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Abstract. Particle Swarm Optimization (PSO) is an evolutionary com-
putation technique frequently used for optimization tasks. This work
aims at applying PSO for recognizing specific patterns in complex im-
ages. Experiments were done with gray level and color images, with and
without noise. PSO was able to find predefined reference images, sub-
mitted to translation, rotation, scaling, occlusion, noise and change in
the viewpoint in the landscape image. Several experiments were done
to evaluate the performance of PSO. Results show that the proposed
method is robust and very promising for real-world applications.

1 Introduction

Automatic pattern recognition in images is an important problem of computer
vision, frequently found in industry, security, engineering and other areas. The
main objective is to find specific objects (patterns or reference images) in a com-
plex scene subject to degradation of quality. Many image processing methods
have been used for this problem, mainly based on mathematical morphology or
template matching [1]. Most image processing techniques are computationally
expensive and too specific for certain types of images. Also, the lack of robust-
ness limits their application to noisy images and when the object to be searched
is occluded or randomly displaced/rotated in the scene. Overall, to achieve sat-
isfactory performance for real-world applications, exhaustive search methods are
inadequate and, then, heuristic methods can play an important role [2,3,4].

Particle Swarm Optimization (PSO) [5] is an evolutionary computation
method, and has been successfully used for hard numerical and combinatorial
optimization problems [6,7]. When compared with other heuristic optimization
methods, PSO is easier to implement and tune parameters. PSO has been used
very sparsely for image processing problems, mainly for image registration. This
problem consists in aligning geometrically two images in such a way to optimize
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(maximizing) a similarity measure. PSO was shown to be robust and efficient
for this kind of optimization [8,9].

This work presents the implementation of PSO method for detecting objects
in images in the context of computer vision. Given a pattern or reference image
of an object, it is to be found anywhere in a target image (complex scene).
Once found the object, its location is precisely determined in the target image,
including planar coordinates, scale and rotation angle.

2 The Object Recognition Problem

Given two images, the first one containing a reference object (pattern), and
the another as a target landscape where the object is supposed to be found,
finding the pattern in the target is defined as finding the planar coordinates,
rotation angle and scale factor. A possible solution is represented as 4-tuple:
(x, y, s, θ), where x and y represent the planar coordinates of the center of the
reference image relative to the landscape image, s is the scale factor, and θ
is the rotation angle, relative to the coordinates system. Since the object can
appear anywhere in the landscape, the set of all possible combinations is very
large. Therefore, the problem can be stated as an optimization problem, so as
to find appropriate values for (x, y, s, θ) that maximizes the similarity between
the object and landscape images (see below).

In this work, the search space is limited by constraining the range of possible
values for the variables of the problem, as follows: column (0 ≤ x < n), row
(0 ≤ y < m), scale (0.5 ≤ s ≤ 2.0), and rotation (−π ≤ θ ≤ π).

To evaluate possible solutions for the problem, it is necessary to define a
measure of similarity between the reference and the landscape images. Some
measures of similarity between images were proposed in the literature, such as
mutual information and sum of the square of differences between pixels [8,9].
Since mutual information is computationally expensive and the other measure
may give high values for similarity even when images are not correlated, we used
in this work the absolute sum of differences between pixels.

A function that computes the difference between pixels of the reference image
(RI) and the landscape image (LI) is called here "Error". Using such function
a given solution can be evaluated by using the following equations:

EvalSol =
(ErrorMax − ErrorSol)

ErrorMax
(1)

ErrorMax = 2nbits ∗ ((m ∗ n) − Pinv) (2)

ErrorSol =
n−1∑

i=0

m−1∑

j=0

|RI(i, j) − LI(I, J)| (3)

where: n and m are the dimensions (width and height) of the reference image;
nbits is the number of bits used to represent gray levels; Pinv are pixels that
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belongs to the reference image, but doesn’t belongs to the landscape image
(they appear when the position of the reference image is near to the borders
of landscape image); ErrorSol is the sum of the difference of intensity between
pixels of reference and landscape images, for the given solution.

The indices (I, J) of the pixels of the landscape image are obtained by the
equations 4 and 5, where ddX = j − WidthRI

2 and ddX = i − HeigthRI

2 , and the
values of x, y, s, θ belong to the candidate solution under evaluation.

I = y + s ∗ (ddX ∗ sin(−θ) + ddY ∗ cos(θ)); (4)

J = x + s ∗ (ddX ∗ cos(−θ) + ddY ∗ sin(θ)); (5)

The evaluation function (Equation 1) tends to 1, its maximum value, when the
value of Equation 3 tends to 0. Therefore, an optimization method (in this case,
PSO) can be used to maximize the value of the evaluation function, consequently
minimizing the error between both reference and landscape images(Equation 3).

The previous definitions is for gray level images, although a similar principle
can be used for color images. In this case, it is necessary to compute the matching
error for each independent channel of the triplet RGB, as shown in the following
equations:

EvalSol =
(3 ∗ ErrorMax − (ErrorChannelSol))

ErrorMax
(6)

ErrorChannelSol =
3∑

ch=1

n−1∑

i=0

m−1∑

j=0

|RI(i, j, ch) − LI(I, J)| (7)

An important difference for the evaluation of color images is the range of
values of Equation 6, from 0 to 3. However, this feature does not lead to signif-
icant differences in the recognition of objects in images. Considering that color
images have three independent color channels, represented by the variable ch in
the equation 7, the search for objects can be simplified if the landscape image
is previously searched for large color discrepancies. This procedure can decrease
the searchable size of the landscape image, thus significantly decreasing the com-
putational effort.

3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) belongs to the group of heuristic methods
known as swarm intelligence. PSO is an evolutionary computation method, like
genetic algorithms, genetic programming, evolution strategies and ant colony
optimization. PSO is inspired in the behavior of social agents, and was invented
by Eberhart and Kennedy in 1995 [5]. The basic idea behind PSO is the sim-
ulation of a simplified social system, based on the collective behavior observed
in bird flocking, bee swarming, and fish schooling, for instance. The individuals
in these groups continuously adjust their position in the space while moving, so



14 H.A. Perlin, H.S. Lopes, and T.M. Centeno

as to keep an average distance between neighbors. The behavior of a given indi-
vidual affects the group and vice-versa. From the computational point of view,
the swarm is composed by particles, which represent possible solutions for the
problem. Particles "fly" over the hypersurface of the solution space, searching
for the optimal solution.

At the beginning, the population of particles is randomly initialized. That is,
their position in the search space, as well as their velocity (in all dimensions)
are set randomly. Using a random number generator with uniform distribution,
such initialization assures that any point in the search space can be reached.
Each particle has a limited memory, and it is able to store the coordinates of its
current position in the search space, as well as the position where it found the
best solution to date (pbest), and the position of the best solution found by its
neighbors (lbest) or by the whole swarm (gbest), depending on the implemen-
tation. pbest represents the knowledge acquired by the own particle during its
navigation in the search space, also known as cognitive component. gbest or lbest
represents the knowledge acquired by the group, also known as social component.

At each time step, the movement of particles is influenced by both its cognitive
as well as its social components, as follows. Each particle has a velocity, which
is modified according by the weighted influence of pbest and gbest. The larger is
the difference between the current position of the particle to pbest, the more it
is influenced to go towards it. The same occours for gbest. Equation (8) shows
how the velocity of the i-th particle is updated in the next time step (t + 1),
according to its current position xt

i at time t.
V elt+1

i = w ∗ V elti + c1 ∗ r1 ∗ (pbestti − xt
i) + c2 ∗ r2 ∗ (gbestti − xt

i) (8)

where: w is the inertia moment, c1 and c2 are user-defined acceleration constants,
r1 and r2 are uniformly distributed random numbers, and xi represents the
current solution.

Knowing the velocity of a given particle, it is possible to update its position
in the search space at the next time step. This is done by Equation (9).

xt+1
i = xt

i + V elt+1
i (9)

The acceleration constants, c1 and c2, have a direct influence on the size of
the step in the search space. Therefore, it is important to set such constants
to appropriate values, aiming at an efficient exploration of the search space. A
high value for c1, local search is encouraged and the swarm tends to be clustered
into small isolated groups, frequently with only one particle. On the other hand,
with a high value for c2, the swarm tends to be clustered in a local maximum,
thus stagnating the search. As any other evolutionary computation method, the
choice of optimal values for the control parameters is a difficult task and, usually,
is problem-dependent.

The following steps summarize the standard PSO algorithm:

a) Initialize the swarm of particles with random values for each component of
the solution vector (valid solution);

b) Evaluate the quality of the solution represented by each particle;
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c) If the fitness of the current solution is better than pbest then update it with
the current solution. If the current solution if better than gbest then update
it with the current solution;

d) Compute the new velocity of particles according to Equation (8);
e) Compute the new position of particles (new solution) in the search space

according to Equation (9);
f) If a stopping criterion is met, then stop. Otherwise, go to step (b). The

stopping criterion can be a maximum number of iterations or a solution of
satisfactory quality.

An additional step that can be used to improve performance of PSO is the
use of some diversification method within the search process. When the swarm
converges to a given region of the search space, very few improvement can be
achieved. This is due to the lack of diversity of solutions in the swarm and can be
observed when gbest stagnates for a number of iterations. In such situation, the
easiest way to give chance of a further improvement of the PSO is to extinguish
the swarm and restart PSO, but keeping the former gbest. This procedure is
known as explosion, and was demonstrated to be of great utility for complex
problems [6], allowing PSO to achieve better solutions, when compared with a
PSO without explosions.

In fact, the PSO heuristics is easy to implement and does not require many
computational resources for running. The most expensive part is always the
evaluation of a candidate solution (particle).

4 Computational Experiments and Results

The standard PSO was implemented following the steps summarized in the
section 3. A population of 40 particles, with random initialization, was used.
Running parameters were set as the default values suggested in the literature:
c1 = c2 = 2 and w = 0.5 The stopping criterion was set as reaching 800 itera-
tions. Additionally, during the search, if premature convergence is detected, an
explosion is performed [6]. In this work, premature convergence was defined as
20 iterations without improvement in gbest.

4.1 Experiment #1

The objective of this experiment is to investigate the sensitivity of the fitness
function to changes in translation (x, y), scale (s) and rotation (θ). Translation
for both x and y were changed, independently, in the range of [−5.0..5.0], in
steps of 0.1 pixel. Scale was changed in the range [0.5..1.5], in steps of 0.001.
Rotation was changed in the range of [−0.0872..0.0871] in steps of 0.00001 radian.
This is equivalent to −5 to +5 degrees. Several landscapes and reference images
(grayscale and color) were used in this experiment. Results, in general, were
equivalent. A representative result of this experiments is shown in Fig. 1, using
Fig. 4(a) as landscape and 4(c) as reference.
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Fig. 1. Sensitivity analysis of the fitness function. Top: translation in axes x and y.
Botton: scale and rotation.

4.2 Experiment #2

In this experiment the PSO was tested using a black-and-white reference image,
shown in Fig. 2(a), having 69 x 148 pixels (from the work of [2]). Fig. 2(b) and
Fig. 2(c) show the landscape images used, with the reference object translated
and rotated, but with no change in scale.

(a) (b) (c)

Fig. 2. (a) Reference image. (b) Landscape image with the pattern translated, rotated
and degraded with noise. (c) Same landscape image of Fig. 2(b), but with more noise.

Gaussian noise was also added to the analysis image, but with a larger stan-
dard deviation (2.0). This experiment enabled to evaluate how PSO degrades its
performance as noise increases.

To evaluate in what extent the proposed method is able to find the reference
object, we added Gaussian noise to the landscape image. The Gaussian noise
added had zero mean and standard deviation 0.5 and 2.0, for the landscape im-
ages of Fig. 2(b) and Fig. 2(c), respectively. The size of both landscape images
was 208 x 150 pixels. In both cases, PSO found a good solution, shown in Ta-
bles 1 and 2. PSO easily found those solutions, converging with only 86 and 94
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Table 1. Solution found by PSO for ref-
erence image of Fig. 2(a) and landscape
image of Fig. 2(b)

Par. Ref. PSO Error
y 84 84 0 %
x 106 107 0.94 %
s 1 1.006251 0.63 %
θ -1.57 -1.565450 -0.29 %

Table 2. Solution found by PSO for ref-
erence image of Fig. 2(a) and landscape
image of Fig. 2(c)

Par. Ref. PSO Error
y 84 84 0 %
x 106 107 0.94 %
s 1 0.986482 -1.35 %
θ -1.57 -1.571803 0.11 %

iterations, respectively, achieving a fitness of 0.735727 and 0.612881. In these
tables, and in the following, "Par" refers to the elements of the 4-tuple of the
image; "Ref" are the reference values; "PSO" refers to the values found by PSO;
and "Error" is the percent of deviation of the solution found by PSO, regarding
the reference values.

4.3 Experiment #3

To test the robustness of PSO in a more realistic situation, we used a gray level
figure with several objects. The reference object, shown in Fig. 3(a) (238 x 269
pixels) is supposed to be found in the scene of Fig. 3(b) (496 x 347 pixels). It
should be noted that the object is now translated, rotated, reduced and with a
different viewpoint (in perspective). Besides, the reference object is partially oc-
cluded by another object (scissor) in the landscape. All these elements configures
a hard task for an automatic object recognition system, since it is close to a real-
world situation. PSO was able to find a satisfactory solution, shown in Fig. 3(c)
(238 x 269 pixels), clipped from the original landscape image. The result para-
meters found by PSO was 133 and 209, to the x and y coordinates respectively,
0.533792153 for the scale factor and 0.69526328 to the rotation angle.

(a) (b) (c)

Fig. 3. (a) Reference image. (b) Landscape image. (c) Clip of the solution found by PSO.

4.4 Experiment #4

Besides gray scale images, we tested the proposed method with color images
quantized with 24 bits. First, the reference image of Fig. 4(b) (76 x 83 pixels)
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(a) (b) (c)

Fig. 4. (a) Color landscape image of a printed circuit board. (b) Reference image
(bright led). (c) Reference image for experiment #1 (resistors).

Table 3. Comparison of the performance of PSO for gray scale and color versions of
images of Fig. 4(a) and Fig. 4(b)

Type of Image Avg. Fitness Avg. Iter. Avg. Expl.
Gray level 2.659252754 225.6 3.6

Color 2.911080048 191.5 3.4

and landscape image of Fig. 4(a) (800 x 600 pixels) were transformed to gray scale
(using 8 bits) and submitted to PSO. Next, both color images were submitted
to PSO in order to compare the effect of the decrement of the quantization level
in the efficacy of PSO. Results are shown in Table 3 represent the average of 10
independent runs. The average fitness found for color images was larger than the
corresponding for gray scale images. This suggests that, for this set of images, it is
easier to find the object in a color image. In fact, it was intentionally selected the
object with most discrepancy in the landscape (round, red and bright). However,
when the image is converted to gray scale, there is no such discrepancy. Even
so, PSO succeed to find the object, but with a larger effort, demonstrated by
the average number of iterations necessary. The average number of explosions of
the swarm was also larger for the gray scale image than for the color one. This
is compatible with the larger difficulty imposed by the first case.

4.5 Experiment #5

In this experiment we used a large color image (1024 x 768 pixels) as landscape
– see Fig. 5(a), and a small reference image (118 x 138 pixels) – see Fig. 5(b).
The face of the reference figure has many details similar to other faces in the
figure. Therefore, this experiment evaluated the ability of the proposed method
to find an object in a complex scene with rich color details.

In this experiment, color Gaussian noise was added to the landscape image,
in a percentage ranging from 5% to 75%. The objective of this test is to discover
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(a) (b)

Fig. 5. (a) Landscape figure of a complex scene. (b) Reference figure.

the limit of efficiency of the PSO. Table 4 shows the average results for 10
independent runs. As expected, the efficiency of PSO decreases as noise increases.
A statistical analysis of data shows that this decrement is polynomial. In the
same way, as a consequence of the increasing difficulty imposed by noise in the
image, the average number of iterations increases also polynomially. The average
number of explosions (restarts) is directly correlated to the number of iterations.

5 Discussion and Conclusions

In the experiment #1 it can be observed a difference in sensitivity for axes x and
y. The larger sensitivity to translations in axis x is due to the specific features of
the reference image 4(c), where elements are vertically positioned. The changes
in the fitness function due to translation is in steps because pixels are discrete,
although the PSO uses a resolution of tenths of a pixel. In this experiment it
was also observed that changes in scale is much more critical than in translation
or rotation. This fact suggests the possibility of using some kind of local search
just to fine-tune the scale of a solution found by PSO.

Table 4. Results for different levels of color Gaussian noise in the landscape Fig. 5(a)

Noise Avg. Fitness Max. Fitness Avg. Iter. Avg. Expl.
5 % 2.70863165 2.85806349 208.6 3.6
10 % 2.59230251 2.74718357 267.4 6.1
20 % 2.53714739 2.55977623 198.0 4.6
30 % 2.23639087 2.32247749 248.3 5.1
50 % 2.09965423 2,15037207 229.6 5.4
75 % 1.93363241 1,97322669 418.2 15.2
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Experiment #2 showed that PSO is robust, even in the presence of strong
noise, when the reference image has a well-defined threshold with the back-
ground, typical of black-and-white images. Similarly, for color images, experi-
ment #5 also showed the robustness of PSO, even for a complex scene with many
details. The difficulty of the task is directly proportional to the amount of noise.

In the experiment #3 PSO showed its usefulness in a situation very close to
real-world applications, specially in the industrial environment. PSO succeeded
well in the experiment with a highly unfavorable conjunction of factors: dis-
placement, rotation, reduction, occlusion and different viewpoint of the reference
image.

Experiment #4 showed that the proposed method has more difficulty with
images with less quantization levels. This suggests that it is easier to find patterns
in color images because there is more information in the three channels than in
a single gray level channel.

Overall, the problem of automatic object recognition in images is constantly
found in industry, robotics, medicine, engineering, computer science and other
areas. Therefore, efficient methods for dealing with this problem are always wel-
come. The proposed method, based on PSO, was shown to be a good alternative
for the problem, and we believe it is specially suited for industrial applications,
even in adverse situations.

To avoid parameter adjustments without prior knowledge of the behavior of
the algorithm for each specific problem, future work will focus on a self-adaptive
version of the PSO, inspired in a previous work with genetic algorithms [10]. Also,
another evaluation functions will be tested so as to decrease computational effort
and improve robustness.

Finally, we believe that the proposed method is promising, specially concern-
ing the robustness and simplicity. Results suggest that this method can be used
in a computer vision system for real-world object detection in images.
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