the process of transition rule induction of unidimensional cellular automata
	Introduction
	Related Work

	Cellular Automata
	Dynamic Behavior of a CA
	Parameters for Forecasting the Dynamic Behavior of CAs
	The Problem of Classification by the Majority Rule

	Correlation Analysis of the Dynamic Behavior Forecasting Parameters
	Transition Rule Induction Using DBFPs
	Rule Induction with Evolutionary Computation
	Implementation

	Results and Discussion
	Conclusions and Future Work
	Acknowledgements
	References

