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Abstract—The capacitated vehicle routing is a problem of
combinatorial optimization that has aroused major interest
because it is present in various areas (logistics, transport and
other) and, it is a problem of considerable difficulty. There are
currently various techniques that have been developed to try
to solve this problem efficiently. In this article, we present a
solution to this problem based on the strategy of combining
different single techniques to obtain the best results. Computing
experiments have been conducted on six instances of well-
known data sets available in literature.
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I. INTRODUCTION

A class of problems has aroused major interest, on the
part of reseedgehers, which are the problems known as non-
deterministic polynomial time (NP). These are problems
that, as the order of instances increases, do not present
feasible solutions through exact algorithms, due to them
being too time-consuming in their resolution.

One of these problems is the capacitated vehicle routing
problem [13]. It is a problem of major interest to the sci-
entific community because, besides dealing with a problem
that is present in various situations, it is a combinatorial
problem of considerable difficulty.

The problem consists in finding a set of lower cost paths
for a certain fleet of vehicles, so that these meet the demand
of all clients respecting the capacity of their vehicles.

The exact methods, in general, guarantee the optimal
solution to the problem, however they resolve only smaller
problems, which normally do not reflect the reality. As a
result of this fact, little attention has been given to the
seedgeh for optimal solutions. An alternative to the exact
methods are the heuristic methods.

The objective of the heuristic methods is to find an
approximate solution, according to some criterion of accep-
tance, so that the time spent in seedgehing for a solution
is acceptable. Considerable attention has been given to this
class of methods in the past few years.

II. CAPACITATED VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem was introduced into liter-
ature by Dantzig and Ramser [4], to solve a problem of
gasoline distribution to gas stations. The Vehicle Routing
Problem (or, simply VRP) is, in fact, the generalization of a
class of problems in which a number of routes for a fleet of
vehicles should be determined to serve a number of scattered
customers. Basically, we should find a number of paths with
a minimal cost that meet the demand of all the clients [13].

The Capacitated Vehicle Routing Problem (or simply
CVRP) is the simplest form of the VRP. In this form, a
fleet of vehicles, located at a single depot, should meet the
different demands of a group of consumers for the products
to be distributed. Figure 5 shows a group of CVRP routes.
The middle rectangle represents the depot and the smaller
rectangles represent the consumers.

The basic restrictions of the CVRP are:

« all the routes start and end at the depot;

o each consumer is visited at least once;

« the total demand of any route should not exceed capac-

ity Q of the respective vehicle involved.
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Figure 1. Example of a group of CVRP routes.

Formally, the CVRP can be described in the following
way: let G = (V,E) be a direct graph, with V' =



Vg, V1, ..., Uy, being a group of vertexes, that represent cities
or consumers, and F is the set of edges F = e;;, where
ei; = edge(v;,v;)Vu;,v5,4 # j that link the vertexes
(vi,vj). Vertex vy represents the depot, but, in some for-
mulations, the depot can be represented by vertex (n + 1).
A non-negative value c;; is associated to each edge and
represents the cost of travelling of consumer ¢ to consumer
7. Normally, the use of closed edges is not permitted.

Many approaches have been proposed to give approximate
solutions to the CVRP in the last years. Clark and Wright
[3] proposed one of the first heuristic methods to this
problem. Fisher [5] used a technique known as minimum K-
trees. Taillard [11] proposed parallel iterative methods. Toth
and Vigo [12] and Xu and Kelly [14] used tabu seedgeh.
Gambardella et al. [6] and Lopes et al. [9] proposed solutions
using the ant colony optimization.

III. HEURISTICS

The heuristics implemented in this study can be divided
into two types: Construction Heuristics and Improvement
Heuristics (or of Refinement).

Construction Heuristics generate a solution incrementally,
so that, in every iteration, a new element is selected to
integrate the model in seedgeh of the solution to the problem.

In Improvement Heuristics, in each iteration, improve-
ments are applied to a complete initial solution until a
stopping criterion is met. In this case, the initial solution
can be generated randomly or even through a more efficient
construction heuristic. The stopping criterion can be based
on the time of seedgeh, on the number of iterations or on
the stagnation of the algorithm through a certain number of
iterations.

The construction heuristic that was used in this study is
known as the Nearest Neighbor Heuristic (NNH). To refine
the solutions generated by the NNH, three improvement
heuristics were used: relocation using the Cheapest Insertion,
2-opt Inter-Route and 2-opt Intra-Route.

A. Nearest Neighbor Heuristic

The Nearest Neighbor Heuristic is one of the most intu-
itive and best-known methods of seedgeh for the solution
of the traveling salesman problem. The method consists of
constructing a route from a randomly chosen point and,
extending the route interactively by inserting a vertex that
has not been visited, which is nearest to the current vertex,
i.e. the nearest neighbor.

For the traveling salesman problem, where the lowest cost
route is being sought, the heuristic finalizes the construction
when there are no more vertexes to be included in the path.
At this point, the last connected vertex is linked to the
initial vertex closing the path, which is known as the nearest
neighbor tour. It can be clearly observed that the quality of
the solution reached depends on the choice of the initial
vertex. However, for instances of the TSPLIB, this heuristic

normally generates solutions of around 20-35% worst than
the optimal solution [7].

For the vehicle routing problem, where you try to find the
set of routes with the lowest cost, the heuristic is executed
many times for the construction of n paths. In the specific
case of the routing of limited capacity vehicles, the heuristic
ends the construction of a path when the insertion of a new
vertex in this path exceeds the capacity of the vehicle. The
last vertex tested, and which was not inserted in the previous
path due to the limited capacity of the vehicle, becomes the
first vertex in the following path.

Figure 2 shows some examples of solutions generated
through the Nearest Neighbor Heuristic.
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Figure 2. Examples of solutions generated through the NNH.

B. Relocation moves using the Cheapest Insertion Heuristic

A relocation movement consists in removing the con-
sumer from any route and inserting him in another position,
which can be either in the same route or in any other distinct
route.

The criteria for the selection of the consumer to be
removed and from the point in which he is inserted are
diverse. In this study, the choice of the consumer is made
randomly and the option for the point of his insertion is
made using the heuristic of the Cheapest Insertion [10].
This heuristic seeks the point where the new insertion of the
consumer has the least increment in the cost of the route. In
our case, the relocation of a consumer is tested in all of the
remaining routes according to the Cheapest Insertion and,
then the movement that promotes the best increment in the
quality of the solution is selected.

Figure 3 shows a relocation movement of a consumer
using this heuristic. The consumer that was relocated is
indicated by a circle in the figure.



Figure 3. Relocation of a consumer using the Cheapest Insertion Heuristic.

C. 2-opt Intra-Route Heuristic

The 2-opt intra-route method for refinement was initially
proposed for the traveling salesman problem by Lin and
Kernighan [8]. The heuristic consists initially in the random
choice of two non-consecutive edges, which belong to the
same route, as shown in figure 4. The two edges selected
are removed from the original path and their points are
reconnected so that they create a new path.

If the cost of the new path is less than the cost of the
original path, the new path is selected as the current solution.
This concept is known as the first improvement, i.e. in the
first movement in which the quality of the solution has
improved, the new route is adopted as the current solution
to the problem. The process ends when a certain stopping
criterion is reached, for example, a number of cycles with
no improvement in the current solution.
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Figure 4. Movement of the 2-opt Intra-Route Heuristic.

D. 2-opt Inter-Route Heuristic

The 2-opt inter-route route method of refinement is, in
fact, an expansion of the 2-opt intra-route heuristic. While
in the 2-opt intra-route heuristic two edges belonging to the
same route are selected randomly, in the 2-opt inter-route
heuristic two edges that necessarily belong to distinct routes
are selected randomly (figure 5).

The result of this exchange can lead to a route whose ve-
hicle capacity is disrespected. In this case, the new solution
is not considered.

The same first improvement concept can be adopted for
the 2-opt inter-route heuristic.

A stopping criterion should be adopted to end the algo-
rithm.

Figure 5. Movement of the 2-opt Inter-Route Heuristic.

IV. METHODOLOGY

In this study, a model was implemented with two distinct
steps. In the first step, a constructive heuristic was created
to generate an initial solution, and in the second step,
heuristics were used to improve the initial solution. A certain
predetermined criteria can make the algorithm return to the
initial step, thus configuring, a restart of the seedgeh.

To generate an initial solution, the nearest neighbor
heuristic is used, indicated in figure 6 by NN (Nearest
Neighbor). Beginning with this initial solution, the control
mechanism passes through the step of intensification, where
the initial solution needs to be refined. This is done through
the combination of three different heuristics: the relocation
of consumers using the cheapest insertion heuristic, the 2-
opt inter-route heuristic and the 2-opt intra-route heuristic.
In figure 6, these heuristics are indicated by H1, H2 and H3.

The process may execute in cycles the three heuristics pro-
posed until a certain stopping criterion is met, for example, a
certain number of cycles with no improvement in the quality
of the solution. If the step of intensification is concluded
and the refined solution does not meet a predetermined
evaluation criterion (indicated in the figure by CA), the
control mechanism returns to the initial state and the process
is restarted.

Control mechanism of the heuristics.

Figure 6.

The application was created so that it accepts text files
in the *.vrp format as input, containing the information of



the instance like dimension, maximum number of vehicles,
vehicle capacity, etc. The graphic interface (figure 7) shows
a map of the consumers and depot (numbered according to
the information of the vrp file) and the paths obtained as the
solution to the problem. The following control parameters
are available to the user:

o Number of vehicles: indicates the initial number of
vehicles necessary to solve the problem.

o Number of executions: indicates the number of cycles
that an algorithm should be executed.

o Criterion for restart: indicates the number of cycles
with no improvement in the refinement step so that the
algorithm can be restarted.

There are also checkboxes to select the heuristics that
should be part of the refinement step of the solution (relo-
cation with cheapest insertion, 2-opt inter-route and 2-opt
intra-route heuristics). With this resource, it is possible to
switch off some refinement heuristics in order to test the
best configurations.
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Figure 7. Graphic interface of the application.

V. EXPERIMENTS AND RESULTS

To evaluate the concept proposed, various tests were
conducted using benchmark data available on the Internet.
Five instances of Augerat et al [1] were used, (A-n32kS5,
A-n37k6, A-n53k7, A-n60k9 and A-n80k10) and one of
Christofides and Eilon [2] (E-n135k7). For each instance,
the numbers after n and k mean the number of cities and
number of vehicles, respectively.

For each one of the instances tested, various experiments
were carried out, in order to test different configurations and
values of the control parameters.

For the data reported in this study, the number of exe-
cutions of the algorithm selected was 20, and the number
of cycles with no improvement for the algorithm to restart
the process was three. All configurations were tested for the
experiments. In all the configurations, the initial solution was

generated from the nearest neighbor heuristic. For the step
of intensification, the following was adopted:

o Cfg 1 - only relocation with cheapest insertion.

o Cfg 2 - relocation with cheapest insertion + 2-opt inter-
route heuristic.

o Cfg 3 - relocation with cheapest insertion + 2-opt inter-
route heuristic + 2-opt intra-route heuristic.

The algorithm was executed 50 times for each configura-
tion proposed. Table I shows the average results obtained in
each configuration. The first column shows the name of the
instance, the second column, the optimal known until now,
and the remaining columns, the average results obtained.

For each configuration, the average value obtained and
the relative value (as a percentage) are shown, between
the value found using this method and the optimal known
solution. Table I shows the averages of the relative values
(as a percentage) in relation to the optimal known solution
for each one of the instances tested.

Instance Optimal Cfg 1 Cfg 2 Cfg 3
Average  Dif.(%)  Average Dif.(%) Average Dif.(%)
A-n32k5 784 848.34 8.21 831.86 6.10 795.84 1.51
A-n37k6 949 1022.84 7.78 1008.46 6.27 976.90 2.94
A-n53k7 1010 1151.72 14.03 1130.58 11.94 1079.20 6.85
A-n60k9 1408 1489.84 5.81 1475.18 4.77 1420.42 0.88
A-n80k10 1764 1964.40 11.36 1954.82 10.82 1871.88 6.12
E-n101k8 825 960.88 16.47 942.90 14.29 883.04 7.03
Table I

AVERAGE OF THE RESULTS IN ALL 3 CONFIGURATIONS.

Average Results Obtained
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Figure 8. Average of the results in all 3 configurations.

Table II shows the best results obtained with each config-
uration. Similar to table I, the results are shown in absolute
values and as percentages in relation to the optimal known
solution. Figure 9 shows a graph with the best results
obtained in relation to the optimal known solution for each
of the instances tested.



Instance Optimal Cfg 1 Cfg 2 Cfg 3

Average  Dif.(%) Average Dif.(%) Average Dif.(%)
A-n32k5 784 797 1.66 793 1.15 784 0.00
A-n37k6 949 970 2.21 967 1.90 953 0.42
A-n53k7 1010 1093 8.22 1039 2.87 1024 1.39
A-n60k9 1408 1426 1.28 1426 1.28 1386 -1.56
A-n80k10 1764 1893 7.32 1907 8.11 1807 2.44
E-n101k8 825 895 8.48 897 8.73 835 1.21
Table II

BEST RESULTS FOUND IN ALL 3 CONFIGURATIONS.

Best Results Obtained
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Figure 9. Best results found in all 3 configurations.

Table III shows the average time (in seconds) to reach the
terminal criterion with each configuration. Similarly, figure
10 presents a graph with the same information.

Instance Cfg 1 Cfg 2 Cfg 3
time (sec.) time (sec.) time (sec.)
A-n32k5 0.17 0.31 0.37
A-n37k6 0.25 0.52 0.56
A-n53k7 0.60 0.99 1.09
A-n60k9 0.86 1.31 1.39
A-n80k10 1.74 2.33 251
E-n101k8 2.88 3.54 4.04
Table III

AVERAGE TIME TO REACH THE TERMINAL CRITERION.

Average time to reach the terminal criterion
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Figure 10. Average time to reach the terminal criterion.

Figures 11 and 12 present the best results for instances A-
n80k10 and E-n101k8 graphically, for illustration purposes.

Figure 11. Best solution obtained for instance A-n80k10.

Figure 12. Best solution obtained for instance E-n101k8.

VI. CONCLUSIONS

The combination of different heuristic techniques has
shown to be an interesting alternative in the solution of
problems of great complexity. However, the correct choice
of heuristics and mechanism control is a decisive factor to
obtain good results.

As more heuristics were added in the step of intensifi-
cation, the time of processing increased, but the average
solution obtained increased in a much larger proportion.
From the first to the last configuration, the time of execution
increased 80% on average, while the quality of the solution
improved, i.e., the proportion of the results obtained in
relation to the optimal known solution, decreased on average
250%.

As a general result, configuration, Cfg 3 (combination of
the four heuristics) managed to obtain the best results in
relation to the other implementations. The strategy used has
a greater time of execution in relation to the others, however,
the results obtained were much superior.

The processing time to reach the terminal criterion in-
creases as the order of instances increases. However, it is
not possible to affirm if there is a direct relation between the



difficulty of the problem and the order of the instance. It is
possible to verify this fact by observing the average results
obtained for instances A-n53k7 and A-n80k10. Despite the
second presenting a larger number of cities and vehicles, the
algorithm obtained, on average, better results than the first.

The method adopted in the present study seems quite
promising even because a new optimal solution was found
for one of the instances tested (A-n60k9). The optimal
known solution until now was 1408, while in the present
study the optimal value obtained was 1386.

An improvement that can be obtained in future studies
is the implementation of other constructive heuristics in
order to compare the efficiency of the nearest neighbor,
adopted in this study. Another improvement that could be
incorporated is the implementation of a more sophisticated
metaheuristics (like the Simulated Annealing, Tabu Search,
or any other) in hybrid form with the other improvement
heuristics implemented in the step of intensification.
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