
 MAHATMA: A Genetic Programming-Based Tool for Protein Classification  
 

Denise F. Tsunoda 

Federal University of 

Parana 

dtsunoda@ufpr.br 

Alex A. Freitas 

University of Kent 

A.A.Freitas@kent.ac.uk 

 

Heitor S. Lopes 

Federal University of 

Technology 

hslopes@utfpr.edu.br 

 

Abstract 
 
Proteins can be grouped into families according to 

some features such as hydrophobicity, composition or 

structure, aiming to establish common biological 

functions. This paper presents a system that was 

conceived to discover features (particular sequences of 

amino acids, or motifs) that occur very often in 

proteins of a given family but rarely occur in proteins 

of other families. These features can be used for the 

classification of unknown proteins, that is, to predict 

their function by analyzing their primary structure. 

Experiments were done with a set of enzymes extracted 
from the Protein Data Bank. The heuristic method used 

was based on Genetic Programming using operators 

specially tailored for the target problem. The final 

performance was measured using sensitivity (Se) and 

specificity (Sp). The best results obtained for the 

enzyme dataset suggest that the proposed evolutionary 

computation method is very effective to find predictive 

features (motifs) for protein classification.   

 

1. Introduction 
 

This paper proposes a computational tool based on 

an evolutionary computation technique, more precisely 

a genetic programming method, specially devised for 

the automatic discovery of protein motifs using as 

input the primary structure of proteins.  

Proteins are responsible for several functions such 

as: transport of small molecules, sustentation, 

regulation, increase of reaction speed and others. 
Biological organisms have thousands of different types 

of proteins, which are constituted basically of amino 

acids linked in linear chains through peptide 

connections. The amino acid sequence of a protein, 

also called primary structure, is inextricably linked to 

its function [1]. Active intra-molecular forces like 

covalent peptide bonds and disulfide bonds cause 

proteins to assume specific three-dimensional shapes 

that are directly related to their biological functions [2]. 

Proteins are grouped into super families, families and 

subfamilies according to these biological functions 
[3,4,5].  

Despite the existence of several methods to solve 

the protein function prediction problem [6,7], it still 

remains one of the main challenges in the current 

post-genomic era. 
The proposed tool – MAHATMA – finds sequences 

of amino acids (features or motifs) that occur very 

often in proteins of a given class (family) but rarely 

occur in proteins of other classes. Those discovered 

motifs can be further used for the characterization of 

families of proteins as well as for the automatic 

classification of unknown-class proteins.  

 

2. Method 
 

Genetic programming [8, 9] was used mainly for its 

ability to perform adaptive and robust searches. 

Besides, as an evolutionary computation technique, it 

operates in parallel over a population of candidate 

solutions, allowing a simultaneous exploration of 

different regions of the search space in the solution 

domain. This characterizes a global search, less likely 

to get trapped in local optima, by comparison with 
many local-search methods. 

 

2.1. Basic algorithm and individual 

representation 
 

MAHATMA – Memetic Algorithm-based Highly 

Adapted Tool for Motif Ascertainment – is a genetic 
programming (GP) based tool [8, 10].  In GP – like in 

other types of evolutionary algorithms – each 

individual corresponds to a candidate solution to the 

target problem. In this work the goal of the GP method 

is to find a set of rules combining protein motifs 

which, when used as predictive features, lead to a high 

protein-classification accuracy. In this work, an 

individual is represented by a tree (Figure 1). There are 

three kinds of nodes: root node, intermediate nodes and 

leaf nodes. The root and intermediate nodes represent 

the logical operations: and, or and not. The leaf nodes 

are variable-length sequences of amino acids 
representing candidate protein motifs. 

 



 
Figure 1. MAHATMA individual representation 

Hence, each individual represents the antecedent (IF 

part) of an IF-THEN classification rule consisting of a 

motif formed by applying logical operations to amino 

acid sequences. For instance, the individual shown in 

Figure 1 can be read as the rule antecedent: IF “(a 

protein has the aminoacid sequence MD or MM) and (a 

protein has the aminoacid sequences LQE and IGA)”.  

 

Figure 2. MAHATMA flowchart 

The class predicted by the THEN part of a rule is 

computed by using a deterministic procedure that 

assigns the best possible class to the rule (individual), 

to be explained later. 

Figure 2 presents MAHATMA’s flowchart. 

 

2.2. Selection Method and Genetic Operators 
 

The system uses stochastic tournament selection, 

which works as follows [11]. First, k individuals are 

randomly drawn from the current population, with 

replacement, where k is determined as a percentage of 

the population size. In this work, k is 3% of the 

population size (this is a user-defined parameter). 

Then, the k individuals are prompted to “play a 

tournament”, where the probability of an individual to 

win the tournament is proportional to its fitness value. 
A copy of the winner of a tournament is then passed 

on, as a parent, to genetic operators such as crossover 

and mutation. Notice that each tournament selects just 

one parent, so that the tournament selection procedure 

has to be called N times to produce N parents, where N 

is the population size. The choice of k must be done 

carefully, since this parameter modulates the degree of 

the selective pressure. The larger k, the higher the 

selective pressure will be, possibly leading the 

algorithm to stick rapidly in a “local maximum”. On 

the other hand, a k too small will impose no selective 

pressure, turning the method into a random search. 
We emphasize that MAHATMA has two kinds of 

operators: structural operators (usual in GP [8]) and 

leaf operators (based on genetic algorithms [13]). The 

structural operators are: reproduction, crossover, 

mutation, editing and encapsulation.  

The reproduction operator just copies a selected 

individual to the next generation. The encapsulation 

keeps the best M motifs found throughout the 

evolutionary process, where M is a user-defined 

parameter. In other words, the encapsulation operator 

identifies a potentially useful subtree and gives it a tag 
so that it can be referenced and used later. 

The leaf operators modify the sequence of amino 

acids by genetic operators (e.g. crossover and 

mutation) in order to produce offspring [12, 13].  

 

2.2.1. Structural Operators  
These operators modify an individual’s structure. 

MAHATMA´s structural mutation introduces random 

changes in structures. For example, in the “current 

generation” structure in Figure 3, the AND at the 

intermediate node is selected as the mutation point. A 

subtree is randomly generated and inserted at that 
point, to produce the “next generation” structure. 

 

AND

AND

MD MM LQE IGA

OR

Root node

Intermediate nodes

Leaf nodes

Edges













BEGIN

Initialize number of generations (Gen=0), 

number of rules for each class (R), 

population size (PopSize)

Create initial population (P(0))

Evaluate fitness of each individual in 

population P(Gen)

Initialize individuals counter (i=0)

i=PopSize?

Add 1 to 

Gen

Structural 

crossover?

Perform

structural 

crossover

No

Yes

Update the solution list with the R best 

individuals for each class

Complete population

Termination 

criteria satisfied 

for run?

END

Yes

Yes

Select genetic operator, considering 

Cross_str_prob, Mut_str_prob, 

Cross_leaf_prob and Mut_leaf_prob

No

Structural 

mutation?

Perform 

structural 

mutation

1

Leaf 

crossover?

No

Yes

Leaf 

mutation?

Perform 

leaf 

mutation

Yes

Perform 

leaf

crossover

Perform 

reproduction

No

No

No

Yes

Add 2 

to i

1Add 1 to i



 

Figura 3. MAHATMA structural mutation operator 

The structural crossover operator produces new 

offspring taking parts from each of the two parents. It 

is also called sexual recombination. For example, in 
the “current generation” structure in Figure 4, one 

random point in each parent is select. Each of these 

points is a rooted subtree crossover point. Figure 4 

“next generation” shows the two offspring resulting 

from crossover. 

 

 

Figure 4. MAHATMA structural crossover operator 

Edition is an asexual operator and it recursively 

applies a set of simplifying operations in order to 

optimize the rule. If any function has no side effects, 

the edition operator will evaluate that function and 

replace it with the value obtained by the evaluation. 

Figure 5 shows an example of this operator. 

 

 
Figure 5. MAHATMA edition operator 

 

 

2.2.2. Leaf Operators  
These operators modify the contents of leaf nodes 

(sequences of amino acids representing motifs). 

MAHATMA uses the classical one-point crossover, 
where a crossover point is randomly selected and then 

the two parents swap their genetic material from the 

crossover point up to the right-hand end of the 

individual [10]. Notice, however, that this kind of 

crossover was originally designed for a fixed-length 

individual representation, unlike the variable-length 

motif representation used in this work. Therefore, this 

work has adapted the conventional one-point crossover 

to a variable-length representation, as follows. The 

crossover point (which is still randomly generated) 

indicates the percentage of the genome of each parent 

where the swapping of genes starts. The percentile 
(relative position) is the same for both parents, but the 

actual (absolute) position where the gene swapping 

starts can be different, since the parents can have 

different numbers of genes. This is illustrated in Figure 

6, where the crossover percentage is 60%. The absolute 

position of the crossover point for each parent is 

computed by multiplying 0.6 by the number of genes 

of the parent and rounding up the result. This results in 

crossover points at positions 4 and 5 in the first and 

second parents, respectively. The genetic material 

being swapped is shown in Figure 6. 
 

 

Figure 6. One-point crossover between variable-length 
parents: (a) original parents, (b) offspring 

The crossover operator introduced here also has 

another feature that distinguishes it from conventional 

crossover operators. This feature consists of 

monotonically increasing the fitness of the children 

with respect to their parents, and it was introduced to 

eliminate the potentially-destructive effect of crossover 

(which can produce offspring with fitness worse than 

the parents). This idea works as follows. After 

crossover has been done, the fitness of the offspring is 
compared to the fitness of the parents. If the former is 

worse than the latter, the crossover operation is ignored 

– i.e., the children are thrown away and the parents 

pass unaltered to the next generation. 

AND

AND

MM LQ IG IGA NAL

ILQOR OR

LEE LVI

Mutation

Current Generation Next Generation

Selected 

node Generated 

tree

AND

MM LQ IG

ILQOR

AND

OR

SM MM MV DM KG

AIWOR

OR

AND

FAA IGA ILS LQE

NNPNOT

Selected 

nodes

Crossover

Current Generation Next Generation

AND

SM MM MV

AIWOR AND

IGA ILS LQE

OR

FAA

NNPNOT OR

DM KG

AND

AND

MM MM IGA IGA

ILQ

OR

AND

IGA

Edition

Current Generation Next Generation

MM ILQNOT

NOT

R A Y L E G T H E A T R L C W

R A Y R L C W H E A T L E G T

(a)

(b)



This work introduces four kinds of mutation 

operators tailored for the variable-length sequence of 

amino acids represented by each individual, as follows: 

a) Addition to the Left (AE) – a letter – representing an 

amino acid – is randomly generated and inserted into 

the leftmost end of the sequence of amino acids; 
b) Addition to the Right (AR) – analogous to AE, with 

the difference that the new amino acid is inserted into 

the rightmost end of the sequence of amino acids; 

c) Multiple Mutations (MM) – each of the amino acids 

from a randomly-generated starting position up to the 

end of the sequence is replaced by another randomly-

generated amino acid. The starting position can be any 

position in the sequence except the first and the last 

positions.  

d) Removal (RM) – the amino acid in a randomly-

chosen position is removed from the sequence. Notice 

that after removal of an amino acid the sequence will 
still have at least three amino acids. If this condition is 

not met then this operator is not applied, and another 

mutation operator is applied instead. 

These mutation operators also have the feature of 

monotonically increasing the fitness of offspring with 

respect to the parents, as explained for the crossover 

operator. That is, if the fitness of the offspring is worse 

than the fitness of the parent then the offspring is 

thrown away and the parent is passed to the next 

generation. 

The system also has an extra genetic operator 
designed specifically for the target problem. This 

operator, called the expansion operator, performs a 

kind of local search in the solution space, so that the 

MAHATMA can be considered a hybrid method or a 

memetic algorithm [14]. The expansion operator works 

as follows. 

The basic idea is to increase the length of the motif 

represented by an individual – making that motif more 

specific to a given class – while at the same time 

increasing the motif’s ability to discriminate between 

different classes of proteins. The operator starts by 

randomly selecting a protein among those that contain 
the motif represented by the individual to be expanded. 

(If there is no protein with that motif, the operator is 

not applied.) The selected protein is then used as a 

source of amino acids to be inserted into the individual, 

as follows.  

First, the amino acid which is located immediately 

to the left of the motif in the protein is inserted into the 

leftmost end of the individual’s sequence of amino 

acids, and the individual’s fitness is recomputed. If the 

new fitness is worse than the previous one, then this 

operation is undone – i.e. the just-added amino acid is 
removed from the individual’s sequence of amino acids 

– and the expansion based on the current protein is 

terminated. Otherwise the just-inserted amino acid is 

kept in the individual, and the process continues. Next, 

the amino acid which is located immediately to the 

right of the motif in the protein is inserted into the 

rightmost end of the individual’s sequence of amino 

acids, and the fitness of the individual is recomputed. 

Again, if the new fitness is worse than the previous 
one, this operation is undone and the expansion based 

on the current protein is terminated. Otherwise the just-

inserted amino acid is kept in the individual, and the 

process continues. This process is repeated, 

considering amino acids that are 2,3,…., positions 

away from the motif in the current protein, alternating 

between amino acids to the left and to the right of that 

motif, until an attempt to further expand the individual 

would lead to a reduction in its fitness. 

Next, this process is repeated for all other proteins 

that also contain the individual’s motif and that belong 

to the same class as the class of the protein that was 
used in the first step of the operator.  

Hence, the expansion operator aims at generating 

the longest (most specific) motif for a given class, but 

notice that the expansion process never decreases the 

fitness of the individual being expanded. Therefore, 

this operator also has the feature of monotonically 

increasing the fitness of the offspring with respect to its 

parent, like the crossover and mutation operators. 

 

2.3. Fitness Function 
 

As mentioned earlier, an individual represents a 

protein motif that will be used as a predictor attribute 

by a given classification algorithm. Since the goal is to 

maximize classification accuracy, the quality of a motif 

is determined by its ability in discriminating enzymes 

of different classes. That is, ideally a motif should 

represent an amino acid sequence that occurs in many 
proteins of a given class and in no (or few) proteins of 

other classes. The fitness function was designed to take 

this basic principle into account. Hence, the fitness of 

an individual (motif) is computed as follows. 

At first, MAHATMA computes, for each class i, 

i=1,…,6 (for the enzyme dataset used in this work), the 

relative frequency of occurrence of the motif in that 

class. This is simply the number of proteins of the i-th 

class where the motif occurs in the protein’s primary 

sequence. Secondly, the EA computes, for each class i, 

a measure of the ability of the motif to discriminate 
between class i and the other classes, denoted Disci and 

given by the equation 1: 

 




















 




n

j

ijj

ii
k

F
FDisc

1

,

)1(
1

 

 

Equation 1. Fitness function 



 

where Fi is the relative frequency of the individual’s 

motif in the i-th class, n is the number of classes (n = 6 

in this work), and k is the number of classes that 

contain at least one protein whose primary sequence 

contains the individual’s motif. The rightmost term of 
the formula simply computes the average relative 

frequency of the motif in all the (n – 1) classes j with 

ji. This term is subtracted from 1, so that the term 
between square brackets is to be maximized – the 

higher its value, the better the value of Disci. Similarly, 

the value of Fi (the first term of the formula) is also to 

be maximized, so that a high value of Disci means that 

the motif occurs very often in class i but rarely in the 

other classes. 

Finally, once the value of Disci has been calculated 

for all classes i, i=1,…,n, the motif is associated with 

the class i that has the largest value of Disci, and that 

value is considered the fitness of the individual.  
Hence, the motif is considered as a characteristic 

pattern of proteins belonging to class i. In other words, 

the occurrence of that motif in a protein of unknown 

class will be considered, by the classification 

algorithm, as evidence that the protein belongs to class 

i. 

 

2.4. Result Designation 
 

As explained earlier, each individual represents a 

motif which is associated with a given class of 

proteins. Therefore, it is not enough to return, as 

solution found by the method, only the best motif 

found throughout the evolutionary process – as usual in 

conventional evolutionary algorithms. It is necessary to 

return a set of motifs, in order to perform a 

comprehensive classification of proteins into known 

families. In this work, we return the best M motifs 
found throughout the evolutionary process, where M is 

a user-defined parameter. 

The set of motifs returned is used for classification 

as follows. Each returned motif is interpreted as a 

binary attribute. For each protein in the data being 

mined, the value of a given attribute is true if its motif 

occurs in its primary sequence, and false otherwise. 

Hence, each protein can be described by a set of M 

binary attributes.  

Note that the result returned is used to create a new 

data set, containing data about the same proteins used 

to evolve the motifs, but representing those proteins at 
a higher-level of abstraction, with binary attributes 

corresponding to the presence or absence of motifs, 

rather than representing the proteins at the very low-

level of abstraction associated with their sequence of 

amino acids. Once this new, higher-level data set has 

been produced, the next step is to apply a classification 

algorithm to it, in order to finally produce a 

classification model that can predict the class of a 

protein based on the motifs occurring in it.  

We used a well-known five-fold cross validation 

method [15]. The average error rate on the test set 
(unseen during training) over all five folds is the so-

called cross-validated error rate.  

 

3. Computational experiments 
 

The data set to be mined consists of data about 

enzymes. The data was extracted from the PDB 
(Protein Data Bank), version 102, by identifying the 

PDB entries which had an EC number. This is an 

enzyme code provided by IUBMB (International 

Union of Biochemistry and Molecular Biology). From 

a data mining viewpoint, each EC number corresponds 

to a class, i.e., a specific protein function. More 

precisely, the EC number consists of four digits, where 

each pair of adjacent digits is separated by a dot (“.”), 

and it specifies the chemical reaction catalyzed by the 

corresponding enzyme. For instance, the enzyme 

Alcohol dehydrogenase has the number EC.1.1.1.1.  
Note that this is a hierarchical classification [16, 

17]  consisting of four levels, so that the first digit 

represents the most general classes and the last digit 

the most specific subclasses. In this work we address 

the prediction of the first digit only, corresponding to 

the prediction of the most general class to which the 

example belongs. We emphasize that this is still a 

useful, challenging prediction, and other projects have 

also focused on the prediction of the first digit only – 

see e.g. [18]. The first digit can take on six different 

values, corresponding to the following six different 

classes: EC.1 – oxidoreductases; EC.2 – transferases; 
EC.3 – hydrolases; EC.4 – lyases; EC.5 – isomerases 

and EC.6 – ligases.  

Some of the enzymes stored in the PDB contained 

non-standard amino acids, from which no useful motif 

can be discovered. Therefore, as part of our data 

preparation procedure, we have only retrieved from 

PDB the enzymes whose primary sequence has at least 

30 standard amino acids. After this simple filtering, the 

total number of proteins retrieved from the PDB was 

8,399, distributed across the six classes as follows: 

1,483 proteins in class EC.1; 1,766 in class EC.2; 
3,285 in class EC.3; 675 in class EC.4; 381 in class 

EC.5 and 209 in class EC.6. 

 

4. Computational results 
 

As described earlier, MAHATMA has several 

parameters. Hence, this paper describes experiments 



performed to find good values for some of these 

parameters. In these experiments the expansion 

operator was initially turned off, because this is a 

computationally expensive operator and we wanted to 

perform some relatively quick experiments to set other 

parameters.  
The initial parameter settings are: structural 

crossover and mutation probability: 60%, hill 

climbing: 10% probability, leaf crossover and mutation 

probabilities: 20% and 70%, stochastic tournament 

size: 3%, edition active and expansion deactivated. 

From now on these parameter values will be 

referred to as the initial values. Each result table 

reports sensitivity (Se), specificity (Sp), performance 

(P) (Se multiplied by Sp) [19] and hit rate (HR). We 

have bolded the best results (better performance). 

The first step was to find a good value for 

generation number (G) and population size (PS). The 
results are reported in Table 1.  

 
Table 1. Generation number and population size 

G PS Se (%) Sp (%) P (%) HR(%) 

20 500 87.28±0.12 43.35±0.31 61.51±0.21 79.03±0.74 
40 250 86.85±0.12  37.60±0.30 57.15±0.20 78.28±0.81 

50 200 86.87±0.12 42.37±0.36 60.67±0.26 77.40±1.12 
70 150 85.56±0.12 32.32±0.30 52.59±0.20 77.30±0.79 

 

The second step was to adjust structural crossover 

(SC) and mutation (SM) probabilities (%). The results 
are reported in Table 2. 

 
Table 2. Structural mutation and crossover probabilities 

SM SC Se (%) Sp (%) P (%) HR (%) 

30 60 87.17±0.12 38.37±0.32 57.83±0.22 78.68±0.99 
20 70 87.70±0.11 41.62±0.30 60.42±0.21 79.85±1.01 
10 80 86.70±0.12 36.18±0.32 56.01±0.21 77.76±0.98 
60 60 87.28±0.11 43.35±0.32 61.51±0.23 79.03±0.74 

60 30 87.18±0.11 42.09±0.32 60.58±0.23 78.40±0.92 
70 20 87.49±0.10 39.61±0.31 58.87±0.22 79.32±0.68 
80 10 88.31±0.10 42.34±0.28 61.15±0.20 81.34±0.87 

 

The third step adjusted the hill climbing (HC) 

probability (%). As shown in Table 3, higher values for 

this parameter do not assure better results. In fact, 

when we used 70%, the precision decreased 

significantly. This happens because this parameter does 
not guarantee the offspring’s improvement. It simply 

states that a parent will be copied for next generation if 

the offspring has lower fitness than that parent.  

 
Table 3. Hill climbing probability 

HC Se (%) Sp (%) P (%) HR (%) 

0% 87.31±0.11 42.38±0.30 60.83±0.21 79.19±0.89 
40% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
70% 87.12±0.11 38.52±0.34 57.93±0.24 77.98±0.85 

 

The fourth step fixed a good value for the parameter 

tournament size. This parameter was given special 

attention, because it is potentially one of the most 

important parameters of an evolutionary algorithm. 

The reason is that this parameter directly determines 

the selective pressure of the algorithm. The larger the 
tournament size, the larger the selective pressure. We 

have performed experiments with four different values 

of tournament size, namely 1%, 3%, 5% and 7% of the 

population size. The results are reported in Table 4. 

 
Table 4. Experiments to adjust the tournament size 

TS Se (%) Sp (%) P (%) HR (%) 

1% 86.85±0.14 37.60±0.34 57.15±0.27 77.87±0.89 
3% 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 

5% 87.10±0.14 42.31±0.39 60.71±0.31 77.99±1.08 
7% 86.94±0.13 42.43±0.37 60.74±0.28 77.05±0.71 

 
Surprisingly, the value of tournament size had 

virtually no impact in the classification accuracy. In 

any case, we decided to fix the default value of this 

parameter to 3%, since this value led to slightly higher 

classification accuracy.  

Having fixed this parameter, the next experiment 

evaluated the influence of the expansion operator in the 

classification accuracy. The expansion operator was 

somewhat effective, leading to a slight increase of the 

classification accuracy (performance of 64.69%), but 

the processing time increased exponentially (twenty 
two hours instead of thirty seven minutes).  

Finally, we performed experiments to determine the 

influence – in the classification accuracy – of another 

important parameter of the algorithm, the number of 

motifs (NM) (or rules) used for each class. In the 

experiments reported so far this parameter was set to 5 

motifs per class. The new experiments evaluated four 

different values of this parameter, namely 1, 5, 10, 15 

and 20, which produced the results shown in Table 5. 

 
Table 5. Effect of number of motifs per class 

NM Se (%) Sp (%) P (%) HR (%) 

1 86.15±0.17 28.76±0.25 49.78±0.15 78.42±0.91 
5 87.26±0.16 35.68±0.27 55.80±0.16 81.19±0.87 
10 86.65±0.12 47.09±0.34 63.88±0.25 76.95±0.84 
15 87.64±0.15 41.98±0.30 60.66±0.21 80.25±0.75 

20 87.11±0.16 41.61±0.31 60.20±0.22 81.15±0.73 

 

As it can be observed in Table 5, there was some 

variation in predictive accuracy when the number of 

motifs (rules) changed. However, three values of this 
parameter were considerably more successful than the 

value of 5 which had been used in earlier experiments. 

Hence, it is important to return a larger number of 

motifs per class, in order to give more predictor 

attributes to the classification algorithm. 

 



5. Results and discussion 
 

We have proposed a system based on a modified 

Genetic Programming method for motif discovery, 

aiming to classify unknown-class proteins.  
We have performed experiments to adjust the 

parameters of our method in an enzyme subset of the 

PDB, containing 8,399 enzymes, distributed across the 

six classes as follows: 1,483 proteins in class EC.1; 

1,766 in class EC.2; 3,285 in class EC.3; 675 in class 

EC.4; 381 in class EC.5 and 209 in class EC.6. 

The proposed MAHATMA system uses not only 

conventional GP operators, but also operators 

specifically designed for the problem of finding protein 

motifs. Despite the complexity of the algorithm, the 

use of these problem-specific operators was very 

beneficial in the sense that it allowed MAHATMA to 

reach better motifs (motifs with higher fitness). 

The predictive performance was measured using 

sensitivity (Se) and specificity (Sp) and best results are 

86.65±0.12 and 47.09±0.34, respectively. 

Future work includes more extensive tests of the 

system in datasets involving enzymes’ secondary 

structures [20] and comparisons with other methods. 

Also, it is intended to apply this system to alternative 

sets of proteins, like transmembranes, globins, 

hormones and others. 
 

6. References 
 
[1] Lehninger A.L., Nelson D.L. and Cox M.M., Principles 
of Biochemistry. 2nd ed. Worth Publishers, New York, 1998. 

[2] Branden, C.I., Tooze, J. Introduction to protein structure. 
Garland Publishing Inc, New York, 1999.   

[3] I. Friedberg., “Automated protein function prediction – 
the genomic challenge”. Briefings in Bioinformatics, vol. 7, 
no. 3, 2006, pp. 225-242. 

[4] B. Rost, J. Liu, R. Nair, K.O., Wrzeszczynski and Y. 
Ofran, “Automatic prediction of protein function”. CMLS 
Cellular and Molecular Life Sciences, n. 60, 2003, pp. 2637-
2650. 

[5] L.J., Jensen, R. Gupta, N. Blom, D. Devos, J. Tamames, 
C. Kesmir, H. Nielsen, H.H. Staerfeldt, K. Rapacki, C. 
Workman, C.A.F. Andersen, S. Knudsen, A. Krogh, A. 
Valencia and S. Brunak, “Prediction of human protein 
function from post-translational modifications and 
localization features”. J. Mol. Biol., 319, 2002, pp. 1257-
1265. 

[6] H. Chua, W. Sung, and L. Wong, “Exploiting indirect 
neighbors and topological weight to predict protein function 
from protein interactions”. Bioinformatics, v. 32, n. 13, 2006, 
pp. 1623-1630. 

[7] X.-M. Zhao, Y. Wang, L. Chen, and K. Aihara, “Protein 
function prediction with high-throughput data”. Amino Acids, 
v. 35, n. 3, 2008, pp. 517-530. 

[8] Koza, J.R. Genetic Programming – on the programming 
of computers by means of natural selection, The MIT Press, 
Cambridge, 1992.  

[9] Koza, J.R. Genetic Programming II: Automatic Discovery 
of Reusable Programs. The MIT Press, Cambridge, 1994. 

[10] W.H. Hsu, “Genetic Programming”. Encyclopedia of 

Data Warehousing and Mining. In: Wang, J. (Ed.), 2nd ed. 
 Idea Group Inc. Global, 2009, pp. 926-931. 

[11] Banzhaf, W., P. Nordin, R.E. Keller, and F.D. Francone, 
Genetic Programming: an Introduction, Morgan Kaufmann, 
San Mateo, 1998. 

[12] Goldberg, D.E., Genetic Algorithms in Search, 
Optimization & Machine Learning, Addison-Wesley, 
Reading, 1989. 

[13] Larose D.T., Data Mining Methods and Models, John 
Wiley & Sons, Hoboken, New Jersey, 2006. 

[14] Moscato, P. On evolution, search, optimization, genetic 
algorithms and martial arts: towards memetic algorithms. 
Technical Report Caltech Concurrent Computation Program, 
n. 826, California, 1989. 

[15] Witten I.H., Frank E., Data mining: practical machine 
learning tools and techniques, 2nd ed., Elsevier, Morgan 
Kaufmann, USA, 2005. 

[16] A.A. Freitas and A.C.P.L.F. de Carvalho, “A Tutorial on 
Hierarchical Classification with Applications in 
Bioinformatics”. In: D. Taniar (Ed.) Research and Trends in 
Data Mining Technologies and Applications, Idea Group, 
2007, pp. 175-208. 

[17] N. Holden and A.A. Freitas, “Improving the 
Performance of Hierarchical Classification with Swarm 
Intelligence”. In: E. Marchiori and J.H. Moore (Eds.) Proc. 
Sixth European Conf. on Evolutionary Computation, 
Machine Learning and Data Mining in Bioinformatics 
(EvoBio-2008), Lecture Notes in Computer Science, n. 4973, 
2008, pp. 48-60. 

[18] W. Weinert and H.S. Lopes, “Neural networks for 
protein classification”. Applied Bioinformatics, v. 3, n.1, 
2004, pp. 38-41. 

[19] Lopes, H.S. Analogia e Aprendizado Evolucionário: 
uma Aplicação em Diagnóstico Clínico. PhD Thesis, Brazil, 
1996. 

[20] K.H. Kaminska, K. Milanowska and J.M. Bujnicki, The 
Basics of Protein Sequence Analysis. In: J.M. Bujnicki (Ed.) 
Prediction of Protein Structures, Functions, and Interactions, 
2009, pp. 1-38. 


