
Encyclopedia of 
Artificial Intelligence

Juan Ramón Rabuñal Dopico
University of A Coruña, Spain

Julián Dorado de la Calle
University of A Coruña, Spain

Alejandro Pazos Sierra
University of A Coruña, Spain

Hershey • New York
Information Sci



Director of Editorial Content:	 Kristin Klinger
Managing Development Editor:	 Kristin Roth
Development Editorial Assistant:	Julia Mosemann, Rebecca Beistline
Senior Managing Editor: 	 Jennifer Neidig
Managing Editor:		  Jamie Snavely
Assistant Managing Editor:	 Carole Coulson
Typesetter: 		  Jennifer Neidig, Amanda Appicello, Cindy Consonery
Cover Design:		  Lisa Tosheff
Printed at:			   Yurchak Printing Inc.

Published in the United States of America by 
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax:  44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by any 
means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate 
a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Encyclopedia of artificial intelligence / Juan Ramon Rabunal Dopico, Julian Dorado de la Calle, and Alejandro Pazos Sierra, editors.
       p. cm.
  Includes bibliographical references and index.
  Summary: "This book is a comprehensive and in-depth reference to the most recent developments in the field covering theoretical developments, tech-
niques, technologies, among others"--Provided by publisher.
  ISBN 978-1-59904-849-9 (hardcover) -- ISBN 978-1-59904-850-5 (ebook)
 1.  Artificial intelligence--Encyclopedias.  I. Rabunal, Juan Ramon, 1973- II. Dorado, Julian, 1970- III. Pazos Sierra, Alejandro. 
  Q334.2.E63 2008
  006.303--dc22
                                                            2008027245

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this encyclopedia set is new, previously-unpublished material. The views expressed in this encyclopedia set are those of the 
authors, but not necessarily of the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating 
the library's complimentary electronic access to this publication.



596

Evolutionary Grammatical Inference
Ernesto Rodrigues
Federal University of Technology, Brazil

Heitor Silvério Lopes
Federal University of Technology, Brazil

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Grammatical Inference (also known as grammar 
induction) is the problem of learning a grammar for 
a language from a set of examples. In a broad sense, 
some data is presented to the learner that should return 
a grammar capable of explaining to some extent the 
input data. The grammar inferred from data can then 
be used to classify unseen data or provide some suit-
able model for it.

The classical formalization of Grammatical Infer-
ence (GI) is known as Language Identification in the 
Limit (Gold, 1967). Here, there are a finite set S+ of 
strings known to belong to the language L (the posi-
tive examples) and another finite set S- of strings not 
belonging to L (the negative examples). The language 
L is said to be identifiable in the limit if there exists a 
procedure to find a grammar G such that S+ ⊆ L(G), 
S- ⊄ L(G) and, in the limit, for sufficiently large S+ 
and S-, L = L(G). The disjoint sets S+ and S- are given 
to provide clues for the inference of the production 
rules P of the unknown grammar G used to generate 
the language L. 

Grammatical inference include such diverse fields 
as speech and natural language processing, gene analy-
sis, pattern recognition, image processing, sequence 
prediction, information retrieval, cryptography, and 
many more. An excellent source for a state-of-the art 
overview of the subject is provided in (de la Higuera, 
2005).

Traditionally, most work in GI has been focused 
on the inference of regular grammars trying to induce 
finite-state automata, which can be efficiently learned. 
For context free languages some recent approaches have 
shown limited success (Starckie, Costie & Zaanen, 
2004), because the search space of possible grammars 
is infinite. Basically, the parenthesis and palindrome 
languages are common test cases for the effectiveness 
of grammatical inference methods. Both languages are 

context-free. The parenthesis language is deterministic 
but the palindrome language is nondeterministic  (de 
la Higuera, 2005).

The use of evolutionary methods for context-free 
grammatical inference are not new, but only a few at-
tempts have been successful. 

Wyard (1991) used Genetic Algorithm (GA) to 
infer grammars for the language of correctly balanced 
and nested parentheses with success, but fails on the 
language of sentences containing the same number of 
a’s and b’s (anbn language). In another attempt (Wyard, 
1994), he obtained positive results on the inference 
of two classes of context-free grammars: the class of 
n-symbol palindromes with 2 ≤ n ≤ 4 and a class of 
small natural language grammars.

Sen and Janakiraman (1992) applied a GA using a 
pushdown automata to the inference and successfully 
learned the anbn language and the parentheses balancing 
problem. But their approach does not scale well.

Huijsen (1994) applied GA to infer context-free 
grammars for the parentheses balancing problem, the lan-
guage of equal numbers of a’s and b’s and the even-length  
2-symbol palindromes. Huijsen uses a “markerbased” 
encoding scheme with has the main advantage of al-
lowing variable length chromosomes. The inference 
of regular grammars was successful but the inference 
of context-free grammars failed. 

Those results obtained in earlier attempts using GA 
to context-free grammatical inference were limited. 
The first attempt to use Genetic Programming (GP) 
for grammatical inference used a pushdown automata 
(Dunay, 1994) and successfully learned the parenthesis 
language, but failed for the anbn language.

Korkmaz and Ucoluk (2001) also presented a GP 
approach using a prototype theory, which provides a 
way to recognize similarity between the grammars in 
the population. With this representation, it is possible to 
recognize the so-called building blocks but the results 
are preliminary.
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Javed and his colleagues (2004) proposed a Genetic 

Programming (GP) approach with grammar-specific 
heuristic operators with non-random construction of the 
initial grammar population. Their approach succeeded 
in inducing small context-free grammars.

More recently, Rodrigues and Lopes (2006) pro-
posed a hybrid GP approach that uses a confusion 
matrix to compute the fitness. They also proposed a 
local search mechanism that uses information obtained 
from the sentence parsing to generate a set of useful 
productions. The system was used for the parenthesis 
and palindromes languages with success.

BACKGROUND

A formal language is usually defined as follows. Given 
a finite alphabet ∑ of symbols, we define the set of all 
strings (including the empty string ε) over ∑ as ∑*. 
Thus, we want to learn a language L ⊂ ∑*. The alphabet 
∑ could be a set of characters or a set of words. The 
most common way to define a language is based on 
grammars which gives rules for combining symbols 
and to produce the all sentences of a language.

A grammar is defined by a quadruple G = (N, ∑, P, 
S), where N is an alphabet of nonterminal symbols, ∑ 
is an alphabet of terminal symbols such that N ∩ ∑ = 
f, P is a finite set of production rules of the form a → 
b for a, b ∈ ( N ∪ ∑ )*  where * represents the set of 
symbols that can be formed by taking any number of 
them, possibly with repetitions. S is a special nonter-
minal symbol called the start symbol.

The language L(G) produced from grammar G 
is the set of all strings consisting only of terminal 
symbols that can be derived from the start symbol S 
by the application of production rules. The process of 
deriving strings by applying productions requires the 
definition of a new relation symbol ⇒. Let aXb be a 
string of terminals and nonterminals, where X is a non-
terminal. That is, a and b are strings in ( N ∪ Σ )*, and  
X ∈ N. If X → ϕ is a production of G, we can say aXb 
⇒ aϕb. It is important to say that one derivation step 
can replace any nonterminal anywhere in the string. 
We may extend the ⇒ relationship to represent one 
or many derivation steps. We use a * to denote more 
steps. Therefore, we formally define the language 
L(G) produced from grammar G as L(G) = { w | w ∈ 
∑*,  S ⇒* w }.

More details about formal languages and gram-
mars can be found in textbooks such as Hopcroft et 
al (2001).

The Chomsky Hierarchy

Grammars are classified according to the form of the 
production rules used. They are commonly grouped 
into a hierarchy of four classes, known as the Chomsky 
hierarchy (Chomsky, 1957). 

• Recursively enumerable languages: a grammar 
is unrestricted, and its productions may replace 
any number of grammar symbols by any other 
number of grammar symbols. The productions 
are of the form a → b with a, b ∈ ( Ν  ∪ ∑ )∗.

• Context-sensitive languages: they  have grammars 
with productions that replace a single nonterminal 
by a string of symbols, whenever the nonterminal 
occurs in a specific context, i.e., has certain left 
and right neighbors. These productions are of the 
form aAg → !abg, with A ∈ N and  a, b, g ∈  ( Ν  
∪ ∑ )∗. A is replaced by b if it occurs between a 
and g .

• Context-free languages: in this type, grammars 
have productions that replace a single nonterminal 
by a string of symbols, regardless of this nonter-
minal’s context. The productions are of the form 
A → a for A ∈ N and a ∈ ( N ∪ ∑ )*; thus A has 
no context. 

• Regular languages: they have grammars in which 
a production may only replace a single nontermi-
nal by another nonterminal and a terminal. The 
productions are of the form A → Ba or A → aΒ 
for A, B ∈ N and a ∈ ∑*.

It is sometimes useful to write a grammar in a 
particular form. The most commonly used in gram-
matical inference is the Chomsky Normal Form. A 
CFG G is in Chomsky Normal Form (CNF) if all 
production rules are of the form A → BC or A → a for  
A, B, C ∈ N and a ∈ ∑. 

The Cocke-Younger-Kasami Algorithm

To determine whether a string can be generated by 
a given context-free grammar in CNF, the Cocke-
Younger-Kasami (CYK) algorithm can be used. This 
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algorithm is efficient and it has complexity O(n3) where 
n is the sentence length . 

In the CYK algorithm, first a triangular table that tells 
whether the string w is in L(G) is constructed. The hori-
zontal line corresponds to the positions of the string w =  
a1 a2 .. an. The table entry Vrs is the set of variables A 
∈ P such that A ⇒∗ ar ar+1 ... as. We are interested in 
whether the start symbol S is in the set V1n because 
that is the same as saying S ⇒∗ a1 a2 ... an or S ⇒∗ w, 
i. e., w ∈ L(G). 

To fill the table, we work row-by-row upwards. Each 
row corresponds to one length of substrings; the bottom 
row is for strings of length 1, the second-from-bottom 
row for strings of length 2 and so on, until the top row 
corresponds to the one substring of length n which is 
w itself. The pseudocode is in Figure 1.

Genetic Programming

Genetic Programming (GP) is an evolutionary technique 
used to search over a huge state space of structured 
representations (computer programs). Each program 
represents a possible solution written in some language. 
The GP algorithm can be summarized in Figure 2 
(Koza, 1992).

The evaluation of a solution is accomplished by 
using a set of training examples known as fitness cases 
which, in turn, is composed by sets of input and output 
data. Usually, the fitness is a measure of the deviation 
between the expected output for each input and the 
computed value given by GP (Banzhaf, Nordin, Keller 
& Francone, 2001).

Figure 1. The CYK algorithm

Figure 2. The GP algorithm
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There are two main selection methods used in GP: 

fitness proportionate and tournament selection. In the 
fitness proportionate selection, programs are selected 
randomly with probability proportional to its fitness. In 
the tournament selection, a fixed number of programs 
are taken randomly from the population and the one 
with the best fitness in this group is chosen. In this 
work, we use the tournament selection.

Reproduction is a genetic operator that simply 
copies a program to the next generation. Crossover, 
on the other hand, combines parts of two individuals 
to create two new ones. Mutation changes randomly 
a small part of an individual. 

Each run of the main loop of GP creates a new 
generation of computer programs that substitutes the 
previous one. The evolution is stopped when a satis-
factory solution is achieved or a predefined maximum 
number of generations is reached.

A GRAMMAR GENETIC 
PROGRAMMING APPROACH 

We present how a GP approach can be applied to the 
inference of context-free grammars. First, we discuss 
the representation of the grammars. The modification 
needed in the genetic operators are also presented. In the 
last section, the grammar evaluation are discussed.

Initial Population

It is possible to represent a CFG as a list of struc-
tured trees. Each tree represents a production with its 

left-hand side as a root and the derivations as leaves. 
Figure 3 shows the grammar G = ( N, ∑, P, S ) with 
∑ = {a, b} , N = {S, A} and P = {S → AS ; S → b;  
A → SA ; A → a }.

The initial population can be created with random 
productions, provided that all the productions are reach-
able direct or indirectly starting with S.

Genetic Operators

The crossover operator is applied over a pair of gram-
mars and works as follows. First, a production is chosen 
using a tournament selection. If the second grammar 
has no production with the same left-hand side of the 
production chosen, crossover is rejected. Otherwise, 
the productions are swapped.

The mutation operation is applied to a single selected 
grammar. A production is then chosen using the same 
mechanism of crossover. A new production, with the 
same left-hand side and with a randomly right-side, 
replaces the production chosen.

The crossover probability is usually high (≈90%) 
and the mutation probability is usually low (≈10%). 

Unfortunately, using only the genetic operators 
mentioned, the convergence of the algorithm is not 
guaranteed. In our recently work, we demonstrated 
that the use of two local search operators is needed: 
an incremental learning operator (Rodrigues & Lopes, 
2006) and an expansion operator (Rodrigues & Lopes, 
2007). The first uses the information obtained from a 
CYK table to discover which production is missing 
to cover the sentence. The latter can expand the set of 
productions dynamically providing diversity.

Figure 3. An example of a CFG represented as a list of structured trees
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The Incremental Learning Operator

This operator is applied before the evaluation of each 
grammar in the population. It uses the CYK table 
obtained from the parsing of positive examples to 
allow the creation of an useful new production. The 
pseudocode is in Figure 4.

Once this process is completed with success, hope-
fully, there will be a set of positive examples (possible 
all) recognized by the grammar. Although, there is no 
warranty that some negative examples will still remain 
being rejected by the grammar.

The Expansion Operator

This operator adds a new nonterminal to the grammar 
and generates a new production with this new nontermi-
nal as a left-side. This new approach allows grammars 
to grow dynamically in size. To avoid a new useless 
production, a production with another non-terminal in 
the left-side and the new non-terminal in the right-side 
is generated. It is important to emphasize that the new 
operator adds two productions to the grammar.

This operator promotes diversity in the population 
that is required in the beginning of the evolutionary 
process.

Grammar Evaluation

In grammatical inference, we need to train the system 
with both positive and negative examples to avoid 
overgeneralization. Usually the evaluation is done 
counting the positive examples covered by a grammar 
in proportion to the total of positive examples. If the 
grammar cover some negative examples, it is penal-
ized in some way. 

In our recently work, we use a confusion matrix 
that is typically used in supervised learning (Witten & 
Frank, 2005). Each column of the matrix represents 
the number of instances predicted either positively or 
negatively, while each row represents real classification 
of the instances. The entries in the confusion matrix have 
the following meaning in the context of our study:

• TP is the number of positive instances recognized 
by the grammar.

• TN is the number of negative instances rejected 
by the grammar.

• FP is the number of negative instances recognized 
by the grammar.

• FN is the number of positive instances rejected 
by the grammar.

Figure 4. The incremental learning operator pseudocode
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There are a several measures that can be obtained 

from the confusion matrix. The most common is total 
accuracy that is obtained from the total of correct 
classified examples divided by the total number of 
instances. In this paper we used two other measures: 
specificity (Equation 1) and sensitivity (Equation 2). 
These measures evaluate how positive and negative 
examples are correctly recognized by the classifier.

specificity = TN ( 1 )TN + FP

sensitivity = TP ( 2 )TP + FN

The fitness is computed by the product of these 
measures leading to a balanced heuristic. This fit-
ness measure was proposed by (Lopes, Coutinho & 
Lima, 1998) and widely used in many classification 
problems.

The use of confusion matrix provides a better 
evaluation of the grammars in the population, because 
grammars with the same accuracy rate usually has dif-
ferent values for specificity and sensitivity.

FUTURE TRENDS

The GP approach for the grammatical inference is based 
on the CYK algorithm and the confusion matrix. The 
preliminary results are promising but there are two 
problems that must be addressed.

The first is the that the solution found is not nec-
essarily the smallest one. Depending on the run, the 
grammar inferred varies in size and, sometimes, it 
can be difficult to understand and may have useless 
or redundant production rules. Further work will focus 
on devising a mechanism able to favor shorter partial 
solutions.

The second is called “bloat”, the uncontrolled growth 
of the size of an individual in the population (Monsieurs 
& Flerackers, 2001). The use of an expansion operator 
may cause this undesirable behavior. Nevertheless, this 
behavior was not detected in the experiments because all 
useless productions are eliminated during the search.

CONClUSION 

This article proposes a GP approach for context-free 
grammar inference. In this approach, an individual is 
a list of structured trees representing their productions 
with their left-hand side as the root and the derivations 
as leaves. It uses a local search operator, named Incre-
mental Learning, capable of adjusting each grammar 
according to the positive examples. It also uses an 
expansion operator which adds a new production to 
the grammar allowing the grammars to grow in size. 
This operator promotes diversity in the population that 
is required in the earlier generations.

The use of a local search mechanism that is capable 
of learning from examples promotes a fast convergence. 
The preliminary results demonstrated that the approach 
is promising.
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KEy TERMS

CYK: A Cocke-Younger-Kasami algorithm used 
to determine whether the sentence can be generated 
by the grammar.

Evolutionary Computation: Large and diverse 
class of population-based search algorithms that is 
inspired by the process of biological evolution through 
selection, mutation and recombination. They are itera-
tive algorithms that start with an initial population of 
candidate solutions and then repeatedly apply a series 
of the genetic operators. 

Finite Automata: A model of behavior composed 
of a finite number of states, transitions between those 
states, and actions. They are used to recognize regular 
languages.

Genetic Algorithm: A type of evolutionary com-
putation algorithm in which candidate solutions are 
represented typically by vectors of integers or bit strings, 
that is, by vectors of binary values 0 and 1.

Heuristic: Function used for making certain deci-
sions within an algorithm; in the context of search algo-
rithms, typically used for guiding the search process.

Local Search: A type of search method that starts at 
some point in search space and iteratively moves from 
position to neighbouring position using heuristics.

Pushdown Automata: A finite automaton that can 
make use of a stack containing data. They are used to 
recognize context-free language.

Search Space: Set of all candidate solutions of a 
given problem instance. 




