
A Hybrid Evolutionary Approach for the Protein
Classi�cation Problem?

Denise F. Tsunoda]†, Heitor S. Lopes†, and Alex A. Freitas§

†Bioinformatics Laboratory, Federal University of Technology - Paraná,
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil

]Department of Information Sciences, Federal University of Paraná, Brazil

§Computing Laboratory, University of Kent at Canterbury, UK
dtsunoda@ufpr.br, hslopes@utfpr.edu.br, A.A.Freitas@ukc.ac.uk

Abstract. This paper proposes a hybrid algorithm that combines char-
acteristics of both Genetic Programming (GP) and Genetic Algorithms
(GAs), for discovering motifs in proteins and predicting their functional
classes, based on the discovered motifs. In this algorithm, individuals are
represented as IF-THEN classi�cation rules. The rule antecedent con-
sists of a combination of motifs automatically extracted from protein
sequences. The rule consequent consists of the functional class predicted
for a protein whose sequence satis�es the combination of motifs in the
rule antecedent. The system can be used in two di�erent ways. First, as
a stand-alone classi�cation system, where the evolved classi�cation rules
are directly used to predict the functional classes of proteins. Second, the
system can be used just as an �attribute construction� method, discover-
ing motifs that are given, as predictor attributes, to another classi�cation
algorithm. In this usage of the system, a classical decision tree induction
algorithm was used as the classi�er. The proposed system was evaluated
in these two scenarios and compared with another Genetic Algorithm de-
signed speci�cally for the discovery of motifs � and therefore used only as
an attribute construction algorithm. This comparison was performed by
mining an enzyme data set extracted from the Protein Data Bank. The
best results were obtained when using the proposed hybrid GP/GA as an
attribute construction algorithm and performing the classi�cation (using
the constructed attributes) with the decision tree induction algorithm.

Key words: Bioinformatics, Protein classi�cation problem, evolutionary com-
putation, genetic programming, genetic algorithm.

1 Introduction
Bioinformatics has become a major �eld in scienti�c research due to two main
reasons. First, the life sciences community is overwhelmed by the huge amount
? This work was partially supported by the Brazilian National Research Council �
CNPq, under research grant no. 309262/2007-0 to H.S. Lopes.



2 D.F.Tsunoda, H.S.Lopes, A.A.Freitas

of data available in public databases. Indeed, the size of biological databases is
growing at an exponential rate as a consequence of advancements in genome se-
quencing technology. Second, there has been a signi�cant increase in the amount
of available computational power. As a result, some complex problems such as
protein folding simulation can now be handled within a reasonable time.

Proteins have several functions within an organism and there are thousands
of di�erent types of proteins. They are composed of amino acids linked in linear
chains through peptide connections. Proteins are grouped into families according
to their biological function, and the classi�cation of proteins is an important task
for the molecular biologist.

There are several protein databases freely available in the Internet, and this
work is based on the PDB (Protein Data Bank)[3]. This database contains in-
formation about the primary, secondary and tertiary structures of more than
56600 proteins (as in march/2009).

The protein classi�cation problem (PCP) is a very important research area
in bioinformatics. Basically, the PCP is the discovery of the functional class of
an unknown-function protein, by means of analyzing its structure. Most proteins
share similar structures (in particular, considering the primary structure), since
many of them have a common evolutionary origin [15]. Common structures may
be characteristic of a given family of proteins but, on the other hand, unrelated
families can also share common structures. This twofold characteristic makes
protein classi�cation a di�cult problem.

Computer science researchers have been using many di�erent methods to
�nd possible solutions for the PCP, for instance: neural networks [20], clustering
algorithms [12], particle swarm optimization [8], genetic algorithms [18] and
other data mining algorithms [11],[9].

This paper reports the development and application of a hybrid Genetic Pro-
gramming (GP)/Genetic Algorithm (GA), specially devised for the automatic
discovery of motifs using as input the primary structure information of proteins.
The system generates rules based on discovered sequences of amino acids (mo-
tifs). These rules cover most proteins of a given class (family) without covering
many proteins in other classes. Further, these discovered rules can be used for the
characterization of families of proteins as well as for the automatic classi�cation
of unknown-function proteins.

2 A Hybrid GP/GA System for Discovering Protein
Motifs

The hybrid Genetic Programming/Genetic Algorithm system is detailed here.
This system was named HEADMOP (H ybrid Evolutionary Algorithm for the
D iscovery of MOtifs in Proteins) and was used for discovering motifs and clas-
si�cation of protein functions.



A hybrid GP/GA for protein classi�cation 3

2.1 Individual Representation

In Genetic Programming (GP) [10], each individual corresponds to a candidate
solution to the problem. In HEADMOP, an individual corresponds to a classi�-
cation rule of the form: IF (a certain combination of motifs) THEN (predict a
certain functional class).

The genetic material of an individual consists of a tree containing two kinds
of nodes: internal and leaf nodes. Each internal node contains one of the following
logical operations: AND, OR, NOT. Each leaf node contains a sequence of amino
acids (considering the 20 standard amino acids), also known as a feature or motif.
Leaf nodes can contain motifs of di�erent lengths. An example of an individual
is shown in Figure 1.

OR


OR
AC


NOT
SEQ
AND


VIFLE
GNM
ACG


leaf


leaf
leaf
leaf


leaf


subtree

root


root


subtree


level 1


level 2


level 3


level 4


Fig. 1. Example of an individual in the proposed hybrid GP/GA system.
Two categories of genetic operators were de�ned in HEADMOP: structural

and leaf operators. Structural operators work on internal nodes of the tree, modi-
fying the structure of the rule represented by the individual. Leaf operators mod-
ify only the sequences of amino acids (the motifs) in leaf nodes. These operators
will be discussed in detail in section 2.2.

It should be noted that an individual consists of logical conditions and motifs
specifying only the antecedent (the �IF part�) of a classi�cation rule. The class
predicted by the consequent (the �THEN part�) of the rule is not represented
in the individual. The class associated with a rule is computed by using a de-
terministic procedure that assigns the best possible class to the rule, as will be
explained later.

Actually, the proposed system can be regarded as a hybrid GP/GA, in the
following sense. The individuals' genetic material has internal and leaf nodes (like
in GP), but these leafs are encoded as linear genomes (like in GA), where di�erent
genomes can have di�erent lengths of amino acid sequences (corresponding to
chromosomes with a variable number of genes).



4 D.F.Tsunoda, H.S.Lopes, A.A.Freitas

2.2 Selection Method and Genetic Operators

HEADMOP uses stochastic tournament selection, which works as follows. First,
k individuals are randomly drawn from the current population, with replace-
ment, where k is a user-speci�ed parameter determined as a percentage of the
population size. In this work, k was set to 3% of the population size. Then,
these k individuals are put to �play a tournament�, in which the probability of
an individual to win the tournament is proportional to its �tness value. A copy
of the winner of the tournament is then set apart to further undergo the action
of the genetic operators.

A) Structural Operators. The proposed system uses the classical sub-tree
crossover, where a crossover point is randomly selected in each of the two parent
individuals, and then they swap their genetic material rooted at their corre-
sponding crossover points.

Mutation is the other structural operator. It is an asexual operation, involving
only one parent individual. This operation consists of randomly selecting one
node of the individual and applying a mutation to that point, producing a new
child individual. In our system two di�erent structural mutation operations were
de�ned:

1. Sub-tree mutation: this operator replaces the sub-tree rooted at the selected
mutation point by a new randomly-generated sub-tree

2. Point mutation: this operator simply replaces the logical function at the
selected mutation point (OR, AND or NOT) by another randomly-generated
logical function. If an OR or an AND is changed to a NOT, only one of the
two sub-trees below the former OR/AND node is maintained (that one with
better evaluation) � the other is simply deleted to maintain the individual's
integrity. If a NOT is changed to an OR or an AND a sub-tree is randomly-
generated and inserted as the other sub-tree below the new OR/AND node,
also to maintain the individual's integrity.

Both structural crossover and mutation operators can be used as �hill-climbing
operators�, in the following sense. In the case of the mutation operator, immedi-
ately after the creation of a new child individual, its �tness is computed. If the
child's �tness is lower than the parent's �tness, the parent (rather than the child)
is copied to the next generation. In the case of the crossover operator, the same
holds. The individual with best �tness among parents and children is copied to
the next generation. The hill-climbing behavior of the structural operators is
probabilistic, controlled by a user-de�ned parameter named �probability of hill
climbing� (see section 3.2).

B) Leaf Operators The conventional one-point crossover in genetic algorithms
was originally designed for a �xed-length chromosome representation [6]. Hence,
it cannot be applied directly to the leaf nodes of our approach, where a motif is
represented by a variable-length sequence of amino acids. Therefore, we adapted



A hybrid GP/GA for protein classi�cation 5

the conventional one-point crossover to a variable-length representation, as fol-
lows. The crossover point (which is still randomly generated) indicates the per-
centage of the amino acid sequence of the leaf node in each parent where the
swapping of amino acids (�genes�) starts. The percentage (relative position) is
the same for both leaf nodes (i.e., one leaf node of each parent GP individual),
but the actual (absolute) position where the amino acid swapping starts can be
di�erent, since the two leaf nodes can have di�erent numbers of amino acids.

This work introduces four di�erent mutation operators devised for dealing
with the variable-length sequence of amino acids contained in a leaf node of an
individual, as follows.
1. Addition to the Left (AL): a letter (representing an amino acid) is randomly

generated and inserted into the leftmost end of the sequence of amino acids;
2. Addition to the Right (AR): analogous to AL, except that the new amino

acid is inserted into the rightmost end of the sequence of amino acids;
3. Multiple Mutations (MM): all the amino acids starting from a randomly-

generated position up to the end of the sequence are replaced by other
randomly-generated amino acids. The starting position can be any in the
sequence, except the �rst and the last ones.

4. Removal (RM): the amino acid in a randomly chosen position is removed
from the sequence. The application of this operator is subject to the con-
straint that after removal of an amino acid the remaining sequence still has
at least three amino acids. If this condition is not met then this operator is
not applied, and another mutation operator is applied instead.

2.3 Fitness Function
Since the goal is to maximize classi�cation accuracy, the quality of a rule is
determined by its ability in discriminating proteins of di�erent classes. That
is, ideally a rule should cover all the proteins of a given class and none of all
other classes. The �tness function was designed to take this basic principle into
account. First, for each class i (i = 1, . . . , n) we compute a measure of coverage
of the rule for that class, called Fi. This measure is de�ned in the range [0..1]
and corresponds to the number of proteins of the i-th class covered by the rule,
divided by the total number of proteins belonging to the i-th class. A protein
is said to be covered by a rule if and only if the protein's primary sequence of
amino acids satis�es the conditions of the rule antecedent. Next, for each class
i, a measure of the ability of the rule to discriminate between class i and the
other classes is computed. This measure is denoted Disci and it is de�ned by
equation 1:

Disci = Fi ·

1−

n∑

j=1

(
Fj,j 6=i

n− 1

)
 (1)

2.4 Result Designation
As explained earlier, each individual represents a rule that is associated with a
given class of proteins. Therefore, it is not enough to return as a solution only the



6 D.F.Tsunoda, H.S.Lopes, A.A.Freitas

best rule found throughout the evolutionary process � as usual in conventional
evolutionary algorithms. Indeed, it is necessary to return a set of rules, since
di�erent rules can predict di�erent classes. Hence, the result provided by our
system consists of the best M rules for each class found throughout the evolu-
tionary process, where M is a user-de�ned parameter. This was implemented by
elitism, in such a way that, at every generation, the M best individuals of each
class are preserved in the population. Recall that the quality of a rule (Equation
1 is based on its coverage.

The set of rules returned by HEADMOP was used for classi�cation in two
ways. First, each rule (individual) was used as a complete classi�cation rule. In
this case, when a new protein is to be classi�ed, the system counts how many
rules associated with each class cover that protein. The protein is assigned to the
class with the highest value of that count, i.e., the class with the largest number
of rules covering the protein. This is e�ectively a majority voting strategy, where
each class has as many votes as the number of rules that predict that class and
cover the protein.

In the second approach, each returned rule is interpreted as a binary predic-
tor attribute, which takes on the value true if a protein satis�es the antecedent
of the rule and takes on the value false otherwise. Note that, in this case, the rule
consequent is e�ectively ignored, i.e., the new predictor attribute is constructed
based only on the information derived from the rule antecedent - the motifs in
the leaf nodes and the logical conditions in the internal nodes. The motivation
for this approach � which is more complex than the previously-discussed �rst
approach � is that this new, higher-level data set can be given to any classi�-
cation algorithm. In this case the system is e�ectively acting as a sophisticated
�attribute construction� (feature discovery) algorithm and it delegates the task
of actually building the classi�er to a another classi�cation algorithm.

In order to implement this second approach, the chosen classi�cation algo-
rithm was J48, which is a Java implementation of the very well-known, and
widely used, C4.5 algorithm [16]. J48 is available as part of a data mining tool
named WEKA [22], which has the advantage of being freely available and widely
used 1. The choice of J48 was further motivated by the fact that this algorithm
produces a decision tree, a classi�cation model that tends to be comprehensible
to the user, allowing him/her to interpret discovered knowledge. This is impor-
tant not only in data mining in general, but also in Bioinformatics applications
[14], [4], [17], where the goal is to give the user some new insight about the
relationships that hold in the data.

3 Computational Experiments and Results

3.1 Data Set Used in the Experiments

The data set used in the experiments was extracted from the PDB. First, records
which had an EC number were set apart and, from these, a random subset was
1 http://www.cs.waikato.ac.nz/∼ml/weka/



A hybrid GP/GA for protein classi�cation 7

extracted. Proteins having an EC number are enzymes and the code is provided
by IUBMB (International Union of Biochemistry and Molecular Biology). From
a data mining viewpoint, each EC number corresponds to a class, i.e., a speci�c
protein function. More precisely, the EC number consists of four digits, where
each pair of adjacent digits is separated by a dot (�.�), and it speci�es the chem-
ical reaction catalyzed by the corresponding enzyme. For instance, the enzyme
Alcohol dehydrogenase has the number EC.1.1.1.1.

Note that this is a four-level hierarchical classi�cation, so that the �rst digit
represents the most general class and the last digit the most speci�c subclass.
In this work we report results of enzyme classi�cation at the four levels, one-
level-at-a-time. That is, �rst an experiment is carried out to classify enzymes at
the �rst level (i.e. predict the �rst EC code digit); then a separate, independent
experiment is carried out to classify enzymes at the second level; and so on,
until experiment four that predicts the fourth EC code digit. Ultimately, these
experiments aim at predicting the functional class of enzymes.

It should be noted that these experiments are more extensive than other ex-
periments with enzyme classi�cation reported in the literature, where sometimes
just the �rst EC code digit is predicted � see e.g. [20], [2] and [1]. A direct com-
parison between di�erent methods is not possible due to the di�erences in the
data sets used and in the methodology for computing results. Also, presumably,
the main reason why the literature sometimes focuses on just the �rst-level clas-
si�cation is that, as we consider deeper levels of classi�cation, the number of ex-
amples per class becomes smaller and smaller, so that the classi�cation problem
becomes harder and harder. Indeed, in the enzyme data set, many classes at the
third and fourth level have so few examples (less than 10) that they can hardly
be predicted with a reasonable accuracy. This is not a limitation associated with
any classi�cation algorithm by itself, it is simply a limitation associated with
the data being mined. Therefore, as part of our data preparation procedure, we
have retrieved from PDB only the enzymes belonging to subclasses with at least
10 elements. After this simple �ltering, the total number of enzymes retrieved
from PDB and the corresponding number of classes are shown in Table 1 for all
four levels of classi�cation.

Table 1. Characteristics of the enzyme dataset used in the experiments.

Enzyme class level Number of enzymes Number of classes
EC.X 11,493 6
EC.X.X 11,455 56
EC.X.X.X 10,094 178
EC.X.X.X.X 7,725 1036

3.2 Running Parameters
Preliminary experiments were done to adjust the parameters of the algorithm.
These experiments were done evolving motifs with the primary structure of pro-



8 D.F.Tsunoda, H.S.Lopes, A.A.Freitas

teins. As a result of the preliminary experiments, parameters were adjusted as
follows: population size = 500; number of generations = 20; tournament size =
3% (of the population size); probability of structural crossover = 60%; probabil-
ity of structural mutation = 60%; probability of leaf crossover = 20%; probability
of leaf mutation = 80%; probability of hill climbing = 40%; number of discovered
rules per class (M) = 10; stopping criterion = maximum number of generations.

From now on these parameter values will be referred to as default values,
and they were used in all other experiments reported in this paper. It should be
stressed that these preliminary experiments were not exhaustive and it is possible
that other set of running parameters could lead to better performance. Actually,
in general, adjusting running parameters in evolutionary computation systems is
still an open issue. As a consequence of the lack of a widely accepted methodology
for adjusting parameters, current research is pointing to self-adapting strategies
[13]. Possibly, this issue will be addressed in future developments.

3.3 Comparative Results for Motif Discovery
In order to evaluate the performance of HEADMOP, we have compared it with a
Genetic Algorithm (GA) that was also designed for motif discovery. This GA was
previously described in the literature, as GAMDI [18], and an improved version
as GAMBIT [19] The main di�erences between GAMDI and HEADMOP, are
as follows. In GAMDI each individual corresponds to a single motif, whereas in
HEADMOP each individual corresponds to a rule consisting of logical operators
that combine several motifs (one motif for each leaf node of the individual).
Also, the motifs discovered by GAMDI have to be given, as predictor attributes,
to another classi�cation algorithm which, actually, will discover classi�cation
rules. By contrast, since each individual in HEADMOP already corresponds to
a potentially complex rule, each rule it discovers can be used on its own, without
the need for a classi�cation algorithm. Notwithstanding, it is also possible to use
each of the individuals returned by this system as a single predictor attribute to
be given to a classi�cation algorithm. This approach is particularly interesting to
implement a fair comparison between the two evolutionary algorithms, since the
motifs discovered by both are used by the same classi�cation algorithm. Hence,
we report two types of results for HEADMOP:
1. Results using the system as a stand-alone data mining algorithm � in which

the system both discovers motif-based rules and uses those rules directly for
enzyme classi�cation.

2. Results when the system is used to discover motifs that are then used by
another separate classi�cation algorithm as predictor attributes.
Results of both experiments are compared with the results of GAMDI dis-

covering motifs that are then used, as predictor attributes, by a separate clas-
si�cation algorithm. In order to make the comparison between HEADMOP and
GAMDI as fair as possible, both the previously-mentioned experiment (2) and
the experiments with GAMDI used the same classi�cation algorithm, namely
J48 [22], as explained earlier.



A hybrid GP/GA for protein classi�cation 9

Many works in current literature deals with a two-classes problem, rather
than a multiclass problem (such as the one approached in this work). Viewing
a multiclass problem as a two-classes one, the cases of a given class could be
considered as �positive� and the cases of all remaining classes together are con-
sidered �negative�. Table 2 shows the accuracy rates obtained by the algorithms
for each class level of the EC code hierarchical classi�cation. In this table, num-
bers after the �±� symbol denote the corresponding standard deviations. All
accuracy rates in this paper refer to the average predictive accuracy on a test
set unseen during training, as measured by a 5-fold cross-validation procedure
[22]. The test set was randomly chosen with 1/3 of the cases of the data set
shown in Table 1, maintaining the proportion of classes. We choose to present
only the accuracy rate as a measure of quality in order to make possible the
comparison with other published work.

Table 2. Classi�cation accuracy rates (%) on the test set.

Enzyme class level GAMDI HEADMOP HEADMOP+J48
EC.X 83.32±1.34 78.25±0.65 87.82±1.31
EC.X.X 79.64±0.43 77.19±0.98 83.33±0.54
EC.X.X.X 72.54±1.41 78.79±0.74 79.10±0.56
EC.X.X.X.X 75.85±5.26 79.19±0.89 83.13±0.49

As shown in Table 2, using the HEADMOP system as a stand-alone data
mining algorithm mixed results were obtained. That is, HEADMOP achieved
classi�cation accuracies lower than the GAMDI algorithm at the �rst and sec-
ond class levels, but higher than GAMDI at the third and fourth class levels.
The di�erences in accuracies are signi�cant at the �rst, second and third class
levels, considering that the corresponding standard deviation intervals do not
overlap. The di�erence in accuracy between GAMDI and HEADMOP alone is
not signi�cant, however, at the fourth level, where the standard deviation inter-
vals overlap.

A better result was obtained when HEADMOP was used only to produce
the predictor attributes used by J48, as explained before. In this case HEAD-
MOP+J48 outperformed both GAMDI and the use of HEADMOP alone for all
class levels. Additionally, the di�erences in accuracy between HEADMOP+J48
and GAMDI were signi�cant at all class levels. These results suggest that HEAD-
MOP is actually discovering good motifs, encoded in the leaf nodes of individuals.
However, the logical combination of the motifs represented in the leaf nodes �
performed by the logical operations in the internal nodes of individuals � still
leaves room for improvement. Indeed, the use of J48 to combine the motifs rep-
resented by HEADMOP leaf nodes seems a good way to implement such an
improvement, since the accuracies of HEADMOP+J48 are clearly higher than
the accuracies of HEADMOP alone in general. This result is consistent with the
fact that J48 is the product of several decades of research in machine learning,



10 D.F.Tsunoda, H.S.Lopes, A.A.Freitas

as mentioned earlier. Anyway, HEADMOP still has the important merit of dis-
covering high-quality motifs, without which J48 would be helpless � since, of
course, J48 cannot discover protein motifs.

3.4 Comparative Results for Processing Time.

It is also interesting to compare the computational time taken by GAMDI and
HEADMOP. The result of this comparison is presented in Table 3, in the format
hours : minutes. All experiments were run in PC desktops with AMD Athlon
XP 2.4 processors.

Table 3. Total running time of the algorithms(hr:min).

Enzyme class level GAMDI HEADMOP
EC.X 03:42 0:39
EC.X.X 10:04 0:30
EC.X.X.X 16:06 1:04
EC.X.X.X.X 19:34 0:57

As can be observed in Table 3, HEADMOP is considerably faster than
GAMDI. In the case of the enzyme data set used in this project, the di�er-
ences in the processing time of the algorithms is not crucial, since the longest
running time, taken by GAMDI, was shorter than one day. However, in much
larger data sets the long processing time taken by GAMDI would probably be a
serious limitation to the use of that algorithm, whilst the hybrid GP/GA system
proposed in this paper seems much more scalable to larger data sets. Further
research will also focus on the parallelization of these algorithms.

4 Conclusions

We have proposed a hybrid Genetic Programming/Genetic Algorithm system
for rule discovery, aiming at the automatic functional classi�cation of proteins
with unknown function. The system, named HEADMOP, was evaluated using an
enzyme data set extracted from the Protein Data Bank. The solution returned
by the proposed system consists of a set of rules (individuals), each of them using
logical operators to combine a set of motifs and predicting a certain class for all
enzymes satisfying the rule represented by the individual.

More precisely, each solution returned by HEADMOP consists of two major
components evolved by the algorithm, namely, a set of protein motifs in the leaf
nodes and a set of logical operators in the internal nodes of the individual. Hence,
it is desirable to do controlled experiments evaluating the e�ectiveness of each
these two solution components separately. In this spirit, we evaluated the results
of the system when it was used in two di�erent ways. In the �rst approach



A hybrid GP/GA for protein classi�cation 11

HEADMOP was used as a stand-alone classi�cation algorithm, so that both
kinds of evolved solution components (the set of motifs and the logical operators
combining the motifs) were used to predict the class of an enzyme. In the second
approach, HEADMOP was used only as an �attribute construction" algorithm,
in the sense that only the motifs discovered by the system (and not the logical
operators) were used. In this case the discovered motifs were used as attributes
by J48, a standard classi�cation algorithm based on decision trees.

The results of both approaches for using the solution returned by HEADMOP
were compared with the results of a previous work using GA (GAMDI) that
was also especially designed for the discovery of protein motifs. Unlike HEAD-
MOP, GAMDI evolves only motifs, and not logical operators combining motifs.
Hence, the motifs discovered by GAMDI have to be given (as attributes) to a
classi�cation algorithm. Again, J48 was used, to make the comparison between
HEADMOP and GAMDI as fair as possible.

The performance measure used in this comparison was classi�cation accuracy
on a test set separated from the training set, as usual in the data mining litera-
ture. The two main �ndings from these experiments are as follows. First, there
was no clear winner in the comparison between HEADMOP used as a stand-alone
classi�cation algorithm and J48 using motifs discovered by the GAMDI. Second,
the results of J48 using the motifs discovered by HEADMOP were clearly better
than the results of J48 using the motifs discovered by the former GA-based sys-
tem. Hence, the general conclusion from these results is that the hybrid GP/GA
system is evolving good sets of motifs in the leaf nodes of the individuals, but
the combination of those motifs via the logical operators in the internal nodes
is not fully e�ective � suggesting more research in this topic in the future.

It is intended to develop a more sophisticated version of HEADMOP where
the motifs use information about the secondary structure of proteins. We believe
that incorporating more information in the motifs can improve the classi�cation
accuracy of the system, especially covering atypical proteins, considered as small
disjuncts [21] in the classi�cation task. Authors intend to make such version
freely available in the internet so as to foster further research in the area.

Results, in general, encourages the continuity of the research. Future work
will include the use of HEADMOP with other categories of proteins, such as
the globins, or else, the use the obtained classi�cation rules to determine the
functional class of recently discovered proteins, not yet classi�ed. Overall, we
believe that this work can be useful not only for biologists, but also for those
working in this important �eld of Bioinformatics.

References

1. Arakaki, A.K., Zhang, Y., Skolnick, J.: Large-scale assessment of the utility of low-
resolution protein structures for biochemical function assignment. Bioinformatics
20 (2004) 1087�1096

2. Ben-Hur, A., Brutlag, D.: Remote homology detection: a motif based approach.
Bioinformatics 19 (2003) i26�i33



12 D.F.Tsunoda, H.S.Lopes, A.A.Freitas

3. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Research 28
(2000) 235�242

4. Clare, A., King, R.D.: Machine learning of functional class from phenotype data.
Bioinformatics 18 (2002) 160�166

5. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: an overview. In: Fayyad, U.M. et al. (Eds.) Advances in Knowledge
Discovery and Data Mining (1996) 1�34

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning.
Addison-Wesley, Reading (1989)

7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Mateo (2001)

8. Holden, N., Freitas, A.A: Hierarchical classi�cation of protein function with ensem-
bles of rules and particle swarm optimisation. Soft Computing 13 (2009) 259�272

9. King, R.D., Karwath, A., Clare, A., Dehaspe, L.: The Utility of di�erent repre-
sentations of protein sequence for predicting functional class. Bioinformatics 17
(2001) 445�454

10. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

11. Kretschmann, K., Fleischmann, W., Apweiler, R.: Automatic rule generation for
protein annotation with the C4.5 data mining algorithm applied on Swiss-Prot.
Bioinformatics 17 (2001) 920�926

12. Manning, A.M., Brass, A., Goble, C.A., Keane, J.A.: Clustering techniques in
biological sequence analysis. In: Proceedings of the 1st European Symposium on
Principles of Data Mining and Knowledge Discovery (1997) 315�322

13. Maruo, M.H., Lopes, H.S., Delgado, M.R.B.S.: Self-adapting evolutionary param-
eters: encoding aspects for combinatorial optimization problems. Lecture Notes in
Computer Science 3448 (2005) 154�165

14. Mirkin, B., Ritter, O.: A Feature-based approach to discrimination and prediction
of protein folding groups. In: Suhai, S. (Ed.), Genomics and Proteomics: Functional
and Computational Aspects. Kluwer, Doordrecht (2000) 157�177

15. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: A structural classi�cation
of proteins database for the investigation of sequences and structures. Journal of
Molecular Biology 247 (1995) 536�540

16. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

17. Sebban, M., Mokrousov, I., Rastogi, N., Sola, C.: A data mining approach to
spacer oligonucleotide typing of mycobacterium tuberculosis. Bioinformatics 18
(2002) 235�243

18. Tsunoda, D.F., Lopes, H.S.: Automatic motif discovery in an enzyme database
using a genetic algorithm-based approach. Soft Computing 10 (2006) 325�330

19. Tsunoda, D.F., Lopes, H.S., Freitas, A.A.: An evolutionary approach for motif
discovery and transmembrane protein classi�cation. Lecture Notes in Computer
Science 3449 (2005) 105�114

20. Weinert, W.R., Lopes, H.S.: Neural networks for protein classi�cation. Applied
Bioinformatics 3 (2004) 41�48

21. Weiss, G.M.: Learning with rare cases and small disjuncts. In: Proc. of Twelfth
International Conference on Machine Learning (1995) 558�565

22. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edition. Morgan Kaufmann, San Francisco (2005)


