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Abstract—The amount of data produced by the several
genomic sequencing projects has increased dramatically in
recent years. One of the main goals of bioinformatics is to
analyze biological data aiming at identifying genes. The splice
junction recognition problem is an important part of the gene
detection problem. This work evaluates the performance of two
classification models, derived from the Weight Matrix Model,
when applied to the splice junction recognition problem. Two
splice junction data sets were used in this work and some
measures of predictive accuracy were reported. Based on the
experiments, classification thresholds were established, which
can be useful for further implementation of an automatic gene
detection system.

Keywords-Gene detection; DNA; Weight Matrix Model;

I. INTRODUCTION

In living organisms the DNA encodes the genetic infor-
mation with a sequence of nucleotides, namely, Adenine
(A), Cytosine (C), Guanine (G) and Thymine (T). Such
information is organized in genes along DNA chains. Genes
are sequences of nucleotides that are transcribed into mRNA
(messenger RNA) and later translated into proteins. This
process is called gene expression.

The number of genes in the three billion base pairs of the
human DNA is controversial, and it is estimated between
20,000 and 42,000 [18], [23]. Supposing an average of
30,000 genes, this means that only 1.1% of the human DNA
seems to contain useful coding information [11]. However,
there might be a large number of unknown human genes that
still remains to be identified. Because of this fact, several
gene detection approaches have been proposed all over the
world in the recent years. Today, the gene prediction problem
is still an open issue, for which there is no definitive method.

The objective of this work is to study the performance
of two Weight Matrix Models for the detection of donor
and acceptor signals in DNA, and establishing optimal
classification thresholds for them.

Although there are known methods with better results
than the WMMs, they were chosen for this study due to
its simplicity and, mainly, by the intrinsic parallelism of
the model. These features allow their further exploration
in massive parallel architectures, such as FPGAs (Field
Programmable Gate Array) and GPUs (Graphic Processing
Unity), thus opening new possibilities for high-performance
gene prediction systems [12].

A. Gene detection

A relevant problem in Molecular Biology is the identifi-
cation of genes in DNA sequences. At the DNA level, there
are basically three strategies for identifying genes: methods
based on the search for similarities, methods based on the
search for biological signals, and content-based methods.

The search for similarities is the oldest approach used for
identifying genes. The principle is based on the trend that
some coding regions are conserved throughout the evolution.
This method is summarized as a search for similar regions
among sequences from a known database and the sequence
under study. The disadvantage of this method is that the
quality of results depends on the quality of the database
used in the search.

The principle underlying the search for signals is the
investigation for specific sequences involved in the gene
expression process. The search for promoters, start and stop
codons, splice sites are some examples in this approach.
Techniques such as the search for a consensus sequence,
weight matrix models, neural networks are some of the
methods used for this task. The main difficulty for these
methods is that the signals are not always present in DNA
sequences, or when they are, they cannot be promptly
recognized.

Content-based methods perform a search for segments that
have the same statistical properties of regions of DNA that
encode proteins. To discriminate coding from non-coding
regions only statistics-based models are used. The search is
independent of databases for comparison, as in the search
for similarity methods, and this is the main advantage of
content-based methods.

B. Splice junction recognition problem

There are some differences in the cell structure between
eukaryote and prokaryote organisms. Eukaryotes are com-
plex organisms (such as humans) that have a membrane
surrounding the nucleus of their cells, and their genetic
material is delimited within this nucleus. On the other hand,
prokaryotes are simpler organisms (such as bacteria), and
they have their genetic material dispersed in the cell. The
main difference between eukaryotic and procaryotic gene
expression is the splicing of some regions of the genetic
material. The process of splicing is a result of the fact that



eukaryote genes are composed of two types of segments:
exons and introns. Exons are regions of the genetic material
that encode proteins. Introns are regions that intermediate
exons and do not encode proteins, and thus have to be
removed from the mRNA to synthesize proteins. Overall,
the function of introns is not yet fully clarified.

Splice junctions are the boundary points where the process
of splicing occurs. The transition from an exon to an intron
is commonly called exon/intron site (EI). Similarly, the
transition from an intron to an exon is called intron/exon
site (IE). The fact that causes the process of splicing is
the presence of two signals in the chain: the donor signal
for exon/intron sites and the acceptor signal for intron/exon
sites.

Splice junction recognition is an important part of the
eukaryote gene structure prediction process and, basically,
it is a problem of detecting donor and acceptor signals.
In the last years, several computational models have been
proposed for detecting donors and acceptors. For instance,
Towell [21] and Rampone [14] employed Artificial Neural
Networks, Gelfand & Roytberg [8] used a dynamic pro-
gramming approach, Cai et al. [5] used Bayes Networks,
and Lopes et al. [12] used decision-trees. Other approaches
based on statistical models were also proposed and, amongst
them, possibly the most important model is the Weight
Matrix Model (WMM), by Staden [17]. Derivations of this
model are: Weight Array Model (WAM), proposed by Zhang
& Marr [24], Windowed Weight Array Model (WWAM)
and Maximum Dependence Decomposition (MDD), both
proposed by Burge [3].

II. WEIGHT MATRIX MODELS

Position Weight Matrices (henceforth, PWM) are tradi-
tionally used to represent small sequence patterns that are
related with some molecular functions. In recent years, many
works have used PWMs for several problems in bioinformat-
ics. For instance, Staden [17] used PWM for representing
some nucleotide sequence signals; Senapathy [15] used them
to predict splice sites signals; Bucher [2], Ficket [7] and
Wingender [22] represented promoter elements; Gershenzon
[9] used PWMs for detecting DNA/protein binding sites.

There are several approaches for building PWMs. How-
ever, the most widely used method was proposed by Staden
[17]. Using a collection of aligned sequences by some signal,
a nucleotide frequency table is constructed by counting the
number of times that each base occurs at each position. This
frequency table has four rows (one row for each nucleotide:
A, C, G and T) and the number of columns are equal to the
motif signal length.

The counting in the table can be converted into frequen-
cies. For example, if 137 out of 303 sequences have a T in
the first column, the frequency of T in this column is 0.45.
Similarly, for the CAP Signal, a C occurs in the second
column with frequency 1.00, and so on. Such frequencies

matrix indicates the probability that a given base appears at
each position of the signal. Equivalently, it can said that a
PWM is a classical zero-order Markov model per position.

To measure the similarity of a new sequence to the
constructed PWM it is necessary to multiply the probabilities
of each nucleotide at each position in the matrix - see
equation (1). The larger the similarity of X with the training
data, the higher the Py psps(X) scores.

L
Py (X) = [ [ pia:) (D
i=1

The frequencies matrix of each nucleotide at each se-
quence position can be converted into log odds scores. The
odds score is simply the frequency observed in the column
divided by the frequency expected, that is, the background
frequency of the base, usually averaged over the whole
genome. Then, the odds score can be converted to a log odds
score by taking the logarithm of the odds score, usually to
the base 2 and, sometimes, to the natural logarithm. This
operation results in the well-known Weight Matrix Model
(WMM). An example of WMM is illustrated in Table I,
corresponding to the data presented by [2].

-2 1 0 1 2 3 4 5
W)  -1.14 526 0.00 -1.51 -0.65 -055 -091 -0.82
w(C) -1.16 000 -521 -041 -045 000 -029 -0.18

w(@G) -075 526 -521  0.00 -456 -086 -038 -0.65
w(T) 000 -526 -274 -029 000 -036 0.00 0.00

Table I
WEIGHT MATRIX MODEL FOR THE CAP SIGNAL [2].

For measuring the similarity of a new biological sequence
using a WMM it is necessary to sum the log odds score of
each nucleotide at each position in the matrix, using equation
2.

Score(X) = Zsi(:ﬁi) (2)
i=1

The WMM model does not consider the dependence
between positions (nucleotides or amino acids), in a chain
of DNA or protein. A very common WMM derivation called
Weight Array Model (WAM), proposed by Zhang & Marr
[24], takes into account the dependencies between adjacent
positions in a sequence. In the WAM, a final score is
assigned to each position in the sequence for each word
with length k& (when k& = 1, the two methods are the
same). A variant of WAM, called Windowed Second-Order
WAM Model (WWAM), proposed by Burge [3], has some
modifications when training the model in order to reduce
the incidence of sampling error.

Another very popular derivation model of the WMM is the
Maximum Dependence Decomposition (MDD), designed by
Burge [3]. The MDD model consists of two components: a
decision tree, which first finds the nucleotides at important



positions with large amount of influence over others nu-
cleotides, and a simple WMM model at each leaf of the
tree.

Currently, WMMs and derivations are widely used in
many signal searching applications. Softwares such as
Genscan, Twinscan, N-Scan, TigrScan, GlimmerM, and
databases, such as TRANSFAC [22], use WMMs and deriva-
tions to represent a large number of signals.

All the cited models allow searching DNA sequences to
find sites similar to the original set of known sites, typically
using a cutoff value or score threshold. However, such cutoff
is not clearly defined and is strongly dependent of the data
used.

The processing time of the WMMs can be drastically
reduced when implemented in massive parallel architectures.
Using such this approach, operations that have no depen-
dence can be done at the same time, increasing the overall
performance. Figure 1 shows a simple example of how this
reduction can be achieved with a parallel implementation.
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Figure 1.

Parallel operations using a FPGA and a GPU.

III. METHODOLOGY
A. Data sets

Two data sets of splice junctions were considered in this
work. The first one was taken from the well known UCI-
Machine Learning Repository [10] and it is a database of
sequences from primates. Although this database contains
3190 instances in total, some small changes were done in
this work. First, all sequences containing values different
from the standard nucleotide symbols A’, ’C’, °’G’ and °T’
were removed. Next, sequences were randomly sampled and
removed in order to obtain a database with the number of
instances per class in a specific proportion: 25% for donors,
25% for acceptors and 50% to other sequences, so as to keep
the data set approximately equal to the original one. Such
balance between classes also avoids bias in the training of
classifiers.

The second database used was taken from the Homo
Sapiens Splice Sites Data set (HS3D) [13]. This database
contains originally 5947 for human DNA sequences with

known splice sites (donors and acceptors) and 635666 se-
quences with false splice sites. For this data set, 11184
sequences were randomly chosen, distributed in the same
proportion as before: 25% for donors, 25% for acceptors and
50% for false splice sites. Table II summarizes the data sets
used in this work, showing the total number of instances (#
Instances) and the class distribution (# per Class). EI, IE and
N stands for Exon-Intron junctions (donors), Intron-Exon
junctions (acceptors) and false splice sites, respectively.

Data set # Instances # per Class (%)
EI (25%) IE (25%) N (50%)
UCI 3048 762 762 1524
HS3D 11184 2796 2796 5592
Table 11

SUMMARY OF THE TWO DATA SETS USED IN THE EXPERIMENTS.

B. Predictive accuracy measures

Sensitivity and specificity are two predictive accuracy
measures that have been frequently used in the classification
literature, especially in bioinformatics [4].

Basically, sensitivity measures the proportion of actual
positives instances which are correctly identified as such, and
specificity measures the proportion of negatives instances
which are correctly identified. Eq. 3 shows how sensitivity
(Sn) and specificity (Sp) are computed, based on four
possible outcomes of a classifier, as follows:

o T'P: true positive - number of positive instances that
were correctly classified as positive;

o F'N: false negative - number of positive instances that
were wrongly classified as negative;

o F'P: false positive - number of negative instances that
were wrongly classified as positive;

o T'N: true negative - number of negative instances that
were correctly classified as negative.

TP TN

S = TP T EN) V= TN T FP)

(TP + FN) )

Both, sensitivity and specificity, are defined in the range
[0..1], with perfect prediction occurring if and only if both
(Sm and Sp) are equal to 1. However, it is possible to have
a classifier with high sensitivity and a low specificity, or
the opposite. It is easy to observe that, alone, either Sn
or Sp, are not a good measure of accuracy. Therefore, it is
necessary to devise a single value of overall accuracy to sum-
marize both measures. Such a measure, used for two-class
problems, is the Matthews Correlation Coefficient (M CC')
(Eq. 4), regarded as a balanced measure and frequently used
in bioinformatics [1],[19].

(TP x TN) — (FN x FP)

/(TP + FN) x (TN + FP) x (TP + FP) x (TN + FN)
)

MCC =




Another way to evaluate a classifier is the ROC graph. A
ROC (Receiver Operating Characteristics) graph is an useful
technique for comparing classifiers and observing visually
their performance. This kind of graph is commonly used
not only in decision making, but also in machine learning,
data mining and bioinformatics [16]. In a ROC graph axes
x and y are defined, respectively, as 1 — Sp and Sn. These
axes can be interpreted as the relative trade-offs between the
benefits and costs of a classifier. Therefore, the ROC graph
can be represented by a single ROC point for each non-
parametric classifier, corresponding to their (1 — Sp, Sn)
pairs [6]. When comparing classifiers using a ROC graph,
the best possible prediction method would be that lying as
close as possible to the upper left corner (coordinates (0, 1)),
representing 100% sensitivity and 100% specificity.

IV. COMPUTATIONAL EXPERIMENTS AND RESULTS

Two different models, proposed by Burge [3], were chosen
and evaluated in this work: the Maximal Dependence De-
composition (MDD), for Donors signals; and the Windowed
Weight Array Model (WWAM), for Acceptors signals. Both
are part of several programs for gene prediction currently in
use.

The matrices and the source code of the routines used
in this work were taken from the N-Scan, which is a well
known gene prediction software developed at Washington
University (USA). N-Scan is open source and it is available
for download at http://mblab.wustl.edu. Since these matrices
are found with the N-Scan source code, the reproducibility of
this work is possible. Furthermore, N-Scan is, possibly, the
open software that currently achieves the highest accuracies
in gene prediction.

Both models (MDD and WWAM) were run with the two
data sets (UCI and HS3D) varying the prediction threshold
from -80 to 100, in unity steps. For each threshold, the
corresponding TP, FP, FN and TN values obtained from
classification were stored. Then, Sp, Sn and MCC were
computed.

Figure 2 shows two plots resulting from the evaluation
of the MDD model applied to the UCI data set. The first
one shows the behavior of Sp, Sn and MCC with different
threshold values. The second is the ROC graph for the same
model and data set.

Figure 3 shows the plots corresponding to the evaluation
of the MDD applied to the HS3D data set. It is possible to
observe that the behavior of Sp, Sn and MCC is similar to
the first case (MDD applied to the UCI data set). Observing
the curve of MCC, it is possible to note that the maximum
value of Sp, Sn and MCC is approximately equal for the two
cases. However, the ROC graphics shows that this model is
more sensitive to the threshold when applied to the HS3D
data set. This is due to the fact that this data set is more
challenging for the classifier method.
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Figure 2. MDD applied to the UCI data set.
Data set Best threshold Sp Sn MCC
UCI 41 0.979 0.948 0.92330
HS3D 44 0.936 0.936 0.83948
Table III

BEST THRESHOLDS FOR THE DONORS PROBLEM (MDD MODEL).

Table III shows values for the best cost-benefit for this
model. The best classification threshold were very similar
for both data sets (namely, 41 and 44).

The same methodology was employed using WWAM.
Figure 4 shows two plots resulting from the evaluation of the
WWAM model applied to the UCI data set. The first shows
the behavior of Sp, Sn and MCC, and the second is the ROC
graph. Similarly, figure 5 shows the plots corresponding to
the evaluation of the WWAM applied to the HS3D data set.

Data set Best threshold Sp Sn MCC
UCI 31 0.969 0.936 0.89618
HS3D 50 0.933 0.877 0.79133

Table IV
BEST THRESHOLD FOR THE ACCEPTORS PROBLEM (WWAM MODEL).

Results for the second model were somewhat similar to
those of MDD, except for the best threshold. In this case
the best thresholds were not so close each other than in
the MDD evaluation. Table IV shows that the best situation
occurs for a threshold around to 31 for the UCI data set,
and around to 50 for the HS3D data set.

The comparison of the ROC graphs confirms the fact
that the HS3D data set poses a more difficult challenging
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Figure 3. MDD applied to the HS3D data set.
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Figure 4. WWAM applied to the UCI data set.

classification problem than the UCI data set for both, donors
and acceptors.
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Figure 5.  WWAM applied to the HS3D data set.

V. CONCLUSIONS

This paper investigated the application of two WMM-
derived techniques for the splice junction recognition prob-
lem: Maximal Dependence Decomposition (MDD) and Win-
dow Weight Array Model (WWAM). The open issue of
establishing a classification threshold was addressed for both
models, evaluated with two different data sets.

The measures of predictive accuracy using Sn, Sp and
MCC, as well as the ROC graph enable a good evaluation
of different experiments. In particular, MCC offers a good
trade-off between sensitivity and specificity, thus suggesting
its suitability for other similar bioinformatics classification
problems.

Our experiments showed a small difference in perfor-
mance of the two methods, MDD and WWAM, in favor
of the first one. However, results are not conclusive, since
two sub-problems were addressed. Although it is clear
that both methods showed satisfactory performance, more
experiments shall be done.

The direct comparison of results obtained here with other
classifiers for the same data sets (such as [21]) may lead
to interpretation errors, since different partitions of the data
sets and cross-validation procedures can be used. However,
as shown in [19] probabilistic-like methods, such as WWAM
and MDD, tend to achieve better predictive accuracy than
other methods for biological sequences.

Although both data sets are related to the same problem,



and are relative to the same subset of organisms (pri-
mates/humans), the original methodology for constructing
them was, possibly, different each other. This fact is clearly
reflected in the difference in performance of the classifiers
for the two data sets. The UCI data set turned out to be
easier to be classified than the HS3D for both, Acceptors
and Donors signals.

The thresholds reported in this work are valuable infor-
mation that can be later used in the splice junction problem,
in the scope of an automatic gene detection system. It
is important to recall that this work does not aim to be
a complete gene prediction system. Instead, we evaluated
the utility of different WMM methods for an important
sub-problem of gene prediction and, based on our experi-
ments, we established optimal classification thresholds. In
fact, these important results will drive further research in
improving the classifiers to be used in a gene prediction
system. The present study encourages the development of
new experiments using other data sets and instances, partic-
ularly aiming at some kind of data-independent automatic
threshold prediction.
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