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Abstract. Machine Learning methods have been widely used in bioin-
formatics, mainly for data classification and pattern recognition. The
detection of genes in DNA sequences is still an open problem. Identify-
ing the promoter region laying prior the gene itself is an important aid
to detect a gene. This paper aims at applying several Machine Learning
methods to the construction of classifiers for detection of promoters in
the DNA of Escherichia coli. A thorough comparison of methods was
done. In general, probabilistic and neural network-based methods were
those that performed better regarding accuracy rate.
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1 Introduction

The DNA (Deoxyribonucleic acid) is a organic molecule responsible for the co-
ordination and functioning of all living beings. It not only carries the genetic
information of the organism, but also stores all the necessary information for
synthesizing proteins.

The DNA is composed by simple elements (monomers) forming a long poly-
mer. Monomers, in turn, are called nucleotides and are formed by chemical com-
pounds and one of four types of molecules (bases): adenine (A), cytosine (C),
guanine (G) and thymine (T).

Within the cell, the DNA is organized into structures called chromosomes,
and the set of chromosomes is the genome of the organism. Most part of the
DNA of eukaryotes (organisms having a membrane surrounding the nucleus of
their cells) is not expressed in an amino acid chain of a protein is known as "junk
DNA". For instance, only 1.5% of human genome is known to be protein-coding
[16]. Although it is speculated that junk DNA may be involved in regulatory
or catalytic activities, their function is still unknown. The remaining segments
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of DNA that are related to the genetic information of the organism are called
genes. Many effort has been spent in developing methods for identifying genes
in DNA, from both Biochemistry/Biology and Computer Science communities.

Proteins, the product of genes, are synthesized after transcription and traduc-
tion of stretches of DNA. The beginning of the transcription of the gene takes
place when the enzyme RNA-polymerase binds to given regions of the DNA
known as promoters. These regions indicate to the enzyme that the genetic in-
formation to be transcribed is about to come in the linear sequence of nucleotides.
Therefore, the following stretch of DNA is transcribed into mRNA (messenger
Ribonucleic Acid), from which introns will be later extracted, and then will map
a protein [7]. The rules that dictate the behavior of RNA-polymerase are not
precisely known. Therefore, many studies have been carried out on this subject,
basing on known examples. Using such approach, supported by Computational
Intelligence methods, researchers aim at improving the current knowledge of this
important biological process.

After the genome of an organism be sequenced, the following task is the
identification of genes present in its DNA. Actually, gene detection is still an
open problem and many methodologies have been proposed. The most usual
approach for finding a gene is detecting signals, that is, particular sequences with
biological meaning in the DNA. Among them, searching for promoter regions is
one of the most important tasks [9], since a promoter indicates precisely where
a gene will start in the DNA sequence.

Currently, the techniques most frequently used for recognizing promoter re-
gions in DNA are based on machine learning methods, such as neural networks,
decision trees and others.

Machine learning is a branch of Computer Science related to the development
of algorithms and techniques that allow computers to learn from data. Basically,
there are two types of computational learning: inductive and deductive. The
later type is focused on logic. On the other hand, the methods of the former
type are the most popular and they extract rules or formatted knowledge from
data. The objective of this work is to evaluate and compare several machine
learning methods applied to the detection of promoter regions in the DNA of a
common bacteria, Escherichia coli.

2 Methodology

2.1 The Data Set

In this work we use a data set compiled by Towell et al. [13] with 106 instances,
half of which having promoter sequences (positive cases) and the remaining being
intragenic sequences (negative cases). The positive cases were withdrawn from
another data base created by Harley and Reynolds [5], whereas the negative cases
were obtained by selecting contiguous substrings from a 1500-base sequence (for
more details, see [13]).

Each instance is 57 nucleotide long, and promoter regions correspond to po-
sitions -50 to +7 from the beginning of a gene. That is, the 50 nucleotides that
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precede the starting point of a gene, together with the 7 first nucleotides of the
gene. For simplicity purposes, in this work we did not consider positions from
+1 to +7, considering only the nucleotides that precede the gene.

2.2 Computational Methods

Two computational tools for machine learning were used in this work. The first
software is known as Weka [15] and is frequently used by the data mining com-
munity. It has a large number of conventional methods for data analysis in a
single tool. HMMER version 2.3.2 [2] is the other software, and is a tool used by
the bioinformatics community for the analysis of sequences.

The input file for Weka was formatted to ARFF model. This is a text file in
which attributes are described and corresponding instances are listed. The con-
vention used for data was: m50, m49, ..., m1, corresponding to positions from -50
to -1 in the nucleotide sequence, followed by the target attribute, that identifies
the class of each instance.

HMMER was used for evaluating the Hidden Markov Model (HMM) method.
HMMs have been used for pattern recognition in many domains and, in special,
in bioinformatics for the detection of patterns in protein and DNA sequences
[2][14]. HMMs are considered in this work due to its efficiency in dealing with
the probabilistic nature of biological sequences. A HMM is an statistical method
considered a simple Bayesian network. A system modeled by a HMM is consid-
ered as a Markovian process which parameters are unknown. Consequently, the
objective is to estimate the value of the parameters from known instances, and
then, use the model for analyzing unknown instances and detecting patterns [3].

The input file for HMMER must be a pre-aligned set of sequences. The 53
positive sequences (that is, corresponding to a promoter sequence) were already
aligned in the original database.

3 Computational Experiments and Results

A total of 30 different methods for supervised learning in Weka were used. These
methods were grouped as Bayesian, neural networks, meta-learners, trees, lazy-
learners and rules.

The default training/testing methodology included a 10-fold cross-validation
[6]. That is, the data set is divided into 10 parts. In the first round, nine parts
are used for training and the remaining for testing. Next, another other nine
partitions are chosen for training and one is set apart for testing. This procedure
is repeated until all 10 possible combinations have been tested. The reported
result is the average of the 10 runs. The purpose of cross-validation is to avoid
biased results when using a small sample of data.

Each HMM was constructed using the tool hmmbuild and, later calibrated
using hmmcalibrate [2]. In both cases the running parameters were configured to
the standard values. The detection threshold was empirically set to -8.4, in such
a way to minimize the number of errors.
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The main objective of this work is to compare the performance of classifiers
in detecting promoters. Therefore, performance is measured according to the
predictive accuracy of the classifiers and other parameters, such as processing
time or memory requirements were not taken into account.

Table 1 shows the results for the 31 supervised classification methods. Methods
are divided by category and, within categories they are ordered by descending
order of predictive accuracy. In this table it is also shown parameters used in
the evaluation of supervised classifiers and, from which, some metrics can be
derived. These parameters are drawn from a confusion matrix (or contingency
table). For a two-class prediction problem, outcomes can be binary labelled as
positive (class "promoter") or negative (class "non-promoter"). When applying
a given classifier method to a set of instances, depending on the outcomes, four
different parameters can be computed:

– tp: true positive - number of positive instances that were correctly classified
as positive;

– fn: false negative - number of positive instances that were wrongly classified
as negative;

– fp: false positive - number of negative instances that were wrongly classified
as positive;

– tn: true negative - number of negative instances that were correctly classified
as negative.

By combining these parameters, it is possible to compute several metrics com-
monly used in machine learning, such as sensitivity (Se), and specificity (Sp), de-
fined in Eq. 1. Another measure of quality for two-class problems is the Matthews
Correlation Coefficient (MCC) (Eq. 2), regarded as a balanced measure and fre-
quently used in bioinformatics [8][1]. These measures are also shown in Table 1
for all classifiers.

Se =
tp

(tp + fn)
Sp =

tn

(tn + fp)
(1)

MCC =
tp.tn − fp.fn

√
(tp + fp).(tp + fn).(tn + fp).(tn + fn)

(2)

A ROC (Receiver Operating Characteristics) graph is a useful technique for
comparing classifiers and observing visually their performance. This kind of
graph is commonly used no only in decision making, but also in machine learn-
ing, data mining and bioinformatics [12]. In a ROC graph axes x and y are
defined, respectively, as 1−specificity and sensitivity. These axes can be inter-
preted as the relative trade-offs between the benefits and costs of a classifier. In
this work, all classifiers were run once since they used the standard parameters.
Therefore, the ROC graph can be represented by a single ROC point for each
non-parametric classifier, corresponding to their (1 − Sp, Se) pairs [4].

When comparing classifiers using a ROC graph, the best possible prediction
method would be that lying as close as possible to the upper left corner (coor-
dinates (0, 1)), representing 100% sensitivity and 100% specificity. A completely
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Table 1. Comparative performance of 31 machine learning methods

Group Method tp fn fp tn MCC accuracy
rate (%)

HMM HMM 50 3 5 48 0.850 92.45
Bayes CNB 49 4 3 50 0.868 93.40

NaiveBayes 48 5 3 50 0.850 92.45
NaiveBayesSimple 48 5 3 50 0.850 92.45
NaiveBayesUpdateable 48 5 3 50 0.850 92.45
AODE 50 3 7 46 0.814 90.56

Neural Net MultiplayerPerceptron 49 4 3 50 0.968 93.40
SMO 49 4 4 49 0.849 92.45
RBFNetwork 48 5 6 47 0.793 89.62
Logistic 45 8 5 48 0.756 87.73
VotedPerceptron 46 7 10 43 0.680 83.96

Meta LogitBoost 47 6 5 48 0.793 89.62
MultiBoostAB 47 6 7 46 0.755 87.73
MultiClassClassifier 45 8 5 48 0.756 87.73
ThresholdSelector 44 9 5 48 0.738 86.79
ADABoost 46 7 8 45 0.717 85.84

Trees NBTree 47 6 5 48 0.793 89.62
LMT 47 6 6 47 0.774 88.67
ADTree 47 6 8 45 0.736 86.79
J48 45 8 12 41 0.624 81.13
ID3 44 7 14 37 0.594 76.41

Lazy LBR 48 5 3 50 0.850 92.45
IB1 49 4 15 38 0.656 82.07
Kstar 48 5 14 39 0.651 82.07
IBk 49 4 16 37 0.639 81.13
LWL 41 12 14 39 0.510 75.47

Rules PART 44 9 11 42 0.623 81.13
DecisionTable 41 12 11 42 0.566 78.30
Ridor 41 12 11 42 0.566 78.30
JRip 42 11 13 40 0.548 77.35
NNge 31 22 2 51 0.591 77.35

random guess would give a point along a diagonal line (the so-called line of no-
discrimination) from coordinates (0, 0) to (1, 1) the left bottom to the top right
corners.

Figure 1 shows the ROC graph for the classifiers evaluated in this work. Since
the performance of all classifiers were above the no-discrimination line, this figure
shows only the upper left quadrant of the graph. This is done only for compari-
son purposes, so as to amplify the differences between classifiers. The top classi-
fiers are identified in the ROC space: HMM (Hidden Markov Model [2]), SMO
(Sequential Minimal Optimization algorithm for support vector machine [10]),
MLP (Multilayer Perceptron neural network [15]), LBR (Lazy Bayesian Rules
classifier [15]), CNB (Complement class Naive Bayes [11], and Bayes. This last
one comprehends three different versions: Naive Bayes, NaiveBayesSimple and
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Fig. 1. ROC space for the classifiers tested. Each symbol represents the classifiers of a
given group (see text).

NaiveBayesUpdateable. It should be noted that all classifiers tested are repre-
sented in the ROC space. Since some of the classifiers have achieved the same (or
near the same) performance, there are several points superimposed in the graph.

Besides comparing the classifiers with themselves, our results were also com-
pared with other published works. Using the same data set, Towell et al. [13]
proposed a hybrid approach mixing neural networks and symbolic rules, named
KBANN (Knowledge Based Neural Network). This approach was compared
with a multilayer perceptron neural network, a decision tree induced with ID3
algorithm, a clustering algorithm k-NN and the technique known as O’Neill.
These results are shown in table 2 [13].

Table 2. Comparison of different methods for the same data set, by Towell et al. [13]

Method accuracy rate (%)
KBANN 96.22
Multilayer Perceptron 92.45
OťNeill’s method 88.68
k-NN 87.74
Decision tree (ID3) 82.08
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4 Discussion and Conclusions

Several methods for detecting promoters in nucleotide sequences were compared.
Table 1 shows that, considering only the accuracy rate, HMM and the Bayesian
methods (including LBR and excluding AODE) were those that performed bet-
ter. The results of another methods (table 2) are approximately similar to those
obtained in this work. Also, they obtained the best results with neural network-
based approaches, a fact that was confirmed in our work. Recall that no effort was
done to fine-tune parameters in our experiments. Results were obtained using
the default parameters, except for HMM where the threshold was set empirically.
Therefore, it could be reasonable to expect slight better performances.

The ROC graph shows the difference between methods more clearly than table
1. Possibly, the small differences in performance of the methods tested may be
due to the small number of instances of the data set. A single misclassified
instance may lead to an error of almost 2%.

In general, the probabilistic methods, including HMM and Naive Bayes clas-
sifiers achieved better results than other classifiers. Possibly, this is due to the
specific nature of biological sequences, where uncertainty is also present. That
is why Bayesian methods have been traditional in bioinformatics, for tasks such
as sequence alignment, pattern recognition and others. Similarly, some neural
network-based methods, namely SMO and MLP, obtained results competitive
to those of Bayesian methods, possibly due to its ability to establish complex
hiperplanes in the problem space. This shows its adequacy for dealing with
biological sequences. Regarding MCC, again a Bayesian and a neural-network
method, respectively, CNB and MLP, were those that performed better.

Traditional methods for induction of decision-trees, such as ID3 and C45, are
considered baseline in many data mining applications. However, for the data set
and standard parameters used in this work they did not performed so well as
others. This was confirmed by analyzing the MCC of those classifiers.

Future work include the use of ensemble methods for associating classifiers
and the application of these methods to the detection of promoters in DNA
sequences of eukariotes, as part of an automatic gene detection system.
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