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Abstract�  In this paper we study how the connectivity affects 
the performance of insular Parallel Genetic Algorithms 
(PGAs). Seven topologies PGAs were proposed, with growing 
number of connections. We used three instances of the well-
known traveling salesman problem as benchmark. Each island 
of the PGA had different parameters and we established a 
fixed migration policy for all islands. Experiments were done 
and average results were reported. The effect of coevolution in 
PGAs was evidenced. The convergence time increased with the 
number of connections of the topology. The quality of solutions 
also increased in the same way. Although topologies with large 
connectivity increases the overall processing time, they take 
benefits to the quality of solutions found. 

I. INTRODUCTION  
Evolutionary Computation (EC) has been successfully 

used for many complex computational and engineering 
problems. There are many difficult problems that request the 
use of parallel implementations. Amongst the several EC 
paradigms, Genetic Algorithms (GA) are, probably, the most 
widely used, thanks to its simplicity, flexibility and 
efficiency. 

A. Parallel Genetic Algorithms 
Genetic Algorithm (GA) is a heuristic search method that 

has been widely used in applications where the size of the 
search space is very large. In essence, GAs are ” search 
algorithms based on the mechanics of natural selection and 
natural genetics„  [3]. That is, GAs are inspired by the 
principle of the survival of the fittest, where the fittest 
individuals are selected to produce offspring A for the next 
generation. In the context of search, individuals are candidate 
solutions to a given search problem. Hence, reproduction of 
the fittest individuals means reproduction of the best current 
candidate solutions. Genetic operators such as selection, 
crossover and mutation generate offspring from the fittest 
individuals. One of the advantages of GAs over traditional 
search methods is that the former performs a kind of global 
search using a population of individuals, rather than 
performing a local, hill-climbing search. Global search 
methods are less likely to get trapped into local maxima, in 
comparison with local search methods. Also, GAs do not 
work directly with the parameters of the problem. Instead, 
they deal with encoded solutions, thus making the method 

more general and capable of being applied to several 
different domains. 

Usually, GA implementations have several control 
parameters and its application to real-world problems 
requests fine-tuning such parameters in order to obtain the 
maximum performance.  Although there are many self-
adjusting approaches for this purpose, trial-and-error is still 
widely used. This is a motivation for using PGAs, because 
one can try many different sets of parameters in parallel. As 
a side-effect, diversity is greatly encouraged when using 
several different populations. Besides, one can take 
advantage of the co-evolution feature that may arise from 
PGAs. That is, GAs with different parameters can explore 
different regions of the search space and a PGA can combine 
this search empowering the overall algorithm. 

Basically, there are three categories of PGAs: Master-
Slave, Cellular, and Island PGA. The Master-Slave PGA 
works with a single global population managed by the master 
processor which is responsible for all tasks of the AG, but 
fitness computation. The slave processors are responsible 
only for computing the fitness of individuals. This type of 
PGA is usually employed for problems in which the 
computational cost of the fitness function is high. This PGA 
has the advantage of being easily implemented in a network 
of computers, as represented in Figure 1. 

 
Figure 1.  Master-Slave PGA. 

The Cellular PGA, shown in Figure 2, uses a single 
population, which individuals are set over a planar grid, each 



one managed by a processor. Genetic operations between 
individuals are performed only between neighbor 
individuals, according to the grid topology. The Cellular 
PGA is very sparsely reported in the literature because it 
requests special hardware, that is, massively parallel 
computers. 

 

 
Figure 2.  Cellular PGA 

 
Island PGA is, possibly, the most frequently approach 

used for real-world problems. In this model, depicted in 
Figure 3, each island evolves an independent GA, usually 
with different running parameters. According to a predefined 
migration policy and connectivity, individuals of an island 
are sent out to another island. This model can be 
implemented in a network of computers, each one running an 
island, or simulated in a single computer. This last approach 
is frequently more efficient, since there is no overhead due to 
the communication between islands. 

 
Figure 3.  Island PGA. 

The migration policy in Island PGAs includes the 
following issues: 

• The topology that defines how islands are connected 
each other. This is a crucial issue for the 
performance of the PGA and it is the focus of this 
work. The topology has direct implication on the 
quality of the obtained solutions as well on the 
convergence of the GA. 

• The migration rate controls the number of 
individuals that are able to migrate at each 
generation. 

• The migration frequency determines the time 
interval (measured in generations) between each 
migration. 

• The migration scheme specifies which individuals of 
a given population can migrate, as well as which 
individuals of another population will be substituted 
once a migrant arrives. 

 
Some of the above issues of PGAs have been already 

investigated elsewhere [6],[8], whereas the objective of this 
work is to study specifically the effect of the topology and 
connectivity between islands of a PGA. For a further 
comprehensive study of several aspects of PGAs, see [2]. 

 

II. METHODOLOGY 
The study of the influence of the topology of a PGA in its 

performance was carried out using a classical problem as 
case study.  

 

A. The Traveling Salesman Problem 
 
The Traveling Salesman Problem (TSP) is a classical 

problem of combinatorial optimization [1]. The TSP is, 
probably, the most widely studied problem of this category 
and has been used for testing many algorithms and 
metaheuristics, specially those related to evolutionary 
computation [4],[7]. TSP is the problem of finding the 
shortest closed tour (shortest Hamiltonian cycle) through a 
given set of n points visiting each point exactly once and 
returning to the starting point, minimizing the total cost of 
the tour. Variants of the TSP have many practical 
applications, such as in X-ray crystallography, integrated 
circuits design, vehicle routing, scheduling, mobile 
computing, robotics, etc.  

 

B. Benchmarks 
 
For this study, three instances of the TSPLIB benchmark 

were chosen [5]. These instances, shown in Table 1, have a 
growing number of cities. Since TSP is a NP-hard problem, 
the difficulty of the instance grows exponentially with the 
number of cities. 

 
 



TABLE I.   INSTANCES OF THE TSP USED AS BENCHMARK 

Name Number of 
cities Optimal known solution 

Berlin52 52 7542 

St70 70 675 

Lin105 105 14379 

 

III. EXPERIMENTS 
 
An Island PGA was implemented in C++ programming 

language and run in a desktop computer. For all experiments 
the PGA had 8 islands and the parallelism was simulated 
running a full generation in each population in turn. Then, 
the migration policy is executed, according to the predefined 
topology and connectivity between islands (populations). 
The crossover and mutation rates were set differently for 
each island of the PGA (see Table 2). The remaining running 
parameters of the PGA were set exactly the same for all 
islands, as follows:  

• population size: 100 individuals, 
• selection method: stochastic universal sampling, 
• crossover operator: uniform order-based, 
• stopping criterion: 500 generations without 

improvement in the best-so-far solution 
(convergence). 

TABLE II.   SPECIFIC RUNNING PARAMETERS OF EACH ISLAND PGA 

 #1 #2 #3 #4 #5 #6 #7 #8 

pcrss 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 

Pmut 0.03 0.03 0.03 0.05 0.05 0.05 0.08 0.08 

 
The migration policy was defined as follows: each 10 

generations, two individuals emigrate from each population: 
the best individual so far and a randomly chosen individual. 
The incoming individuals substitute two randomly chosen 
individuals of the current population. It is important to note 
that, actually, the immigrant is a copy of the original 
individual, not itself. 

A total of seven different topologies were tested, as 
shown in Figure 4. The first topology (4a) is a star in which a 
single population receives immigrants from all other seven 
populations. The second topology (4b) is a single ring, where 
each population receives immigrants from only one 
neighbor, in the clockwise direction. The next topology (4c) 
is a double ring: each population receives immigrants from 
both neighbors. The fourth topology (4d) is a cube: all 
populations receive immigrants from the three closest 
neighbors. The next topologies (4e, 4f and 4g), each 
population is doubly-connected with five, six and seven 
neighbors, respectively. The direction of migration is not 
represented only for the sake of clarity. The total number of 
connections between islands grows according the topology, 
respectively, 7, 8, 16, 24, 32, 48, and 56. 

 

 

 
Figure 4.  Topologies for the PGA. 

IV. RESULTS 
Due to the stochastic nature of a GA, every experiment 

was run for 50 times and numerical results presented below 
refer to average values. All experiments were done in a 
desktop computer with Athlon processor at 1,1 GHz, under 
Suse Linux 9. 

A sequential GA (referred as SGA) was also run to 
compare with the parallel versions. The same convergence 
criterion of the PGAs was used for the SGA.  

Figure 5 presents the average processing time until 
convergence (according to the stopping criterion) as function 
of the topology. Overlapped with the vertical bars, there are 
tendency lines represented by the linear interpolation of the 
values 
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Figure 5.  Average convergence time as function of topology. 



The performance of the PGA is shown in Figure 6. 
Vertical bars represent the average results obtained relative 
to the optimal known value known (Table 1). It is important 
to notice that, in this work, we are not interested in achieving 
optimal results, but investigate the effect of the topology in 
the behavior of the island PGA. Therefore, no effort was 
done to fine-tune parameters of using special genetic 
operators. Tendency lines were not added for the sake of 
clarity of the plots. 
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Figure 6.   Average results as function of topology. 

 

V. DISCUSSION AND CONCLUSION  
Figure 5 shows that the SGA converged very quickly. 

Certainly, this is due to the loss of genetic diversity. It can be 
observed that all the remaining PGAs took much more time 
to reach convergence. This remarkable feature of PGAs is a 
direct consequence of the way islands explore the search 
space and stimulates genetic diversity for more time.  Recall 
that different values of crossover and mutation rates were 
used for each island. The tendency lines for all experiments 
show that as the number of connections of the topology 
increase, so increase the convergence time.  

As a consequence of the fast convergence of the SGA, 
the quality of its results were quite below those of the PGAs, 
as shown in Figure 6. Although not directly evident from the 
plots, the effect of coevolution in PGAs can be inferred: the 
improvement in quality of solutions in one population will 
induce improvements in other populations and so on. Figure 
6 shows a small, but consistent, increase in quality of 
solutions as the connectivity increases. Again, we emphasize 
that the focus of the work is not on obtaining optimal 
solutions. 

As expected, as the number of cities of the instance 
increases, the time needed to process each generation 
increases too. Taking Berlin52 as reference, St70 and Lin105 
needed approximately 50% and 160% more time to process a 
generation, respectively. This relationship did not change as 

the number of connections in the topology change. However, 
the time to process each generation did increased according 
the topology. In the worst case (from topology 4a to 4g) 
there was an increase of 22% in time. This was due to the 
time needed to process the incoming migrants. In general, 
the analysis of results, for the sake of this work, were more 
consistent using larger instances. Therefore, future work will 
use instances such as Lin105 or larger. 

The efficiency of PGAs is dependent on several running 
parameters, as well as on the migration policy. Other works 
in the literature focused some of these aspects, while the 
present work focused only the topology and connectivity of 
the PGA. 

Appart from the obvious conclusions that PGAs is 
always more efficient than the same SGA version, and that 
PGAs can maintain genetic diversity for longer time than 
SGA, results of this work suggest that as the connectivity of 
the PGA increases, a small, but consistent increase in quality 
of solutions will take place. 
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