A Compact Genetic Algorithm with Elitism and
Mutation Applied to Image Recognition

Rafael R. Silva, Heitor S. Lopes*, and Carlos R. Erig Lima

Bioinformatics Laboratory
Federal University of Technology Parand (UTFPR),
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil
rafael.rsi@gmail.com, hslopes@pesquisador.cnpq.br, erig@utfpr.edu.br

Abstract. The problem of object recognition in images is a hard prob-
lem frequently found in industrial and academic application. This work
presents the application of an extension of the Compact Genetic Algo-
rithm (emCGA) to three problems of object recognition in real images.
Results are compared with an exhaustive search algorithm and another
CGA. Results suggested the efficiency of emCGA for this problem and
encourages future developments.
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1 Introduction

The Genetic Algorithm (GA) is an efficient tool for optimization problems and
has been applied on several engineering problems. However, in some applications,
the computational cost of the GA can be too high, demanding a prohibitive ex-
ecution time or excessive hardware resources. A possible alternative is the use
of a genetic algorithm with smaller computational complexity, which can run
in less powerful systems. Alternatively, it can be implemented in parallel archi-
tectures using reconfigurable logical devices [2]. A possible limitation of the GA
implementation is the amount of memory required to store the population. This
is particularly true for hardware implementations. A GA evolves a population,
not a single point, thus requiring memory space to store such information.

On the other hand, the CGA (Compact Genetic Algorithm) can achieve
the same level of quality of a SGA (Simple Genetic Algorithm) with uniform
crossover, but using less memory to store the population. This is possible because
the CGA works with a probability vector instead of the whole population [5].

Another feature of CGA is the use of techniques to evolve the probability
vector, imitating the behavior of a SGA. Due to the simplicity of these tech-
niques and the small memory requirements, some works proposed software and
hardware implementations of the CGA, showing good results with significant
resources reduction for its construction.
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This work presents the application of a new extension of a CGA, the emCGA
[8], to object recognition in images. This approach uses elitism and introduces
a new mutation operator. Differently from other mutation operators introduced
for CGA, this one is applied to new individual generation, thus imitating the
crossover operator of a SGA. This operator does not increase significantly com-
putational cost or memory consumption and increases the overall performance,
when compared with similar works.

2 The Compact Genetic Algorithm

The CGA is an Estimation of Distribution Algorithm (EDA), first proposed by
Harik et al. [5], that generates descendants using a statistical population model,
instead of the traditional recombination operators and mutation. [4] estimated
the convergence time for a special class of GA problems without iterations among
building blocks (BB). The idea of CGA was to simulate an independent random
walk model for each bit of the chromosome. As result, the population is reduced
to a vector of probabilities that occupies only L * logs(N) bits of memory, in
comparison with L * N for a SGA (where L is the chromosome length and N
the size of the population). The CGA can imitate the behavior of a SGA with
uniform crossover using a reduced amount of memory. The importance of the
size of the population in GA performance has been focused in other works, such
as [4]. Usually, a large population size results in better quality of the solution,
but it increases the computation cost and memory use.

Since CGA was introduced by [5], several extensions were proposed aiming
to improve its performance. Their main focus are the introduction of techniques
to allow the CGA to overcome the performance reduction in problems with
higher order building blocks. The extensions of CGA that proposed some elitist
technique were those that showed the best balance between demand of resources
and performance. Elitism allows to increase the selective pressure and to reduce
the genetic drift.

Despite of the competitive performance of CGA with SGA for low order BBs,
it does not achieves the same performance when high order BBs are present in the
problem. In this case, with the compact representation of the population in CGA,
the information regarding high order relationships between the chromosome bits
does not survive throughout generations, differently that what happens in SGA.
For real-world problems, these disturbances generated by the uniform crossover
should be overcome, since many problems presents local optima (i.e. multimodal)
and interdependent genes (high order BB). However, increasing the selective
pressure in CGA tends to decrease these noisy effects, because it increases the
probability of high order BBs to survive throughout generations [4],[I]. Some
works proposed modifications in the basic CGA to improve performance by
increasing the selective pressure, such as: neCGA [I], mCGA [3] and emCGA
[8]. Among them, the emCGA showed the best tradeoff between solution quality
(fitness value) and convergence speed (number of evaluations).
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2.1 The emCGA

The previously mentioned works (neCGA and mCGA) perform better than the
original CGA. Both works use elitism, but mCGA uses the mutation operator
with success. Another work has also proposed a mutation operator [9], called
MBBCGA, but it is different from the mCGA mutation operator. This work
presents the application of an extension operator, aimed at improving even more
the quality of solutions but, also, keeping a reasonable convergence speed. The
previously mentioned works that use mutation operators do not focus on popula-
tion diversity control, but on local search. In the neCGA the mutation is applied
to the elite individual of the current generation to generate another individual.
After a tournament over these individuals, the best one will be the elite for the
next generation. In the mCGA, mutation is applied in the first individual to
substitute the second generation of the conventional CGA.

The new proposed operator allows a more efficient control of the selective
pressure, adjusting the population diversity as the consequence of the manipula-
tion of the probability vector. Comparing the proposed mutation operator with
that of mCGA, the new operator decreases the number of tournaments per gen-
eration and, consequently, the total number of fitness evaluations per generation.
The consequence is a significant improvement in the convergence speed of the
algorithm [8]. The new CGA resulting from the use of the proposed mutation is
named emCGA (elitism with mutation CGA). Basically, the proposed mutation
operator changes the random generation phase, by changing the chromosome
just-generated with the probability vector.

3 The emCGA for the Object Recognition Problem

The problem of object recognition in images is frequently found in industrial
and academic application. However, the recognition of objects using traditional
search algorithms is computationally expensive. Particularly, this effort increases
when it is present translation, rotation, scale variation or a partial object ob-
struction [6]. Therefore, the implementation of fast search algorithms for this
problem is of great interest. In most cases, applications using these algorithms
should be executed in real time, thus requiring fast algorithms instead of exhaus-
tive search algorithms. Algorithms based on metaheuristics can offer reasonable
performance and quality of solutions [7]. This fact motivated the use of enCGA
to the object recognition problem in real images. In this work, a technique of
digital processing of images is explored to extrapolate significant properties of an
object in an image and to create a computational model. The proposed model,
called of Light Intensity (LInt) model, is based on the intensity of the light in
three channels of the image of the object to be detected, Red, Green and Blue
(RGB). The RGB channels are weighted with 0.3, 0.59 and 0.11, respectively.
Converting every pixel of the object image yields a generic matrix M;jy.m,, where
each element is a value of 256 gray levels, corresponding to the light intensity of
the pixel in the same image position. When the value of the element is 0 means
that the light intensity is 0%, and 255 is 100%.
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The fitness function of the emCGA measures the similarity between two im-
ages. The object is defined by a reference image or, simply, reference. The input
images are converted previously to the LInt model. Therefore, it is possible to
reduce the computational cost and the memory demands in the fitness function
execution. Based on [7], the fitness function computes the percentage of similar-
ity between two images using the absolute error between the reference and input
image models, described by equation [

Emaz - {Z?:l Z;nzl |F(I,k,i,j) - Mref(ivj”}

S(k) = 100%. -~

(1)

Where I is LInt matrix of the input image, F' is function that transforms
an image in a LInt model, returning its (4,7) element,M,. is reference image
LInt matrix, F,,..is absolute maximum error, n are number of lines of reference
image LInt matrix, m are number of columns of reference image LInt matrix
and k is parameter vector of F' transform.

This fitness function returns a value in the range 0..100% representing the
similarity between the object and the input images. The higher this value, the
higher the probability of finding the object in the input image, according to
parameters vector k. Therefore, the objective is to find a vector k£ that yields
the higher similarity measured by the fitness function.

Objects studied in this work are three-dimensional. Consequently, they can
be found displaced horizontally (z axis), vertically (y axis) and in depth (z axis),
as well as rotated in any of the three possible planes (angles 6, « and 3). Matrix
M,.c¢ has n lines and m columns and all their elements are compared for comput-
ing similarity. In our experiments we considered only translations in the (z,y)
plane and rotations in all planes. The F' transform applies a translation and ro-
tation operation to point (4, j) and returns the corresponding element of a input
matrix I, according to equation [ (for simplicity, this equation considers only
translation and rotation in the (z,y) plane). As the values of light intensity vary
from 0 to 255, the absolute maximum error of an element is 255. Therefore, the
absolute maximum error for all elements (E,,q;) is defined as E,,q. = 255.n.m.

F(k,i,7) = 1(z',y') . (2)

The parameters vector k is composed by the translation position (z,y) and
the rotation angle 6. The position (z’,4’) is the transformed position of (4, j),
where 2/ = x + (i.cosf + j.sinf) and 3’ = y + (i.cosf — j.sin@). However, as
this transformation uses trigonometrical functions that return a real number,
the returned element of the matrix I is the value of the closest integer of this
position, by rounding up x’ and 3.

The translation position is a position in the input image and it is also the
central position of the possible object location. When a position is evaluated
close to the border, some positions (z’,y’) may be invalid. In this case the error
in these points will be the maximum. This procedure allows the identification of
an object partially clipped close to the borders. A chromosome in the emCGA
is then defined by the parameter vector k and coded according to the following
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ranges: 0 <z < ¢, 0 <y <[ and 0 < 6 < 360 degrees, where ¢ and [ are the
number of columns and lines of the input image. Displacements are measured in
pixels (steps of 1) and angle in degrees (steps of 0.7). The overall length of the
chromosome is given as L = loga(c) + loga (1) + 9.

The emCGA uses two parameters that need to be previously defined: the
population size and the mutation rate. The search of an object in an image is
a complex problem, since it is a multimodal problem, with many local maxima
randomly distributed. Besides, it is important to note that the genes in the chro-
mosome, that is, the parameters being optimized, are strongly interconnected.
Consequently, the recommended mutation rate is approximately 1/L, and the
size of the population should be large enough [g].

The input images used in our experiments were 1024 x 768 bits large. In
this case, parameters x and y will need 10 bits for encoding, plus 9 bits for the
rotation angle. Consequently, the recommended mutation rate is approximately
3.4%. The size of the population that yielded a reasonable tradeoff between
performance and computational cost was 16384 individuals. The GAs, as well as
the emCGA, have their stochastic nature implemented through a pseudo-random
number generator. So, it is also necessary to define a seed for this generator. For
each independent run, a different random seed was chosen.

4 Experiments and Results

Three experiments were run to evaluate emCGA for the object recognition task
in images. Results are presented in figures showing the reference image(s), the
input image and the object (standing out in this input image using red lines).
We opted to show the input in gray levels to facilitate the visualization.

Our experiments use images from digital pictures. For the sake of having a
golden standard, that is, the optimal solution, for a given problem, we devised

Reference Iinage
RGB (8 bits) Model
—_ @ %

X ¥ (e} Fit. Aval. i

emCGA 795 209 200.08 97.29 8.81E+04 \
AES 795 209 200.08 97.29 4.03E+08 .2
mCGA 737 511 15358 78.68 4.17EH05 m)

Fig. 1. Chess Bishop Search. a) Reference Image and LInt Model. b) Input Image and
object recognized.
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Reference linage

RGB (8 bits) Model
N (@) )
X ¥ a Fit. Aval.
emCGA 792 428 0 100 1.08E+05
AES 792 428 0 100 4.03E+08

mCGA 185 293 352 84.88  3.B4EH0S

o
~

Fig. 2. Faces Search. a) Reference Image and the associated LInt model. b) Input
image and the recognized face.

an Exhaustive Search Algorithm (AES). AES evaluates the same fitness function
(equation[I) for all possible combinations of the parameters vector k. The results
of the application of emnCGA are compared with those obtained by AES and with
those obtained by mCGA[3], so as to evaluate its accuracy and computational
cost. Values for the parameters vectors are shown in each experiment as well as
the fitness value (Fit.) and the number of fitness evaluations (Eval.).

In the first experiment, the object to be found in the input image is a chess
bishop piece. The reference image is used to generate LInt model, according to
figure [Mh. This model is used by the emCGA to find the object in the input
image. The object found is presented in figure [Ib inside a rectangle to stand it
out. This procedure will be also used in the remaining experiments in this work.

Reference  Model

x ¥y é Fit. Aval x v 14 Fit, Aval
emCGA 327 552 3241 9286 9.58E+04 emCGA 292 455 34591 8504 BOTEH4
—_
AES 327 552 3241 9286 4.03E+08 ABE 292 435 34591 8504 4.03E+08
mCGA 452 501 22544 80.63 3.5%9E+DS mCGA 292 455 34591 85.04  3.84E+05

Fig. 3. Chess Knight Search. a) Reference Image and Model. b) First Input image and
object recognized. ¢) Second Input image and object recognized.
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Notice that the bishop in the input image is translated and rotated relative to
the reference image.

In the second experiment, a human face is recognized in a digital picture in
which there are several people. This is a difficult problem for a computer-based
vision system, since many local optima can be easily realized. The face used is
shown in figure Bh and input image and the recognized face are shown in figure
Bb . The reference image is cut out of the input image.

In the last experiment, the object to be recognized is a chess knight piece
(figure Bh). In the first input image, shown in figure Bb, the object is translated
and rotated in the image plane (z,y). The main distortion in this image that
makes the problem somewhat difficult is due to a different illumination angle,
shedding a bright spot to the object. In the second input image (figure Bk), the
object is also rotated in both (z,y) and (z,z) axes. These rotations impose a
more challenging task than the previous image. Besides these distortions, in the
two input images other similar pieces are added, increasing the difficulty of the
problem by injecting more local maxima.

5 Discussion and Conclusions

The object recognition problem for computational vision easily falls into an
exhaustive search. It is expected that the use of a heuristic search algorithm,
such as the emCGA, can achieve similar results to an AES, but with smaller
computational cost. The computational costs of the algorithms are a function of
the number of fitness evaluations.

The experiments were developed to evaluate the efficiency of emCGA in a
real-world problem. Complex input images were used to show the robustness of
the object detection method using the emCGA. In the first experiment, the chess
pieces introduce several local maxima in the search space. Results shown that
the emCGA reaches the global maximum with a computational cost of approxi-
mately 0.022% of the AES and 21.1% of the mCGA. However, mCGA achieved a
performance around 20% worse than emCGA. In the second experiment no dis-
tortion was added, since the reference image is extracted from the input image.
However, the input image has many local maxima, since there are a lot of similar
faces. The emCGA was able to find the global maximum with a computational
cost of approximately 0.027% of the AES. Also, enCGA was 4 times faster than
mCGA, which again performed worse than emCGA. This results show that the
emCGA, using the LInt model, has a good discriminatory power, capable of cap-
turing small details in the images. The last experiment was especially devised
to verify how the method behaves in the presence of significant distortions in
the images. In the first input image the object to be recognized was rotated in
two axes, and for the second input image, in three axes. For both cases, emCGA
reached the global maximum with a computational cost of approximately 0.02%
of the AES, and emCGA converged 4 to 5 times faster than mCGA. Notice
that for the first input image mCGA did not found an acceptable solution for
the problem, since 6 is rotated around 180 degrees of the expected orientation.
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Recall that, in our experiments, the chromosome of emCGA encoded only ro-
tation in plane (z,y). Notwithstanding, enCGA was able achieve a good result
even in the presence of unexpected distortions in the 3D space.

Finally, through this work it is possible to conclude that the emCGA us-
ing the LInt model is appropriate for applications that require a compact, fast
and efficient search algorithm, with limited computational resources. Therefore,
we conclude that the proposed method can be efficiently applied to real-world
problems without increasing significantly the implementation complexity or its
computational cost.

Future work will focus in evaluating the limits of emCGA to other real prob-
lems, as well as comparing it with other similar approaches, and re-implementing
the system using reconfigurable logic for real-time image processing.
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