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Abstract: This work describes a system for path planning 
and navigation of autonomous robots. The system uses a 
fuzzy model of the environment, in which path planning is 
done by a genetic algorithm, and the navigation is 
accomplished by means of a reactive subsystem controlled 
by neural networks. The fuzzy mapping technique proposed 
here has the advantage of modeling the imprecision of the 
obstacles, and also gives enough information about the 
distribution of obstacles so as to improve the genetic search 
for good paths. The neural controller is responsible for carry 
out the planned trajectory, and avoid new obstacles that are 
not present in the map, and cope with interactions with other 
dynamic obstacles (such as other mobile robots, or people) 
that crosses its path. The proposed architecture is hybrid, 
integrating map-based and sensor-based navigation. Some 
experiments using the Khepera simulator are reported for 
environments with different complexity. The promising 
results suggest the continuity of the work.  
 
Keywords: Fuzzy mapping, trajectory planning, genetic 
algorithms. 

1.   INTRODUCTION 

Autonomous navigation is accomplished by path 
generation and control of its execution. In general terms the 
control system must execute a given task, such as reaching a 
target, while avoiding obstacles. Thus, it is expected that an 
autonomous navigation system be able to find a path from 
the starting position to the target position, navigating 
through this path, avoiding collisions with other objects. 

The intrinsic difficulties of the autonomous navigation 
problem have interested many artificial intelligence 
researchers who have found it to be of a considerable 
challenge.  

Navigation control of autonomous mobile vehicles is a 
research area that can be roughly divided into two main 
approaches: model based path planning, and sensor based 
navigation. Model based path planning is based on 
environmental knowledge, and many approaches, ranging 
from mathematical analysis and path calculations [1], to 
symbol manipulation on a knowledge base about the 
environment [2] are available. These methods can solve the 
path planning problems for environments completely 
known, with off-line simulations. When facing real-time 
situations and unknown environments, or with dynamically 
changing environments, these methods cannot be used. To 

overcome these difficulties, methods considering real-time 
environment information from sensors must be considered. 
Based on sensor readings, the mobile vehicle should be able 
to perform local path planning and take appropriate control 
actions. Borenstein and Koren [3] introduced the virtual 
force field method to solve this problem. However, his 
method has problems in finding force coefficients in 
cluttered environments which cannot be described as a 
mathematical model. Brooks [4] presented a behavioral-
based approach, called the subsumption architecture, which 
is based on pre-specified behavior encoded in task-achieving 
modules. This architecture has succeeded in navigating in 
unknown environments, but depends highly on the pre-
defined knowledge structures implemented by each module. 
The success of this approach depends upon how complete 
the behavior can be described beforehand. 
 Many other approaches have been developed, mainly 
using fuzzy sets and neural networks. The fuzzy set 
approach has the advantage of treating uncertainty and 
imprecision using simple rule bases [5]. The knowledge 
must also be provided in the form of fuzzy IF-THEN rules. 
However, even after rule definition and refinement, it is 
generally difficult to treat all possible cases with specific 
rules. To overcome these difficulties, neural networks began 
to be used. The main advantage of the neural network 
approach is that there is no need for knowledge 
programming. For instance, using error back propagation 
neural networks and a set of training patterns [6], is possible 
to train a vehicle to navigate in several environments [7]. 
However, when there are contradictory situations, training is 
difficult. The system may not be prepared for certain 
changes in the environmental conditions. 
 In an attempt to unify the best of path planning, sensor 
based navigation, fuzzy logic and neural networks, Beom 
and Cho [8] introduced a control system based on a 
reinforcement learning scheme to tune a fuzzy rule base, and 
to obtain adaptive behavior during interaction with the 
environment. There is no knowledge pre-programming of 
actions in this approach, and reinforcement training should 
be performed to tune the control system properly. 

Model based and sensor based approaches can be 
combined in hybrid approaches. In this case, the path 
planning is based on an incomplete model of the 
environment, and the execution of the trajectory is achieved 
by a sensor based controller, which is able to go around 
unknown (or mobile) obstacles. 
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In this work, we propose a hybrid model that uses 
synergically three techniques: genetic algorithms, fuzzy 
systems and neural networks. To make an imprecise model 
of the environment, it is proposed the use of fuzzy 
techniques [9]. The concept of “fuzzy obstacle” is introduced 
to represent the obstacles in the environment. The 
representation form of these fuzzy obstacles provides 
information that is used by a genetic algorithm to plan the 
path. After finding an optimized path, a neural network-
based controller manages to move the robot through the 
planned path, using feed-forward networks [10]. These 
networks follow the planned path, but are also able to cope 
with unknown obstacles (static or mobile ones). There are 
two networks: one for path execution, and other for obstacle 
avoidance. If an unknown obstacle is detected by the 
distance sensors, the mobile robot tries to contour this 
obstacle, and return to the planned path as soon as possible. 
The Khepera Simulator software [11], explained below, was 
used for the experiments. 

1.1. Related Work 

Some other approaches using genetic algorithms (GA) 
for path planning were proposed on the bibliography. For 
instance, Grefenstette [12] has proposed the use of GA to 
evolve rule bases able to control the reactive (sensor based) 
behavior of mobile robots. Koza [13] has proposed the use 
of genetic programming to do the same. Michalewicz and 
Xiao [14] [15][16], proposed the use of GA for both global 
path planning (model based) and local navigation (sensor 
based). Through the use of many specific operators, and 
using closed polygons to model the obstacles, their proposal 
is able to cope with the complexities of the problem. Other 
approaches include the use of genetic algorithms for 
controller design [17], and multi-objective path planning 
[18], but always using standard occupancy grids as map 
representations. 

2. THE KHEPERA SIMULATOR 

 
The Khepera Simulator is a public-domain software that 

allows the development of control algorithms for the real 
Khepera mobile robot, using C or C++. It operates on Unix 
or Linux workstations using the X11 graphics library. 

This simulator is divided in two parts: the "world", that 
simulates an environment of 1 m

2
, occupying the left part of 

the screen, and the "robot", that simulates the real Khepera 
robot that has 5 cm of diameter, at the right part of the 
screen (Figure 1). In the world part the behavior of the robot 
can be observed while it is navigating in the environment, 
and in the robot's part it is possible to visualize the robot's 
sensors readings, and other related information. 

Each maze is composed by objects, such as bricks, and 
lamps that can be positioned arbitrarily in the world section, 
using the simulator interface. 

 
 

2.1 Description of the world  
The Khepera Simulator has several world models, which 

can be loaded through the button load that is found in the 
left part of the screen. Besides the available worlds, the 
simulator allows the creation of new worlds, through the 
buttons new and save. The world is composed by objects, as 

bricks and lamps, that can be selected by the buttons + and - 
and added or removed of the world with the add and remove 
buttons. The bricks can also be rotated on its own axis by 
pressing the turn button. For the robot recognizing the 
objects in the environment it is necessary to press the button 
scan and to know that the robot is noticing it is enough to 
press the !  button. 
 
2.2 The robot's description  

The Khepera robot is composed by 8 infrared sensors 
that, by reflection, detect the proximity of objects; 8 light 
sensors that measure the level of light in the environment; 
and two step motors that permit the robot's navigation in the 
environment. 

The robot's position in the world can be specified 
through the button set robot that allows locating the robot in 
any place of the environment. It is also possible to guide the 
robot's direction by pressing the button command and typing 
in the line the command set angle and the desired angle, for 
example: set angle 45. 

 

3 HYBRID CONTROL ARCHITECTURE  

 
The control system proposed in this paper is hybrid in 

two senses. First, it proposes the use of both sensor-based 
navigation (for collision avoidance and navigation through 
the environment) and map-based path planning. Second, by 
the use of several techniques from Computational 
Intelligence ([19] together: Neural Networks are used in to 
implement the reactive (sensor-based) navigation 
subsystem; Fuzzy logic concepts [9] are used in the mapping 
of the environment; and Genetic Algorithms are used to find 
an optimized path from the starting point to an objective 
point (target) in the environment. This hybridization 
provides a synergy among techniques. Sensor based 
navigation is the first level, responsible for executing the 
planned trajectory, avoiding unknown (or moving) obstacles 
that can appear if the environment, since it is dynamic (there 
are other mobile robots and/or obstacles can be moved 
around). The use of fuzzy concepts in the mapping allows 
the modeling of imprecision when maintaining the map, 
mainly if it needs on-line update based on the sensor 
readings. The planning of paths is achieved by the use of 
genetic algorithms that can find (sub)optimal paths in any 
sort of environment, without the drawbacks of other search 
procedures. 

In figure 2 a block diagram of the entire system is 
presented. From the Simulator, the system gets information 
from the robot and target positions (1), and the list of known 
obstacles (2) to build the “Fuzzy Map”. The Genetic 
Algorithm block then searches a viable (and, hopefully, 
optimized) path through the environment and its known 
obstacles, minimizing the intersections between the 
segments of the path and the fuzzy obstacles (3). After that, 
a list of intermediate points is passed to the neural network 
reactive subsystem (4) that guides the robot following the 
planned path, acting on the motor controls (5). If the robot 
senses unknown obstacles (6), it takes avoiding actions, and 
then returns to its planned path as soon as the obstacle is 
avoided. The simulation ends when the robot arrives to its 
desired target position. 
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Figure1 - The Khepera simulator. 

 

 
Figure 2: Block diagram. 

 

The objective of the autonomous navigation is to allow 
the robot to arrive to a pre-determined point (objective 
point), avoiding collision. This is done by a sequence of 
sub-goals that is obtained by the trajectory planning 
algorithm. Therefore, the path is represented by a list of 
intermediate points (false lights) that the robot must find, in 

order to make the robot to arrive at the target point, avoiding 
collision with obstacles. Figure 3 presents an example of the 
robot's behavior with the map of the environment and the 
use of the false light points (indicated as “Sub-Goals”). 

Sub-Goal

Sub-Goal

Sub-Goal

Objective Point
 

Figure 3 - Execution of the trajectory in a known 
environment 

  

4 NEURAL NAVIGATION THROUGH THE 
PLANNED PATH  
 

4.1 Reactive Control for the Autonomous Navigation with 
Artificial Neural Networks 

 
In this work we used two neural networks for the control 

of robot navigation [20]. The use of neural networks for 
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sensor-based approaches facilitates the training of the 
navigation of the vehicle (robot), straight from the sensors’ 
readout (each sensor reading represents an input for the 
neural network). Thus, it is possible to define a control 
strategy starting from navigation examples, not necessarily 
the definition of rigid rules, taking the generalization of the 
reactions of the vehicle in for several situations found in the 
environment. Besides, it facilitates a larger efficiency in the 
processing of the readings of the sensors, allowing 
interaction with the environment in real-time. After several 
experiments, the work resulted in two feedforward neural 
networks and supervised training for the robot's control. 
Each neural network has 9 inputs (8 sensors of the robot + 
one bias term), 27 neurons in the hidden layer and 2 in the 
output layer (the controls of the motors). One of the 
networks is responsible for avoiding the obstacles and the 
other for directing the robot towards the objective point 
established in the environment (represented in the simulator 
as a light source).  

The two neural networks (for light following and 
collisions avoidance) are integrated by a simple program 
that prioritizes the collisions network. Therefore, when the 
robot is too close to an obstacle, the network for light 
following is disabled. Only when the obstacle has been 
avoided, it is reactivated. This control allows the robot to 
navigate throughout the environment without colliding with 
obstacles, while following its light sensors readings, and 
making the robot move towards the light source.  

In the approach proposed in this paper, the light sensors 
are set to indicate the relative direction of the next 
intermediate point in the genetic planned path. When the 
robot gets closer enough to this point, the next point is 
targeted, and so on, until the robot reaches the real objective, 
i.e., the final point in the planned trajectory. 

When there are no lights close enough to activate the 
light sensors, and there are no close obstacles, the robot goes 
forward.  Therefore, there is no kind of global control of the 
robot´s trajectory. Consequently, it is possible that it do not 
reach the light source, because it identifies the light behind 
an obstacle, and then it contours the obstacle and the sensor 
will not find the light anymore. Figure 4 shows an example 
of this undesirable situation. The global path planning using 
genetic algorithms is the approach proposed in this paper to 
avoid such situations. 

 

 

Figure 4–Example of execution in which the robot 
cannot reach the objective. 

5 MAPPING THE ENVIRONMENT WITH FUZZY 
OBSTACLES  

 

Planning a path through an environment that has 
obstacles requires a model of these obstacles, so as to apply 
an algorithm to find an obstacle-free path [20]. This is 
usually done by representation of the obstacles with 
polygons [1], or logic-based representations [2]. In Marchi 
and Fabro [20], the data structure used for the map was a 
1000x1000 bits matrix, representing the simulated world of 
1 m

2
. Every position in the matrix represented an obstacle (a 

bit 1) or the absence of obstacles (a bit 0). An example of 
this data structure is presented in Figure 5. All known 
obstacles (the bricks present at the environment) were 
mapped into this matrix, providing an exact (crisp) model of 
the environment.  

11111111111111111111111111111111111111111111111111

10000000000000000000000000000000000000000000000001

10000000000000000000000000000000000000000000000001

10000000000000000000000000000000000000000000000001

10000000000000011111111111111111111000000000000001

10000000000000000000000000000000000000000000000001

10000000000000000000000000000000000000000100000001

10000000000000000000000000000000000000000100000001

10000000000000000000000000000000000000000100000001

10000000000000000000000000000000000000000100000001

10000000000000000000000000000000000000000100000001

10000000000000000000000000010000000000000100000001

10000000000000000000000000010000000000000100000001

10000000000000000000000000010000000000000100000001

10000000000011111111111111111111111000000000000001

10000000000000000001000000000000000000000000000001

10000000000000000001000000000000000000000000000001

10000000000000000001000000000000000000000000000001

11111111111111111111111111111111111111111111111111

 

Figure 5–Example of non-fuzzy map of the environment.  
 

In this paper, a new approach for constructing the map of 
the environment is proposed, based on the drawbacks of the 
“binary map” approach, and previously mentioned. Instead 
of representing the “presence” or “absence” of obstacles by 
binary digits, it is proposed another continuous 
representation, using “fuzzy obstacles”. Each position of the 
environment is represented still in a 1000x1000 matrix, but 
instead of discrete binary values, each position has a “fuzzy” 
representation of the obstacles. A (membership) value of 1.0 
represents that a given position is the “center of an 
obstacle”, thus indicating that this position is as far as 
possible of the borders of a certain obstacle. A membership 
value of 0.0 represents the absence of obstacle in that 
position, as in the binary map. But intermediate values 
(between 1.0 and 0.0) indicate how far a point is from being 
a center of obstacle and being a border of an obstacle. Thus, 
this coding has the great advantage of indicating the 
direction that the robot must follow in order to contour the 
obstacle. This information can be used by the planning 
algorithm to find the borders of obstacles, and thus find free 
paths among obstacles much easier than in the previous 
coding. In order to avoid problems such as the exponential 
growth of processing time of the search algorithm, and to 
find (sub) optimal path in any given environment, the search 
algorithm was performed by a genetic algorithm, that is 
presented in section 7. 
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Figure 6–A Fuzzy map of an environment: 3D vision (a) and vision from the top (b). 
 

 

6 FUZZY OBSTACLE FUSION 

 
If any two obstacles are close, and relatively aligned 

(that is, they have the same orientation, and are close 
enough such that the robot cannot pass between then) we 
can transform these two obstacles in a single one. The 
reason to do this is because is possible to extract very 
important information from the fuzzy obstacles: one can see 
how far some point is from the border of the obstacle, just 
looking at the membership of this point to the obstacle. 
Therefore, if we manage to merge a row of obstacles into a 
single one, we will be able to find more easily a path to 
circumvent this obstacle: just get closer and closer to its 
border. This kind of information makes the genetic 
algorithm (see next session) work easier, achieving a faster 
convergence towards paths that do not cross obstacles. 

 
To further improve the information provided by fuzzy 

obstacles, a post-processing step was done to include 
information about the interactions of two close obstacles 
that could not be merged (for example, if they were 
orthogonal). In this case, it is possible to include into the 
fuzzy obstacle the information that one side, which is closer 
to another obstacle, is therefore far from the border of this 
obstacle. We can do this by simply moving the center of the 
obstacle to the border that is closer to another obstacle. In 
this way, the connections between obstacles are represented, 
and the genetic algorithm can use this information to find 
paths that are as far as possible from this intersection points 
between two fuzzy obstacles. 

 
These ideas lead to a Fuzzy Map of the environment, 

which is presented in Figure 6. This map includes all the 

known obstacles present in the environment, which are 
obtained directly from the simulator, and manipulated to 
form the map depicted. In the figure a tri-dimensional view 
is provided where it can be observed the impact of the fuzzy 
map in the visual interpretation of the obstacles in the 
environment. It is shown, also, in the top view, that the use 
of the fuzzy map of the environment does not affect the 
obstacles and their positioning themselves, when compared 
with the discrete (binary) map of the environment. 

 
 

7 OFF-LINE PATH PLANNING USING GENETIC 
ALGORITHMS 

 
    A solution for the problem of navigation is a path through 
which the robot can reach the target. Since the number of 
steps of this path is unknown, a possible solution was coded 
by a variable size list. That is, as a double-chained chained 
list, where each element is a coordinate (x,y  point) of the 
environment. Since a single path represents a solution to the 
problem, each individual of the population of the genetic 
algorithm will have a single chromosome. Therefore, in this 
work, chromosome and individual will have the same 
meaning. 

 
 

Figure 7: A double-chained list representing a chromosome 
(a path) 

 
 

 
 

(a)  
(b) 
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7.1 Fitness function 
To evaluate a path, an objective function was defined, 

based on the distance to be covered by this path. This 
objective function will lead to the minimization of the length 
of the path. Therefore, the best path will be the shortest path 
as possible. However, if this path crosses some obstacle, it 
cannot be executed. Therefore, it is necessary to include a 
penalty in the evaluation of the planned path, using the 
information about the obstacles in the environment (that is, 
the fuzzy map). 

To get this penalty, the intersection between the planned 
path and the obstacles that are represented in the map is 
calculated. This is done by covering all the intermediate 
steps of the path that the robot should follow, and adding the 
membership of each point where an obstacle is found. The 
number of steps is also used as a penalty factor, so that the 
algorithm looks for solutions with the minimum number of 
intermediate steps. The equation to evaluate a given path is: 

 
fitness (t) = ctte - (t_length + p*t_obs + t_seg)                (1) 
 
where t_length is the length of the complete path (sum of the 
lengths of all segments); t_obs is the sum of the 
memberships of obstacles in the path; t_seg is the number of 
segments (steps); p is the penalty weight; and ctte is an 
arbitrary constant to transform the function into a 
maximization. In the experiments, the constant used was 
1000, and the penalty weight was 20.  
 

7.2 Genetic operators 
Three knowledge-based genetic operators were 

especially developed so as to include heuristic information 
about the problem. 

 The first operator is the “mutation by insertion” that 
inserts a random node of position (x,y) into the path. 
However, this is not a blind operator, since the insertion 
always occurs after a non-feasible node. A non-feasible 
node of the chained list is a node where begins a segment of 
the path that passes through an obstacle. If another random 
node is inserted, there is a chance that the segment leaving 
this node becomes feasible (see example in Figure 8).  

 
Figure 8: Example of the mutation by insertion operator. 

 
For the correct functioning of this operator, however, the 

first element of the stack must always be a reachable point 
from the initial position of the robot. To assure this, a 
specific initialization process of the population was 
developed. The initialization process generates a path with 
variable number of intermediate points, between 0 and 15. 
This operation guarantees that the first node is always 
reachable directly from the initial position of the robot. All 
the remaining points of the path are randomly generated. 
The list contains only intermediate points of the path, and 

can be an empty list as well, indicating that the path is a 
straight line from the initial position towards the target. 

Another operator developed in this work is the “mutation 
by deletion of a node” operator. This operator removes one 
node that is just after a non-feasible point in the chained list, 
trying again to create a feasible path. An example of its 
function is presented in Figure 9.  

 

 

Figure 9: Example of the mutation by deletion operator. 

A specific crossover operator was also developed to 
substitute the traditional one-point crossover. This new 
operator is illustrated in Figure 10 and the following steps 
are done to generate offsprings: 

a) Selection of two individuals from population, parent1 and 
parent2; 

b) Analysis of the two individuals, computing the number of 
non-feasible points in each one; 

c) Cut parent1 in the last non-feasible point, that is, the non-
feasible point closest to the end of the chromosome;  

d) Cut parent2 in the first non-feasible point, that is, the 
point closest to the beginning of the chromosome;  

e) Concatenate initial part of parent1 with the final part of 
parent2, generating the offspring; 
With the application of this operator one new individual 

is created. This descendant will have no more than one non-
feasible segment in its path, exactly at the concatenation 
point. Figure 10 illustrates the special crossover operator: at 
the top there are two unfeasible paths (parent #1 and #2), 
below there is a feasible offspring after crossover and 
insertion mutation. 

 
Figure 10: Example of the special crossover operator. 
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7.3 Running parameters 
The population used for the execution of the genetic 

algorithm was 100 individuals. The probabilities of 
application of mutation operators were empirically adjusted 
to 15%, and 80% for the crossover operator. Looking for a 
solution to this problem, we used a crowding factor. The 
library used [21] does not implement this technique directly, 
but it has a variation of the Genetic Algorithm called 
Deterministic Crowding that works as follows: 

 
a) Random selection of two individuals from the population;  
b) Application of the special crossover to these individuals, 

generating an offspring;  
c) One of the two individuals selected is replaced by the new 

individual: this substitution is established by the 
similarity degree between the two individuals – the most 
similar to the descendant will be replaced. 

 
This variation of the algorithm presented a slow 

convergence rate, but an improved ability to find feasible 
solutions, even in more complex environments, as those 

presented in Figures 11 and 12. However, due to its slow 
convergence rate, the processing time was considerably 
large. 

The stop criterion of the algorithm needed to be 
modified to consider the broad range of situations and the 
convergence of the algorithm. The search ended 20 
generations after the first feasible path was found. However, 
when using the Deterministic Crowding, the selection of the 
individuals is done randomly by the library used here. 
Therefore, the algorithm did not achieved good results in the 
optimization of the feasible path.  

To solve this problem, a post-processing phase was 
included at the end of the execution of the algorithm. This 
phase is responsible only for the local improvement of the 
path. This is carried through successive applications of the 
mutation operator that modifies each point to some another 
point in the neighborhood (random value between 0 and 10). 
This operator is applied several times, while it is capable to 
improve the path. After being applied 10 times without 
improvement in the path, the post-processing phase ends and 
the resulting path can then be executed by the robot. 

 

  

Figure 11 - Example of planning and execution of the path in an environment of great complexity. 
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 (a) 

 

(b) 

Figure 12 -Execution of the planned path in a complex environment (a), and with unknown obstacles (b). 

   

8 EXPERIMENTS AND RESULTS 
 
Experiments where done with the environments 

presented in Figures 11 and 12, aiming at evaluating the 
performance of the genetic algorithm to find feasible 
solutions. The solutions found, as well as the paths executed 
by the neural navigator, are presented together. Some 
differences between the planned path and the executed one 
are due to the neural network-based execution, because the 
robot avoids getting too close to obstacles during the 
execution of the planned path. The subsystem of neural 
navigation also has the capability to locate and avoid 
obstacles not present (moving objects) in the fuzzy map, as 
shown in figure 12(b). 

The evolution of the genetic algorithm had a 
convergence time proportional to the complexity of the path 
to be found. The executions varied from the cases where a 
feasible path do existed at the initial population, to cases 
where it was necessary up to 500 generations to find a 
feasible path (environment in figure 12a). Anyhow the 
genetic algorithm showed its efficiency for path planning in 
complex environments. 

 

9 CONCLUSIONS 
 
With the development of this project, the difficulty of the 

path planning problem was confirmed. The lack of 
knowledge of the different kinds of environments in which 
the robot will navigate makes it difficult to include enough 
heuristic information for planning efficient paths, and leads 
the system to look for more complex solutions. However, 
even with little heuristic information available, it is possible 
to the genetic algorithm to find feasible solutions in different 
environments. According to our experiments, the quality of 
such solutions could be considered human-competitive. 

The representation of the environment using fuzzy 
obstacles allowed the genetic algorithm to face the problem 
from a smoother fitness landscape, when compared with that 
generated by a crisp map of the environment. This fact 
leaded to an improved capability of comparison among the 
multiple evaluated paths, making the process of finding 
feasible paths faster and more efficient.  

The use of neural networks to execute the planned 
trajectory allows the system to avoid collisions with 
unknown (and dynamic) obstacles.  

Such integrated use of different technologies to solve a 
complex problem appears to be, by its synergic strengths, a 
remarkably consistent approach to the problem of navigation 
in mobile robotics. With techniques used where its features 
are more relevant, the global solution achieved combines the 
best of each of them: imprecision modeling with fuzzy 
obstacles, reactive control with neural networks, and 
unstructured search with genetic algorithms. This hybrid 
solution proposed here presents a high potential of 
application to real-world problems. The authors believe that 
other solutions similar to this approach will soon appear in 
real applications due to its potential to solve problems more 
complex than those that can be solved by the use of  any 
technique alone. Results encourage the continuity of this 
work in several directions, such as the development of new 
knowledge-based operators for the genetic algorithm, and 
the inclusion of obstacles in the map during the navigation 
(i.e. unknown obstacles) in order to update the map during 
the interaction with the environment (map building).  

ACKNOWLEDGMENTS  

The first author would like to thank the support of CAPES. 



 

9 

 

REFERENCES 

[1] T. Lozan-Pérez, and M.A. Wesley, “An algorithm for 
planning collision-free paths among the polyhedral 
obstacles”, Communications of the ACM, vol 22, no. 
10, pp. 560-570, 1979. 

[2] R.E. Fikes, P.E. Hart, and N.J. Nilson, “Learning and 
executing generalized robot plans”, Artificial 
Intelligence 3, pp. 251-288, 1972. 

[3] J. Borenstein, and Y. Koren, “Real-time obstacle 
avoidance for fast mobile robot”, IEEE Transactions on 
Systems, Man and Cybernetics, vol 19, no. 5, pp. 1179-
1187, 1989. 

[4] R.A. Brooks, “A robust layered control system for a 
mobile robot”, IEEE Journal of Robotics Automation,  
vol. 2, no. 1, 14-23, 1986.  

[5] S. Ishikawa, “A method of indoor mobile robot 
navigation by fuzzy control”, in Proc. Int. Conf. 
Intelligent Robots and Systems, Osaka, Japan, Nov. 3-5, 
pp. 1013-1018, 1991. 

[6] C. Kozakiewicz and M. Ejiri, ”Neural network approach 
to path planning for two dimensional robot motion”, in 
Proc. Int. Conf .Intelligent Robots and Systems, Osaka, 
Japan, Nov. 3-5, pp. 818-823, 1991. 

[7] M. Sekiguchi, S. Nagata and K. Asakawa, “Mobile robot 
control by a structured hierarchical neural network”, 
IEEE Control Systems Magazine, vol. 10, no. 3, pp. 69-
76, 1990. 

[8] H. R. Beom, and H.S. Cho, “A sensor-based navigation 
for a mobile robot using fuzzy logic and reinforcement 
learning”, IEEE Transactions on Systems, Man and 
Cybernetics, vol. 25, no. 3, 1995. 

[9] W. Pedrycz, and F. Gomide, “Fuzzy Systems 
Engineering”. John Wiley & Sons, 2007. 

[10] S. Haykin, “Neural Networks and Learning Machines”, 
3rd edition. Prentice-Hall, 2008. 

[11] O. Michel, “Khepera Simulator version 2.0”. 
Homepage: http://diwww.epfl.ch/lami/team/michel/ 
khep-sim/,1996. 

[12] J. Grefenstette, “Evolutionary Algorithms in Robotics”, 
In: M. Janshidi, C. Nguyem, eds., Robotics and 
Manufacturing: Recent Trends in Research, Education 
and Applications, pp. 65-72, ASME Press, 1994. 

[13] J. R. Koza, “Genetic Programming”, MIT Press, 
Cambridge, MA, 1992. 

[14] Z. Michalewicz, “Genetic Algorithms + Data Structures 
= Evolution Programs”, Springer-Verlag, New York, 
1998. 

 [15] J. Xiao, Z. Michalewicz, L. Zhang and K. 
Trojanowski,  “Adaptive Evolutionary 
Planner/Navigator for Mobile Robots”, IEEE 

Transactions on Evolutionary Computation, vol. 1, no. 
1, pp 18-28, 1997. 

[16] Xiao, J. and Michalewicz, Z., “An Evolutionary 
Computation Approach to Robot Planning and 
Navigation”, in Hirota, K. and Fukuda, T. (eds.), Soft 
Computing in Mechatronics, Springer-Verlag, 
Heidelberg, Germany, 117 – 128, 2000. 

[17] C. Thomaz, M. Pacheco, and M. Vellasco. “Mobile 
robot path planning using genetic algorithms“, Lecture 
Notes in Computer Science, Volume 1606, pp. 671-679 
1999. 

[18] O. Castillo and L. Trujillo, “Multiple Objective 
Optimization Genetic Algorithms for Path Planning in 
Autonomous Mobile Robots”, International Journal of 
Computers, Systems and Signals, Vol. 6, No. 1, 2005. 

[19] L. Rutkowski, “Computational Intelligence – Methods 
and Techniques”. Springer-Verlag, 2008 

[20] J. Marchi, and J.A. Fabro, ”SNNAP - Sistema Neural 
para Navegação em Ambientes Pré-Mapeados”, Anais 
do IV Congresso Brasileiro de Redes Neurais, São José 
dos Campos ITA/CTA, pages 118-123, 1999. [In 
Portuguese] 

[21] M. Wall, “GALIB Programming Library Version 
2.4.5”, HomePage: http://lance.mit.edu/ga, February 
2008. 

 

 
 


