

1

AUTONOMOUS ROBOT NAVIGATION ON A FUZZY MAPPED ENVIRONMENT
THROUGH NEURAL NETWORKS, WITH EVOLUTIONARY PATH PLANNING

João A. Fabro, Heitor S. Lopes, Lúcia Valéria R. Arruda

Federal University of Technology Paraná – UTFPR
Av. Sete de Setembro, 3165 – 80230-901 Curitiba (PR), Brazil

fabro@utfpr.edu.br, hslopes@utfpr.edu.br, arruda@cpgei.cefetpr.br

Abstract: This work describes a system for path planning
and navigation of autonomous robots. The system uses a
fuzzy model of the environment, in which path planning is
done by a genetic algorithm, and the navigation is
accomplished by means of a reactive subsystem controlled
by neural networks. The fuzzy mapping technique proposed
here has the advantage of modeling the imprecision of the
obstacles, and also gives enough information about the
distribution of obstacles so as to improve the genetic search
for good paths. The neural controller is responsible for carry
out the planned trajectory, and avoid new obstacles that are
not present in the map, and cope with interactions with other
dynamic obstacles (such as other mobile robots, or people)
that crosses its path. The proposed architecture is hybrid,
integrating map-based and sensor-based navigation. Some
experiments using the Khepera simulator are reported for
environments with different complexity. The promising
results suggest the continuity of the work.

Keywords: Fuzzy mapping, trajectory planning, genetic
algorithms.

1. INTRODUCTION

Autonomous navigation is accomplished by path
generation and control of its execution. In general terms the
control system must execute a given task, such as reaching a
target, while avoiding obstacles. Thus, it is expected that an
autonomous navigation system be able to find a path from
the starting position to the target position, navigating
through this path, avoiding collisions with other objects.

The intrinsic difficulties of the autonomous navigation
problem have interested many artificial intelligence
researchers who have found it to be of a considerable
challenge.

Navigation control of autonomous mobile vehicles is a
research area that can be roughly divided into two main
approaches: model based path planning, and sensor based
navigation. Model based path planning is based on
environmental knowledge, and many approaches, ranging
from mathematical analysis and path calculations [1], to
symbol manipulation on a knowledge base about the
environment [2] are available. These methods can solve the
path planning problems for environments completely
known, with off-line simulations. When facing real-time
situations and unknown environments, or with dynamically
changing environments, these methods cannot be used. To

overcome these difficulties, methods considering real-time
environment information from sensors must be considered.
Based on sensor readings, the mobile vehicle should be able
to perform local path planning and take appropriate control
actions. Borenstein and Koren [3] introduced the virtual
force field method to solve this problem. However, his
method has problems in finding force coefficients in
cluttered environments which cannot be described as a
mathematical model. Brooks [4] presented a behavioral-
based approach, called the subsumption architecture, which
is based on pre-specified behavior encoded in task-achieving
modules. This architecture has succeeded in navigating in
unknown environments, but depends highly on the pre-
defined knowledge structures implemented by each module.
The success of this approach depends upon how complete
the behavior can be described beforehand.
 Many other approaches have been developed, mainly
using fuzzy sets and neural networks. The fuzzy set
approach has the advantage of treating uncertainty and
imprecision using simple rule bases [5]. The knowledge
must also be provided in the form of fuzzy IF-THEN rules.
However, even after rule definition and refinement, it is
generally difficult to treat all possible cases with specific
rules. To overcome these difficulties, neural networks began
to be used. The main advantage of the neural network
approach is that there is no need for knowledge
programming. For instance, using error back propagation
neural networks and a set of training patterns [6], is possible
to train a vehicle to navigate in several environments [7].
However, when there are contradictory situations, training is
difficult. The system may not be prepared for certain
changes in the environmental conditions.
 In an attempt to unify the best of path planning, sensor
based navigation, fuzzy logic and neural networks, Beom
and Cho [8] introduced a control system based on a
reinforcement learning scheme to tune a fuzzy rule base, and
to obtain adaptive behavior during interaction with the
environment. There is no knowledge pre-programming of
actions in this approach, and reinforcement training should
be performed to tune the control system properly.

Model based and sensor based approaches can be
combined in hybrid approaches. In this case, the path
planning is based on an incomplete model of the
environment, and the execution of the trajectory is achieved
by a sensor based controller, which is able to go around
unknown (or mobile) obstacles.

Autonomous Robot navigation through neural networks, with genetic path planning based on fuzzy maps
João A. Fabro, Heitor S. Lopes, Lúcia Valéria R. Arruda

2

In this work, we propose a hybrid model that uses
synergically three techniques: genetic algorithms, fuzzy
systems and neural networks. To make an imprecise model
of the environment, it is proposed the use of fuzzy
techniques [9]. The concept of “fuzzy obstacle” is introduced
to represent the obstacles in the environment. The
representation form of these fuzzy obstacles provides
information that is used by a genetic algorithm to plan the
path. After finding an optimized path, a neural network-
based controller manages to move the robot through the
planned path, using feed-forward networks [10]. These
networks follow the planned path, but are also able to cope
with unknown obstacles (static or mobile ones). There are
two networks: one for path execution, and other for obstacle
avoidance. If an unknown obstacle is detected by the
distance sensors, the mobile robot tries to contour this
obstacle, and return to the planned path as soon as possible.
The Khepera Simulator software [11], explained below, was
used for the experiments.

1.1. Related Work

Some other approaches using genetic algorithms (GA)
for path planning were proposed on the bibliography. For
instance, Grefenstette [12] has proposed the use of GA to
evolve rule bases able to control the reactive (sensor based)
behavior of mobile robots. Koza [13] has proposed the use
of genetic programming to do the same. Michalewicz and
Xiao [14] [15][16], proposed the use of GA for both global
path planning (model based) and local navigation (sensor
based). Through the use of many specific operators, and
using closed polygons to model the obstacles, their proposal
is able to cope with the complexities of the problem. Other
approaches include the use of genetic algorithms for
controller design [17], and multi-objective path planning
[18], but always using standard occupancy grids as map
representations.

2. THE KHEPERA SIMULATOR

The Khepera Simulator is a public-domain software that

allows the development of control algorithms for the real
Khepera mobile robot, using C or C++. It operates on Unix
or Linux workstations using the X11 graphics library.

This simulator is divided in two parts: the "world", that
simulates an environment of 1 m

2
, occupying the left part of

the screen, and the "robot", that simulates the real Khepera
robot that has 5 cm of diameter, at the right part of the
screen (Figure 1). In the world part the behavior of the robot
can be observed while it is navigating in the environment,
and in the robot's part it is possible to visualize the robot's
sensors readings, and other related information.

Each maze is composed by objects, such as bricks, and
lamps that can be positioned arbitrarily in the world section,
using the simulator interface.

2.1 Description of the world
The Khepera Simulator has several world models, which

can be loaded through the button load that is found in the
left part of the screen. Besides the available worlds, the
simulator allows the creation of new worlds, through the
buttons new and save. The world is composed by objects, as

bricks and lamps, that can be selected by the buttons + and -
and added or removed of the world with the add and remove
buttons. The bricks can also be rotated on its own axis by
pressing the turn button. For the robot recognizing the
objects in the environment it is necessary to press the button
scan and to know that the robot is noticing it is enough to
press the ! button.

2.2 The robot's description

The Khepera robot is composed by 8 infrared sensors
that, by reflection, detect the proximity of objects; 8 light
sensors that measure the level of light in the environment;
and two step motors that permit the robot's navigation in the
environment.

The robot's position in the world can be specified
through the button set robot that allows locating the robot in
any place of the environment. It is also possible to guide the
robot's direction by pressing the button command and typing
in the line the command set angle and the desired angle, for
example: set angle 45.

3 HYBRID CONTROL ARCHITECTURE

The control system proposed in this paper is hybrid in

two senses. First, it proposes the use of both sensor-based
navigation (for collision avoidance and navigation through
the environment) and map-based path planning. Second, by
the use of several techniques from Computational
Intelligence ([19] together: Neural Networks are used in to
implement the reactive (sensor-based) navigation
subsystem; Fuzzy logic concepts [9] are used in the mapping
of the environment; and Genetic Algorithms are used to find
an optimized path from the starting point to an objective
point (target) in the environment. This hybridization
provides a synergy among techniques. Sensor based
navigation is the first level, responsible for executing the
planned trajectory, avoiding unknown (or moving) obstacles
that can appear if the environment, since it is dynamic (there
are other mobile robots and/or obstacles can be moved
around). The use of fuzzy concepts in the mapping allows
the modeling of imprecision when maintaining the map,
mainly if it needs on-line update based on the sensor
readings. The planning of paths is achieved by the use of
genetic algorithms that can find (sub)optimal paths in any
sort of environment, without the drawbacks of other search
procedures.

In figure 2 a block diagram of the entire system is
presented. From the Simulator, the system gets information
from the robot and target positions (1), and the list of known
obstacles (2) to build the “Fuzzy Map”. The Genetic
Algorithm block then searches a viable (and, hopefully,
optimized) path through the environment and its known
obstacles, minimizing the intersections between the
segments of the path and the fuzzy obstacles (3). After that,
a list of intermediate points is passed to the neural network
reactive subsystem (4) that guides the robot following the
planned path, acting on the motor controls (5). If the robot
senses unknown obstacles (6), it takes avoiding actions, and
then returns to its planned path as soon as the obstacle is
avoided. The simulation ends when the robot arrives to its
desired target position.

3

Figure1 - The Khepera simulator.

Figure 2: Block diagram.

The objective of the autonomous navigation is to allow
the robot to arrive to a pre-determined point (objective
point), avoiding collision. This is done by a sequence of
sub-goals that is obtained by the trajectory planning
algorithm. Therefore, the path is represented by a list of
intermediate points (false lights) that the robot must find, in

order to make the robot to arrive at the target point, avoiding
collision with obstacles. Figure 3 presents an example of the
robot's behavior with the map of the environment and the
use of the false light points (indicated as “Sub-Goals”).

Sub-Goal

Sub-Goal

Sub-Goal

Objective Point

Figure 3 - Execution of the trajectory in a known
environment

4 NEURAL NAVIGATION THROUGH THE
PLANNED PATH

4.1 Reactive Control for the Autonomous Navigation with
Artificial Neural Networks

In this work we used two neural networks for the control

of robot navigation [20]. The use of neural networks for

Autonomous Robot navigation through neural networks, with genetic path planning based on fuzzy maps
João A. Fabro, Heitor S. Lopes, Lúcia Valéria R. Arruda

4

sensor-based approaches facilitates the training of the
navigation of the vehicle (robot), straight from the sensors’
readout (each sensor reading represents an input for the
neural network). Thus, it is possible to define a control
strategy starting from navigation examples, not necessarily
the definition of rigid rules, taking the generalization of the
reactions of the vehicle in for several situations found in the
environment. Besides, it facilitates a larger efficiency in the
processing of the readings of the sensors, allowing
interaction with the environment in real-time. After several
experiments, the work resulted in two feedforward neural
networks and supervised training for the robot's control.
Each neural network has 9 inputs (8 sensors of the robot +
one bias term), 27 neurons in the hidden layer and 2 in the
output layer (the controls of the motors). One of the
networks is responsible for avoiding the obstacles and the
other for directing the robot towards the objective point
established in the environment (represented in the simulator
as a light source).

The two neural networks (for light following and
collisions avoidance) are integrated by a simple program
that prioritizes the collisions network. Therefore, when the
robot is too close to an obstacle, the network for light
following is disabled. Only when the obstacle has been
avoided, it is reactivated. This control allows the robot to
navigate throughout the environment without colliding with
obstacles, while following its light sensors readings, and
making the robot move towards the light source.

In the approach proposed in this paper, the light sensors
are set to indicate the relative direction of the next
intermediate point in the genetic planned path. When the
robot gets closer enough to this point, the next point is
targeted, and so on, until the robot reaches the real objective,
i.e., the final point in the planned trajectory.

When there are no lights close enough to activate the
light sensors, and there are no close obstacles, the robot goes
forward. Therefore, there is no kind of global control of the
robot´s trajectory. Consequently, it is possible that it do not
reach the light source, because it identifies the light behind
an obstacle, and then it contours the obstacle and the sensor
will not find the light anymore. Figure 4 shows an example
of this undesirable situation. The global path planning using
genetic algorithms is the approach proposed in this paper to
avoid such situations.

Figure 4–Example of execution in which the robot
cannot reach the objective.

5 MAPPING THE ENVIRONMENT WITH FUZZY
OBSTACLES

Planning a path through an environment that has
obstacles requires a model of these obstacles, so as to apply
an algorithm to find an obstacle-free path [20]. This is
usually done by representation of the obstacles with
polygons [1], or logic-based representations [2]. In Marchi
and Fabro [20], the data structure used for the map was a
1000x1000 bits matrix, representing the simulated world of
1 m

2
. Every position in the matrix represented an obstacle (a

bit 1) or the absence of obstacles (a bit 0). An example of
this data structure is presented in Figure 5. All known
obstacles (the bricks present at the environment) were
mapped into this matrix, providing an exact (crisp) model of
the environment.

11

1001

1001

1001

10000000000000011111111111111111111000000000000001

1001

100100000001

100100000001

100100000001

100100000001

100100000001

10000000000000000000000000010000000000000100000001

10000000000000000000000000010000000000000100000001

10000000000000000000000000010000000000000100000001

10000000000011111111111111111111111000000000000001

10000000000000000001000000000000000000000000000001

10000000000000000001000000000000000000000000000001

10000000000000000001000000000000000000000000000001

11

Figure 5–Example of non-fuzzy map of the environment.

In this paper, a new approach for constructing the map of
the environment is proposed, based on the drawbacks of the
“binary map” approach, and previously mentioned. Instead
of representing the “presence” or “absence” of obstacles by
binary digits, it is proposed another continuous
representation, using “fuzzy obstacles”. Each position of the
environment is represented still in a 1000x1000 matrix, but
instead of discrete binary values, each position has a “fuzzy”
representation of the obstacles. A (membership) value of 1.0
represents that a given position is the “center of an
obstacle”, thus indicating that this position is as far as
possible of the borders of a certain obstacle. A membership
value of 0.0 represents the absence of obstacle in that
position, as in the binary map. But intermediate values
(between 1.0 and 0.0) indicate how far a point is from being
a center of obstacle and being a border of an obstacle. Thus,
this coding has the great advantage of indicating the
direction that the robot must follow in order to contour the
obstacle. This information can be used by the planning
algorithm to find the borders of obstacles, and thus find free
paths among obstacles much easier than in the previous
coding. In order to avoid problems such as the exponential
growth of processing time of the search algorithm, and to
find (sub) optimal path in any given environment, the search
algorithm was performed by a genetic algorithm, that is
presented in section 7.

5

Figure 6–A Fuzzy map of an environment: 3D vision (a) and vision from the top (b).

6 FUZZY OBSTACLE FUSION

If any two obstacles are close, and relatively aligned

(that is, they have the same orientation, and are close
enough such that the robot cannot pass between then) we
can transform these two obstacles in a single one. The
reason to do this is because is possible to extract very
important information from the fuzzy obstacles: one can see
how far some point is from the border of the obstacle, just
looking at the membership of this point to the obstacle.
Therefore, if we manage to merge a row of obstacles into a
single one, we will be able to find more easily a path to
circumvent this obstacle: just get closer and closer to its
border. This kind of information makes the genetic
algorithm (see next session) work easier, achieving a faster
convergence towards paths that do not cross obstacles.

To further improve the information provided by fuzzy

obstacles, a post-processing step was done to include
information about the interactions of two close obstacles
that could not be merged (for example, if they were
orthogonal). In this case, it is possible to include into the
fuzzy obstacle the information that one side, which is closer
to another obstacle, is therefore far from the border of this
obstacle. We can do this by simply moving the center of the
obstacle to the border that is closer to another obstacle. In
this way, the connections between obstacles are represented,
and the genetic algorithm can use this information to find
paths that are as far as possible from this intersection points
between two fuzzy obstacles.

These ideas lead to a Fuzzy Map of the environment,

which is presented in Figure 6. This map includes all the

known obstacles present in the environment, which are
obtained directly from the simulator, and manipulated to
form the map depicted. In the figure a tri-dimensional view
is provided where it can be observed the impact of the fuzzy
map in the visual interpretation of the obstacles in the
environment. It is shown, also, in the top view, that the use
of the fuzzy map of the environment does not affect the
obstacles and their positioning themselves, when compared
with the discrete (binary) map of the environment.

7 OFF-LINE PATH PLANNING USING GENETIC
ALGORITHMS

 A solution for the problem of navigation is a path through
which the robot can reach the target. Since the number of
steps of this path is unknown, a possible solution was coded
by a variable size list. That is, as a double-chained chained
list, where each element is a coordinate (x,y point) of the
environment. Since a single path represents a solution to the
problem, each individual of the population of the genetic
algorithm will have a single chromosome. Therefore, in this
work, chromosome and individual will have the same
meaning.

Figure 7: A double-chained list representing a chromosome
(a path)

(a)
(b)

Autonomous Robot navigation through neural networks, with genetic path planning based on fuzzy maps
João A. Fabro, Heitor S. Lopes, Lúcia Valéria R. Arruda

6

7.1 Fitness function
To evaluate a path, an objective function was defined,

based on the distance to be covered by this path. This
objective function will lead to the minimization of the length
of the path. Therefore, the best path will be the shortest path
as possible. However, if this path crosses some obstacle, it
cannot be executed. Therefore, it is necessary to include a
penalty in the evaluation of the planned path, using the
information about the obstacles in the environment (that is,
the fuzzy map).

To get this penalty, the intersection between the planned
path and the obstacles that are represented in the map is
calculated. This is done by covering all the intermediate
steps of the path that the robot should follow, and adding the
membership of each point where an obstacle is found. The
number of steps is also used as a penalty factor, so that the
algorithm looks for solutions with the minimum number of
intermediate steps. The equation to evaluate a given path is:

fitness (t) = ctte - (t_length + p*t_obs + t_seg) (1)

where t_length is the length of the complete path (sum of the
lengths of all segments); t_obs is the sum of the
memberships of obstacles in the path; t_seg is the number of
segments (steps); p is the penalty weight; and ctte is an
arbitrary constant to transform the function into a
maximization. In the experiments, the constant used was
1000, and the penalty weight was 20.

7.2 Genetic operators
Three knowledge-based genetic operators were

especially developed so as to include heuristic information
about the problem.

 The first operator is the “mutation by insertion” that
inserts a random node of position (x,y) into the path.
However, this is not a blind operator, since the insertion
always occurs after a non-feasible node. A non-feasible
node of the chained list is a node where begins a segment of
the path that passes through an obstacle. If another random
node is inserted, there is a chance that the segment leaving
this node becomes feasible (see example in Figure 8).

Figure 8: Example of the mutation by insertion operator.

For the correct functioning of this operator, however, the

first element of the stack must always be a reachable point
from the initial position of the robot. To assure this, a
specific initialization process of the population was
developed. The initialization process generates a path with
variable number of intermediate points, between 0 and 15.
This operation guarantees that the first node is always
reachable directly from the initial position of the robot. All
the remaining points of the path are randomly generated.
The list contains only intermediate points of the path, and

can be an empty list as well, indicating that the path is a
straight line from the initial position towards the target.

Another operator developed in this work is the “mutation
by deletion of a node” operator. This operator removes one
node that is just after a non-feasible point in the chained list,
trying again to create a feasible path. An example of its
function is presented in Figure 9.

Figure 9: Example of the mutation by deletion operator.

A specific crossover operator was also developed to
substitute the traditional one-point crossover. This new
operator is illustrated in Figure 10 and the following steps
are done to generate offsprings:

a) Selection of two individuals from population, parent1 and
parent2;

b) Analysis of the two individuals, computing the number of
non-feasible points in each one;

c) Cut parent1 in the last non-feasible point, that is, the non-
feasible point closest to the end of the chromosome;

d) Cut parent2 in the first non-feasible point, that is, the
point closest to the beginning of the chromosome;

e) Concatenate initial part of parent1 with the final part of
parent2, generating the offspring;
With the application of this operator one new individual

is created. This descendant will have no more than one non-
feasible segment in its path, exactly at the concatenation
point. Figure 10 illustrates the special crossover operator: at
the top there are two unfeasible paths (parent #1 and #2),
below there is a feasible offspring after crossover and
insertion mutation.

Figure 10: Example of the special crossover operator.

7

7.3 Running parameters
The population used for the execution of the genetic

algorithm was 100 individuals. The probabilities of
application of mutation operators were empirically adjusted
to 15%, and 80% for the crossover operator. Looking for a
solution to this problem, we used a crowding factor. The
library used [21] does not implement this technique directly,
but it has a variation of the Genetic Algorithm called
Deterministic Crowding that works as follows:

a) Random selection of two individuals from the population;
b) Application of the special crossover to these individuals,

generating an offspring;
c) One of the two individuals selected is replaced by the new

individual: this substitution is established by the
similarity degree between the two individuals – the most
similar to the descendant will be replaced.

This variation of the algorithm presented a slow

convergence rate, but an improved ability to find feasible
solutions, even in more complex environments, as those

presented in Figures 11 and 12. However, due to its slow
convergence rate, the processing time was considerably
large.

The stop criterion of the algorithm needed to be
modified to consider the broad range of situations and the
convergence of the algorithm. The search ended 20
generations after the first feasible path was found. However,
when using the Deterministic Crowding, the selection of the
individuals is done randomly by the library used here.
Therefore, the algorithm did not achieved good results in the
optimization of the feasible path.

To solve this problem, a post-processing phase was
included at the end of the execution of the algorithm. This
phase is responsible only for the local improvement of the
path. This is carried through successive applications of the
mutation operator that modifies each point to some another
point in the neighborhood (random value between 0 and 10).
This operator is applied several times, while it is capable to
improve the path. After being applied 10 times without
improvement in the path, the post-processing phase ends and
the resulting path can then be executed by the robot.

Figure 11 - Example of planning and execution of the path in an environment of great complexity.

Autonomous Robot navigation through neural networks, with genetic path planning based on fuzzy maps
João A. Fabro, Heitor S. Lopes, Lúcia Valéria R. Arruda

8

 (a)

(b)

Figure 12 -Execution of the planned path in a complex environment (a), and with unknown obstacles (b).

8 EXPERIMENTS AND RESULTS

Experiments where done with the environments

presented in Figures 11 and 12, aiming at evaluating the
performance of the genetic algorithm to find feasible
solutions. The solutions found, as well as the paths executed
by the neural navigator, are presented together. Some
differences between the planned path and the executed one
are due to the neural network-based execution, because the
robot avoids getting too close to obstacles during the
execution of the planned path. The subsystem of neural
navigation also has the capability to locate and avoid
obstacles not present (moving objects) in the fuzzy map, as
shown in figure 12(b).

The evolution of the genetic algorithm had a
convergence time proportional to the complexity of the path
to be found. The executions varied from the cases where a
feasible path do existed at the initial population, to cases
where it was necessary up to 500 generations to find a
feasible path (environment in figure 12a). Anyhow the
genetic algorithm showed its efficiency for path planning in
complex environments.

9 CONCLUSIONS

With the development of this project, the difficulty of the

path planning problem was confirmed. The lack of
knowledge of the different kinds of environments in which
the robot will navigate makes it difficult to include enough
heuristic information for planning efficient paths, and leads
the system to look for more complex solutions. However,
even with little heuristic information available, it is possible
to the genetic algorithm to find feasible solutions in different
environments. According to our experiments, the quality of
such solutions could be considered human-competitive.

The representation of the environment using fuzzy
obstacles allowed the genetic algorithm to face the problem
from a smoother fitness landscape, when compared with that
generated by a crisp map of the environment. This fact
leaded to an improved capability of comparison among the
multiple evaluated paths, making the process of finding
feasible paths faster and more efficient.

The use of neural networks to execute the planned
trajectory allows the system to avoid collisions with
unknown (and dynamic) obstacles.

Such integrated use of different technologies to solve a
complex problem appears to be, by its synergic strengths, a
remarkably consistent approach to the problem of navigation
in mobile robotics. With techniques used where its features
are more relevant, the global solution achieved combines the
best of each of them: imprecision modeling with fuzzy
obstacles, reactive control with neural networks, and
unstructured search with genetic algorithms. This hybrid
solution proposed here presents a high potential of
application to real-world problems. The authors believe that
other solutions similar to this approach will soon appear in
real applications due to its potential to solve problems more
complex than those that can be solved by the use of any
technique alone. Results encourage the continuity of this
work in several directions, such as the development of new
knowledge-based operators for the genetic algorithm, and
the inclusion of obstacles in the map during the navigation
(i.e. unknown obstacles) in order to update the map during
the interaction with the environment (map building).

ACKNOWLEDGMENTS

The first author would like to thank the support of CAPES.

9

REFERENCES

[1] T. Lozan-Pérez, and M.A. Wesley, “An algorithm for
planning collision-free paths among the polyhedral
obstacles”, Communications of the ACM, vol 22, no.
10, pp. 560-570, 1979.

[2] R.E. Fikes, P.E. Hart, and N.J. Nilson, “Learning and
executing generalized robot plans”, Artificial
Intelligence 3, pp. 251-288, 1972.

[3] J. Borenstein, and Y. Koren, “Real-time obstacle
avoidance for fast mobile robot”, IEEE Transactions on
Systems, Man and Cybernetics, vol 19, no. 5, pp. 1179-
1187, 1989.

[4] R.A. Brooks, “A robust layered control system for a
mobile robot”, IEEE Journal of Robotics Automation,
vol. 2, no. 1, 14-23, 1986.

[5] S. Ishikawa, “A method of indoor mobile robot
navigation by fuzzy control”, in Proc. Int. Conf.
Intelligent Robots and Systems, Osaka, Japan, Nov. 3-5,
pp. 1013-1018, 1991.

[6] C. Kozakiewicz and M. Ejiri, ”Neural network approach
to path planning for two dimensional robot motion”, in
Proc. Int. Conf .Intelligent Robots and Systems, Osaka,
Japan, Nov. 3-5, pp. 818-823, 1991.

[7] M. Sekiguchi, S. Nagata and K. Asakawa, “Mobile robot
control by a structured hierarchical neural network”,
IEEE Control Systems Magazine, vol. 10, no. 3, pp. 69-
76, 1990.

[8] H. R. Beom, and H.S. Cho, “A sensor-based navigation
for a mobile robot using fuzzy logic and reinforcement
learning”, IEEE Transactions on Systems, Man and
Cybernetics, vol. 25, no. 3, 1995.

[9] W. Pedrycz, and F. Gomide, “Fuzzy Systems
Engineering”. John Wiley & Sons, 2007.

[10] S. Haykin, “Neural Networks and Learning Machines”,
3rd edition. Prentice-Hall, 2008.

[11] O. Michel, “Khepera Simulator version 2.0”.
Homepage: http://diwww.epfl.ch/lami/team/michel/
khep-sim/,1996.

[12] J. Grefenstette, “Evolutionary Algorithms in Robotics”,
In: M. Janshidi, C. Nguyem, eds., Robotics and
Manufacturing: Recent Trends in Research, Education
and Applications, pp. 65-72, ASME Press, 1994.

[13] J. R. Koza, “Genetic Programming”, MIT Press,
Cambridge, MA, 1992.

[14] Z. Michalewicz, “Genetic Algorithms + Data Structures
= Evolution Programs”, Springer-Verlag, New York,
1998.

 [15] J. Xiao, Z. Michalewicz, L. Zhang and K.
Trojanowski, “Adaptive Evolutionary
Planner/Navigator for Mobile Robots”, IEEE

Transactions on Evolutionary Computation, vol. 1, no.
1, pp 18-28, 1997.

[16] Xiao, J. and Michalewicz, Z., “An Evolutionary
Computation Approach to Robot Planning and
Navigation”, in Hirota, K. and Fukuda, T. (eds.), Soft
Computing in Mechatronics, Springer-Verlag,
Heidelberg, Germany, 117 – 128, 2000.

[17] C. Thomaz, M. Pacheco, and M. Vellasco. “Mobile
robot path planning using genetic algorithms“, Lecture
Notes in Computer Science, Volume 1606, pp. 671-679
1999.

[18] O. Castillo and L. Trujillo, “Multiple Objective
Optimization Genetic Algorithms for Path Planning in
Autonomous Mobile Robots”, International Journal of
Computers, Systems and Signals, Vol. 6, No. 1, 2005.

[19] L. Rutkowski, “Computational Intelligence – Methods
and Techniques”. Springer-Verlag, 2008

[20] J. Marchi, and J.A. Fabro, ”SNNAP - Sistema Neural
para Navegação em Ambientes Pré-Mapeados”, Anais
do IV Congresso Brasileiro de Redes Neurais, São José
dos Campos ITA/CTA, pages 118-123, 1999. [In
Portuguese]

[21] M. Wall, “GALIB Programming Library Version
2.4.5”, HomePage: http://lance.mit.edu/ga, February
2008.

