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1 Introduction

Proteins perform vital functions in all living beings. The function of a pro-
tein is determined after being folded into a specific 3D structure under
certain physiological conditions. This structure is called its native confor-
mation. Therefore, understanding how proteins fold is of great importance
for Biochemistry and Biology. Proteins are formed by amino acid chains that
can be roughly classified as hydrophobic (aversion to water) or hydrophilic
(affinity to water).

It is commonly accepted that the main driving force of the formation of
the structure of a protein is the internal interaction of hydrophobic residues.
This means that the amino acids with hydrophobic side-chains in a pro-
tein sequence tend to be grouped together to form a hydrophobic core. The
hydrophilic amino acids tend to be pushed away from the core and interact
with surrounding solvent molecules.

According to Anfinsen’s experiments performed in the 1960s, the 3D
structure of a protein can be predicted by the analysis of its amino acid
sequence. The task of predicting a protein tertiary structure is called the Pro-
tein Structure Prediction Problem (PSP), and the way it folds into its native
conformation is known as Protein Folding Problem (PFP). Both are current
problems in the modern Computational Biology that has drawn attention of
Computer Science experts.

The exhaustive search of the conformational space of a protein is not
possible with the current computational technology, even for small proteins.
Therefore, simple lattice models have been proposed to decrease the complex-
ity of the problem. However, even so, the PFP is NP-complete and, therefore,
intractable for most real-world instances [1]. Consequently, heuristic optimiza-
tion methods seem to be the most reasonable algorithmic choice to solve this
problem. Among the many approaches to this problem, evolutionary computa-
tion methods have played an important role, since they are reputed as efficient
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search and optimization methods. Genetic Algorithms (GAs) do not guarantee
that the global optimum will be found, but, during the evolution, it is powerful
enough to find quasi-optimal solutions [2]. Therefore, many researchers have
already applied GAs to the PFP [3–7]. GAs have achieved the most promising
results in this area, although other methods, such as differential evolution [8]
and ant colony optimization [9] have also been used.

This chapter is structured as follows: first we present a brief definition of
the 2D hydrophobic-polar (2D-HP) model, followed by a detailed description
of the hybrid genetic algorithm for the protein structure prediction prob-
lem using the 2D-HP model. Also, we describe the improved features of the
algorithm designed to improve its predictability. Next, a complete parame-
ter analysis is done aiming to understand their influence on the performance
of the GA. We evaluated the algorithm with a benchmark of five synthetic
amino acid chains, resulting in a better performance when compared with
results in the recent literature. Exploring further, we also present the results
of the application of the algorithm to five real-world proteins. Finally, results
are discussed thoroughly and conclusions are done.

2 The 2D-HP Model

The Hydrophobic-Polar (HP) model was introduced by [10] and it is the most
known and studied discrete model for protein tertiary structure prediction.
This model is based on the concept that the major contribution to the free
energy of the native conformation is due to interactions among hydrophobic
residues. Such residues tend to form a core in the protein structure while
being surrounded by the hydrophilic residues in such a way that the core is
less susceptible to the environmental influence.

The HP model classifies the 20 standard amino acids in just two types:
hydrophobic (H for non-polar) or hydrophilic (P for polar). This decision is
taken for its simplicity, although some amino acids cannot be clearly classi-
fied as being of one of the two types [11]. Therefore, a protein is a string of
characters defined over a binary alphabet {H, P}.

As it is a lattice model, the chain is embedded in a 2D square lattice
and the allowed movements of the chain are restricted by the lattice. At each
point, the chain can turn 90◦ left or right, or continue ahead. In a legal (valid)
conformation, the adjacent residues in the sequence must be adjacent in the
lattice and each lattice point can be occupied by only one residue.

The free energy of a conformation is inversely proportional to the number
of hydrophobic non-local bonds (or H–H contact) where a H–H contact takes
place if two hydrophobic residues occupy adjacent grid points in the lattice
but are not consecutive in the sequence. Each such interaction contributes
with −1 to the energy value. This yields two basic characteristics of real
proteins: the protein fold must be compact and the hydrophobic residues are
buried inside to form low-energy conformations [12]. The problem may be also
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Fig. 1. Example of an amino acids chain folded in a square lattice

considered as the maximization of the hydrophobic non-local bonds, since this
is the same as the minimization of the free energy of a conformation in this
model. Figure 1 shows an example of an 18 amino acids-long chain embedded
in a square lattice. Black and white dots represent the hydrophobic and polar
amino acids, respectively, and the square dot is the first element of the chain.
The chain is folded in such a way that six hydrophobic non-local bonds are
formed (shown as dotted lines).

In addition to its simplicity, the folding process with the model has behav-
ioral similarities with the real process of folding [13]. Notwithstanding, from
the computational point of view, the problem of finding the native structure
in using the 2D-HP model is proved to be NP-complete [1, 14].

3 Methodology

Genetic algorithms (GAs) comprise a class of heuristic methods inspired in the
natural evolution of living beings and in the Darwinian principle of the sur-
vival of the fittest. GAs have been used in many computational applications
including machine learning, combinatorial optimization, data mining and oth-
ers. This approach is particularly interesting when dealing with NP-complete
problems, whose search space is intractable by enumerative methods, or/and
problems whose evaluation of the objective function is too complex, ill-defined
or strongly constrained [15]. Besides the usual features of a GA, we proposed
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several enhancement strategies in an attempt to improve its performance for
the problem.

3.1 Chromosome Encoding

It is well-known that the dynamics and the effectiveness of a GA are strongly
influenced by the way individuals are represented. Individuals represent pos-
sible solutions for a problem and, in GAs, such solutions are represented
indirectly. Individuals in a GA encode a genotypical representation, while
the real-world solution is the phenotypical representation, decoded from the
genotype. The three most usual ways to represent a protein structure using
the HP model are [16]:

(a) Cartesian coordinates: This representation is straightforward but it is too
sensible to translation and rotation, in such a way that identical structures
can have completely different coordinates.

(b) Internal coordinates: In this representation an amino acid position is
related to the previous one, and so there are two possibilities: absolute or
relative coordinates. Using absolute coordinates, a movement is defined
according to the grid axes, while using relative coordinates a movement
is defined according to the previous one.

(c) Distance geometry: This representation describes a structure using a
matrix of all distances between every pair of points.

Most GA-based approaches so far use internal coordinates because the
connectivity of the chain is implicit in the encoding, i.e., every consecutive
amino acid in the chain must be adjacent in the grid. Besides, a study pre-
sented by [17] showed empirically that the use of relative coordinates in the
chromosome encoding achieved better results in comparison with absolute
coordinates. Therefore, in our implementation we also used relative coordi-
nates. In a 2D space, there are only three possible moves: (R)ight, (L)eft
and (F )orward. Thus, an individual encoding is defined over the alphabet
{R, L, F}. Considering a N -residue long chain, the individual will have N − 1
genes, representing the moves required to form a specific conformation.

When applying GA to solve constrained problems, depending on the rep-
resentation used, invalid individuals may appear as result of the application of
operators or in the initial random population. In principle, this problem can
be handled in three different ways: eliminating invalid individuals, fixing them
or allowing them to survive. The first approach is simple and straightforward,
but possible useful genetic material can be lost and not recovered later. The
second approach is interesting but usually it is computationally intensive. In
the last approach, invalid individuals are allowed to survive in the population
but their fitness value is decreased proportionally to the constraints violation.
This penalty strategy is useful for preserving potentially interesting genetic
material for further generations.
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Despite the advantages of the representation chosen, it allows two or more
amino acids to occupy the same position in the lattice. This fact, known as
collision, leads to an illegal conformation. Therefore, the penalty strategy was
used to penalize individuals that results in such unfeasible folds. These indi-
viduals can appear during evolution as result of the application of genetic
operators and a penalty is added to the fitness function for every lattice point
at which there is more than one amino acid. Another important reason to
allow individuals that decode to unreal folds during evolution is that the
shortest path from one compact legal conformation to another legal confor-
mation may be very short if illegal conformations are allowed, when compared
to the shortest path if only legal ones exist [17].

3.2 Initial Population

According to [4], the encoding using relative internal coordinates exhibits
the problem that the initial population (randomly initialized) tends to have
increasing number of collisions as the length of the protein increases. There-
fore, the GA spends much time working with the illegal conformations before
good results can be obtained. To circumvent this problem, we proposed a dif-
ferent technique to build the initial population, taken from another type of
evolutionary algorithms, called Genetic Programming [18]. This technique,
named ramped-half-and-half, does not ensure that individuals in the ini-
tial population will be free from collisions, but it tends to minimize them
generating a greater diversity of conformations.

To implement this technique, the population is divided into two parts gen-
erated differently. The proportion of each part is a user-defined parameter as
a percentage of the population size. The first part of the population is gen-
erated in a totally random manner, as usual. The second part is generated
considering each individual as totally unfolded and applying several random
mutations that varies between three and the number of genes in the chromo-
some. This is done in a way that this part contains a proportional number
of individuals for each value, ranging from three to the number of genes in
the chromosome. The minimum of three mutations was chosen because of the
fact that conformations with 0, 1 and 2 mutations will have few hydropho-
bic contacts, and such individuals will bring very little contribution to the
evolution.

The initial population created in this way will have a large diversity, a
necessary condition to evolution. Besides, we empirically observed that the
evolution process would be helped if a considerable number of individuals
having few mutations (that is, they have large unfolded parts) is present.

3.3 Fitness Evaluation

To evaluate an individual, it is necessary to decode its genotypical repre-
sentation (chromosome) defined over the alphabet {R, L, F} to obtain the



U
n
c
o
rr

e
c
te

d
 P

ro
o
f

120 H.S. Lopes, M.P. Scapin

corresponding Cartesian coordinates (phenotypical representation). This set
of coordinates describes how the residues are disposed in the lattice, that is,
it represents a 2D conformation. After, the conformation is evaluated by a
fitness function that gives a numerical value representing the goodness of the
solution for the folding problem. The fitness function proposed is the product
of three terms, as shown in (1):

fitness = HnLB ×RadiusH ×RadiusP , (1)

where HnLB is the number of H–H non-local bonds (related to the free
energy of the conformation), and RadiusH and RadiusP are terms computed
using the radius of gyration of the hydrophobic and hydrophilic amino acids,
respectively. These terms are explained in the next sections.

Hydrophobic Non-Local Bonds

It is believed that the hydrophobic non-local bonds are the main force that
drives the protein folding process. Since the problem is treated as the max-
imization of the H–H contacts, for every hydrophobic non-local bond, the
energy function is added by 1. The complete energy function is shown in (2):

HnLB =





∑

i<j

evivj
.∆(ri − rj)



− (NC.PW ) , (2)

where NC is the number of collisions of the folding; PW is the penalty
weight; and ∆(ri − rj) = 1 if residues ri and rj form a non-local contact and
∆(ri − rj) = 0, otherwise. Depending on the contact types between residues,
the energy evivj

will be eHH , eHP or ePP , corresponding to H–H, H–P or
P–P contacts, respectively. In our implementation, eHH was set to 1 and the
remaining, to 0.

Recalling that we are using a penalty strategy for illegal conformations,
the penalty term (NC.PW ) is subtracted directly from the energy function.
This term comprises the number of grid points which are occupied by more
than one amino acid, multiplied by the penalty weight that is set according
to the chain length: the longer the chain, the higher is the penalty weight. In
preliminary experiments with chains of different lengths we observed that for
chains around 20 amino acids, PW = 2 was adequate. For chains of length
around 50, PW = 3 lead to better results, while for chains around 80 amino
acids, PW = 4 was more effective. Therefore, a straight line was interpolated
using these points, and (3) shows how PW is adjusted as function of the
number of amino acids (NA) of the chain

PW = (0.033×NA) + 1.33 . (3)
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Radius of Gyration

An important issue to be taken into account, while attempting to predict the
structure of a protein, is related to the energy hypersurface, i.e., how the free
energy is distributed considering all possible conformations. In fact, it is not
only the size of the energy landscape that matters, but also its shape. The
energy landscape is protein-dependent, that is, for each protein, a different
energy landscape exists. Therefore, the energy hypersurface has the dimension
corresponding to the number of amino acids in the chain and can have many
local minima.

The original HP model uses only the number of hydrophobic non-local
bonds to evaluate a solution. Due to the nature of this discrete model, it cre-
ates large plateaus in the energy landscape on which local search cannot find a
descent direction, and where it effectively performs a random search. This fact
was also confirmed in our preliminary experiments and motivated the creation
a modified fitness function. Using a discrete energy function (such as that of
(2)), this landscape is much more difficult to be searched. In order to make the
corresponding fitness landscape smoother, we propose the use of a new con-
cept, the Radius of gyration (Rg) in the fitness function. The use of Rg in the
fitness function can help the GA to escape from the plateaus. Furthermore,
Rg increases the compactness of solutions: given two conformations with the
same number of H–H contacts, Rg allows the fitness function to reward the
most compact one, and thus makes the evaluation closer to reality. Radius
of gyration is a physical concept from classical mechanics and is defined as
the radial distance from a given axis at which the mass of a body could be
concentrated without altering the rotational inertia of the body about that
axis [19].

Bringing the Rg concept to the folding problem, it is a measure that
indicates how compact a set of chained amino acids is: the more compact a con-
formation, the smaller its radius of gyration. Considering only the hydrophobic
amino acids, Rg will measure how compact is the core formed by these
residues. Equation (4) shows how Rg is computed for hydrophobic residues:

RgH =

√

∑NH

i=1 [(xi − X̄)2 + (yi − Ȳ )2]

NH
, (4)

where xi and yi are the Cartesian coordinates of the i-th hydrophobic amino
acid, X̄ and Ȳ are the mean values of all hydrophobic and xi and yi, respec-
tively, and NH is the number of hydrophobic amino acids in the chain.
Recalling again that the problem is dealt as maximization, the final term
that contributes to the objective function is given in (5):

RadiusH = MaxRadiusH −RgH , (5)

where MaxRadiusH is the calculated radius of gyration of the chain totally
unfolded, supposing that this is the maximum value that can be reached.
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This term of the fitness function regarding the hydrophilic radius of
gyration (RgP ) has the opposite purpose as RadiusH . That is, it fosters
hydrophilic residues to lie far away from the hydrophobic core. The hydrophilic
radius of gyration is computed in the same way as in (4), considering only
hydrophilic residues, and without being subtracted from MaxRadiusP (as in
(5)). Using the RgP value, the formal definition of the term that contributes
to the fitness function is shown in (6), and it will be always between 0 and 1:

RadiusP =

{

1 , if (RgP −RgH) ≥ 0
1

1−(RgP−RgH) , otherwise
. (6)

A positive difference, that is, (RgP−RgH) > 0, means that the hydropho-
bic residues are buried inside the conformation while the hydrophilic ones are
outside. Such situation is desired and, in this case, RadiusP has no influence
in the fitness function, since the two first terms will be multiplied by 1. How-
ever, if the opposite is true, meaning that the hydrophobic residues are more
spread than the hydrophilic residues, what is not desired, this conformation
will be penalized by decreasing the fitness function value.

Overall, the use of radius of gyration concept in the fitness function makes
the energy hypersurface smoother, allowing the GA to do a more efficient
search.

3.4 Genetic Operators and Selection Method

Genetic operators are used to create new individuals in the population, by
modifying existing ones. First, it is necessary a method for selecting individu-
als from the current population according to a criterion previously established.
The selection method is not a genetic operator itself, but a procedure that
must be executed before their application. In this implementation we used the
tournament selection method. First, tourneysize individuals are randomly
selected from the current population to take part of a tournament. Parameter
tourneysize is usually taken as a percentage of the population size. Next, the
best individual of this group is selected. This procedure is performed whenever
genetic operators request individuals.

The use of problem-tailored genetic operators is commonly found in the
literature, especially when the genetic algorithm is used for hard optimization
problems. This is the case of the PFP, where one can find specific opera-
tors, biologically inspired or not (see, for instance, [20–22]). Apart from other
characteristics, special genetic operators play a very important role in the
PFP and, possibly, this is one of the main features that differs between
implementations.

The first operator applied during the generation of a new population is
the crossover operator. According to [2], this operator plays an important
role for the PSP, since a piece of structure that has been useful for a given
solution may be also useful for others. Two types of crossover were used in this
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work: 1- and 2-point crossover and both are applied with the same probability
during the evolution.

Mutation is another operator commonly used in evolutionary computa-
tion. In this work, two types of mutation are used. The first is the simple
mutation where each gene is tested, according to the mutation probability,
to verify whether or not the actual value of the gene will be changed. The
second type, called Improved-Mutation, also changes a gene according to the
same mutation probability. However, just after the application of this opera-
tor, the individual is evaluated by the fitness function. If the fitness increases,
the operation is successful, otherwise, the operation is undone and the pro-
cess continues with the remaining genes. In most times, this special type of
mutation improves the fitness of an individual and, in the worst case, the fit-
ness will be unchanged. During evolution, the choice between the two types
of mutation is controlled by a user-defined parameter of the GA.

In preliminary experiments, we observed that using only the basic genetic
operators did not lead the GA to achieve good results. Thus, new and more
specialized operators were developed in order to aid the evolution process to
obtain better results.

The first specialized operator called U-Fold because it tends to fold the
conformation into an U shape so as to maximize the number of H–H contacts
between the two faces of the sequence that are laid face to face. Firstly, this
operator searches all the individual for the longest straight segment. The
length of this segment must be, at least, 1/10 of the total protein length.
After selecting the longest straight segment, all the possible folding points for
that segment is checked in order to choose the best way to fold this segment
such that the number of H–H contacts will be maximized.

Another specially designed operator is Make-Loops. It was implemented
with the objective of increasing the number of contacts in an individual by
grouping hydrophobic residues that were found in a straight line in the con-
formation. The same as in U-Fold, it searches for the longest straight segment
inside the conformation but, in this case, its minimum length was set to be
four residues to allow its correct application. After finding a valid segment,
the operator finds the first hydrophobic residue and fixes its position in the
lattice. Then, the next hydrophobic residue is searched, but it needs to be,
at least, three residues far from the first. Besides, in order to make a loop,
it is necessary that an even number of intermediary residues exist between
the two hydrophobic ones, due to the lattice that is being used. After fixing
the two positions, the operator generates a loop by positioning the inter-
mediary residues for both sides in order to find the conformation that best
contribute for the fitness of the individual. It may happen that both conforma-
tions are worse than the original individual, making the loops to be undone.
This procedure is repeated until the end of the selected segment.

It is easy to realize that both operators U-Fold and Make-Loops can be
useful only when there are long straight parts in the chain being folded.
This happens only at the beginning of the evolution process. Therefore,
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such operators work only in the initial generations of the GA, and are dis-
abled as they became useless. The U-Fold and the Make-Loops operators are
biologically inspired, since they aim at simulating the construction of sta-
ble secondary structures found in real folded proteins, such as β-sheets and
α-helices [23].

A third operator used during the evolution is named Partial-Optimization,
and is based on a concept taken from algorithms for combinatorial optimiza-
tion problems, such as the TSP (Travelling Salesman Problem), and it is
known as 2-opt. Here, we implemented a generalized version of the concept
first proposed by [24]. The idea of this operator is to select randomly two
non-consecutive residues of the protein chain and make their positions fixed
in the lattice. Then, all possible conformations are evaluated, keeping the
connectivity of the chain in the fixed points and changing the intermediate
residues in the lattice. After this local search, the best conformation is kept.
In the evolutionary computation area, algorithms that use some kind of local
search strategy are considered as hybrid. Although there is no consensus on
this issue, we prefer to consider the proposed genetic algorithm as hybrid to
make clear this important feature.

The Partial-Optimization operator must be used with parsimony since,
depending on the length of the internal segment between the two selected
residues, this operation may become computationally expensive. It is easy to
verify that the number of possibilities increases exponentially as the number of
intermediate residues increases. This operator is applied to all the population
during the evolution, according to a user-defined probability. The length of the
intermediary segment (POsize) is also an user-defined parameter of the GA.

In Fig. 2, it is presented an example of the application of the Partial-
Optimization operator to the sequence PHHPPPPHHPPHPP. In the figure,
black and white dots represent, respectively, hydrophobic and polar amino
acids. Arrows indicate the points selected to be kept fixed. The left part of
the figure shows the original conformation with no H–H contacts while in the
right, after the application of the operator, the new conformation presents
two H–H contacts.

Fig. 2. Example of the application of the Partial-Optimization operator
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3.5 Improvement Strategies

Preliminary tests have shown that both the proposed fitness function and the
special genetic operators have helped the GA to achieve good performance.
Even so, it is impossible to assure that the GA will not get trapped in a
local maximum. When reaching a local maximum, depending on the running
parameters, the genetic diversity of the population can be lost rapidly. This
phenomenon, known as convergence, has the undesirable effect of preventing
further improvement. In this situation, the only possible evolution is due to
mutation, by chance. Therefore, it is useless to go on running the algorithm.
Instead of stopping and restarting the algorithm from the scratch, we devised
a new strategy, called Decimation-and-Hot-Boot (DHB), described as follows.

Throughout generations an elitist strategy is used jointly with the tourna-
ment selection method. This strategy always copies the best-fitted individual
of a generation to the next one. If an even-better individual is not found
after many generations, this is a clear signal that the population has possibly
converged and, consequently, the evolution has stagnated. In this work, the
number of generations with no improvement necessary to trigger DHB was
fixed to 10% of the total number of generations. At this point, 50% of the
population is deleted (decimated) and a number of individuals is generated
according to the method mentioned in Sect. 3.2.

Applying the DHB strategy makes the population to be restarted with a
large genetic diversity giving chance for the evolutionary process to continue.
At the restart, it must be taken into account the fact that all the newly created
individuals probably will have very low fitness values compared to those indi-
viduals that survived decimation. Obviously, it is necessary to change running
parameters temporarily so as to decrease the selective pressure (towards the
best individual) in such a way that all individuals can have the opportunity
to evolve. This is accomplished by increasing the frequency of application of
the Improved-Mutation and decreasing the tournament size. The net effect
of these changes is a fast improvement in the average fitness of the popula-
tion in few generations. Hopefully, this strategy can contribute to find better
individuals than before. The decimation strategy is applied whenever the no-
improvement counter reaches the preset value and the maximum number of
generations was not reached.

While generating and evaluating the last population, the Improved-
Mutation and Partial-Optimization operators are to all the individuals with
100% probability. Although expensive, this local search operation is done once,
as a last chance to improve further the best solution found by GA.

4 Computational Experiments and Results

The implementation of the previously described GA features, resulted in
a software system called “HGAPF”(Hybrid Genetic Algorithm for Protein
Folding), which was tested using several amino acid chains to verify its
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efficiency. The system was developed using Borland Delphi 7, under Microsoft
Windows XP server running in a PC desktop with Athlon XP-2.4 processor
and 512Mbytes of RAM.

4.1 Parameters’ Adjustment

Before running HGAPF with the benchmarks, a number of experiments was
done for fine-tuning the GA parameters. For these experiments we used a
real-world protein, known as 1qql, extracted from the Protein Data Bank
(PDB) [25] and converted to the HP model (see Sect. 4.3 for more details).
The Improved-Mutation operator is not used in the fine-tuning experiments,
except when explicitly mentioned. The following standard parameters (and
ranges) of the GA were tested: population size – popsize (200 and 500),
number of generations – gen (100, 200 and 300), tourney size – tourneysize

(3 and 5% of the population), probability of crossover – pcross (70 and 90%),
probability of mutation – pmut (2, 5 and 8%). For each of these 72 experi-
ments, 100 independent runs were done with different random seeds. Both
the maximum number of H–H bonds (maxHH) and the average number
of H–H bonds (avgHH) were considered. The two better combinations of
parameters differ only in the number of generations, giving slightly different
results. The standard parameters were then set to: popsize = 500, gen = 300,
tourneysize = 3%, pcross = 90% and pmut = 2%. Using these parameters, the
HGAPF took an average of 35.3 s for running.

Using the standard parameters, the Improved-Mutation operator was
tested using the following probabilities of being selected among the two muta-
tion operators (pselectIM : 10, 30, 50, 70, 90 and 100%). This probability should
not be confounded with pmut, which is the probability of using a mutation
operator, while pselectIM is the probability of selecting Improved-Mutation
instead of the regular mutation operator. The results of 100 independent runs
for each experiment showed that, independently of the value of pselectIM , the
use of Improved-Mutation always improve results. However, increased values
for pselectIM lead to a faster convergence of the GA. Therefore, pselectIM was
set to 10%.

Next, the probability of applying the U-Fold (pUF ) and the probability of
applying the Make-Loops (pML) operators were tested, both in the range from
10% to 100%. Again, the standard parameters were used with the Improved-
Mutation operator turned off. Besides maxHH and avgHH, the average
number of generations in which each operator was used was also observed.
For each of the 20 experiments, again 100 independent runs were done. The
best results were found when both probabilities were set to 10%, which maxi-
mized, at the same time maxHH and the average number of generations the
operator was used. The increment in the processing time for these operators
was not significant.

The local search operator (Partial-Optimization) was tested, regarding its
probability of application (pPO) and the length of the intermediary segment
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(POsize) to be optimized. The range for these two parameters were: 1–8%
and 5–8, respectively. The combinations of parameters lead to 32 experiments,
done in the same way as before. Considering that the processing time tends to
grow exponentially as the size of such parameters grow (in special, POsize),
not only avgHH should be taken into account, but also the processing time.
Experimentally, we observed that when pPO and POsize were set both to 8%,
the average processing time (using the previously mentioned standard param-
eters) raises to 660 s, when compared with 35.3 s with no Partial-Optimization.
To meet both performance and processing time, we used the concept of Pareto
optimality, commonly used in multiobjective problems [26]. Out from the
Pareto front, we select pPO = 8% and POsize = 7 amino acids as the operat-
ing point with better trade-off between the two conflicting objectives. At this
point, the average processing time is only 122.1 s with a small decrement in
performance, when compared with the combination of parameters that gives
the better results.

4.2 Experiments with Synthetic Proteins

The first benchmark used is a set of synthetic amino acid chains, which optimal
folding is known. Table 1 shows details of these chains that were used in several
works in recent literature. In this table, NA and maxHH stand, respectively,
for the number of amino acids in the chain and the maximum number of H–H
bonds, according to the 2D-HP model. This benchmark was presented by [27]
(except the last instance that was introduced by [12]). The maxHH values
in the table are those originally given by authors, although for chains with 60
and 85 amino acids other results can be found in the literature.

Due to the stochastic nature of GA, all experiments described in this and
the next sections were run for 100 times with different random seeds, and
the averages are reported. Table 2 presents the results obtained by HGAPF
together with those from [3] and [12] who also used a GA approach. More
comparison of results is done with [28] that used PERM (Pruned Enriched
Rosenbluth Method), [22] that used a variation of tabu search (GTabu),

Table 1. Benchmark of synthetic amino acids chains used in the experiments

NA Amino acids chain maxHH
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Table 2. Comparison of results

NA [27] [12] [28] [22] [29] HGAPF
Best Best Mean Best Best Best Best Mean

20 9 9(100) 9 9 9 9 9(74) 8.74
24 9 – – 9 9 9 9(63) 8.61
25 8 – – 8 8 8 8(69) 7.69
36 14 14(8) 12.40 14 14 14 14(6) 12.44
48 22 23(1) 18.50 23 22 23 23(2) 20.06
50 21 – – 21 21 21 21(6) 18.72
60 34 – – 36 35 35 35(6) 32.65
64 37 37(1) 29.30 42 42 39 40(5) 34.58
85 – 46(1) 40.80 53 50 52 51(2) 45.80

and [29] who employed an evolutionary Monte Carlo algorithm. Numbers
within parenthesis indicate how many times the best score was found. It is
important to highlight that the results from [3] represent the best individ-
ual taken out of five runs while those from HGAPF and [12] were run for
100 times. There is no information about repetibility for the other works.
Comparing the results obtained for the four shortest chains and the 50 amino
acids-long chain, it can be noticed that all algorithms have reached the max-
imum value of H–H bonds, despite some differences in the average. For the
48-residue chain, [27] and [22] did not find the best conformation while the
others did. Considering the chain with 60 amino acids, [27] presented its result
(34 contacts) as being the optimal, all the other algorithms found better con-
formations with 35 hydrophobic non-local bonds and PERM found another
one with 36. For the two longest chains (64 and 85 amino acids), it can be
observed that HGAPF found conformations better than the other GA imple-
mentations and, sometimes, better or worse than [22] and [29], but very close
to the maximum known, found by [28].

At this point it is important to recall that the difference of a single H–H
bond from a conformation to another indicates a great improvement obtained
by the algorithm. Consequently, jumping from the closest local minimum to
the global minimum can be considered a great achievement. For instance, the
two best results found by HGAPF for the 85-residue chain are presented in
Fig. 3. In the figure we can notice that both conformations are quite different,
but have 51 hydrophobic non-local bonds. This example confirms the assertion
mentioned before that the fitness hypersurface has many local maxima of
comparable amplitudes. This fact, by itself, makes the task of finding the
global optimum of the PFP very hard, for any algorithm.

4.3 Experiments with Real-World Proteins

A second set of experiments to evaluate the performance HGAPF was done
using real-world proteins drawn from the Protein Data Bank – PDB [25].
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Fig. 3. Two best conformations for the 85 amino acids-long chain

PDB is a reference for Molecular Biology and all proteins in the database had
their tertiary structure precisely determined by means of X-ray spectroscopy
or similar methods. Therefore, data from PDB are considered reliable and the
conformations of proteins are supposed to represent their real native states.

A PDB file has detailed information about structure, but it is necessary
to “translate” a protein sequence, that uses the 20 standard amino acids, to a
sequence of H’s and P’s, in order to use the HP model. A translation matrix,
based on the amino acids chemical features, is used to define the hydrophilic
(polar) or hydrophobic nature of standard amino acids. There are some diver-
gences between authors (see, for instance, [23]) and the PDB, concerning to
this translation matrix. Therefore, we decided to use the PDB definition of
hydrophobic and hydrophilic amino acids, and we used this approach to con-
struct the translation matrix for our experiments. Some real small proteins,
ranging from 96 to 330 amino acids, were selected at random for building
this benchmark, and their translation to the HP model, as well de PDB
identification code, are presented in Table 3.

Since the maximum number of hydrophobic non-local bonds for these
sequences is not known a priori, and they were not synthetically designed,
it is not possible to evaluate precisely how good the solutions found are.
Notwithstanding, a graphical analysis of the folding (not shown here) reveals
that the best foldings reported here are not the global optimum for these
sequences. However, hopefully these chains and results will be important for
forthcoming researchers to improve their heuristic methods. Results are also
shown in Table 3, where maxHH stands for the maximum number of H–H
contacts found by HGAPF with its standard parameters.

5 Discussion and Conclusions

This paper described an hybrid genetic algorithm for the protein folding
problem using the 2D hydrophobic-polar (HP) model.

The use of the concept of radius of gyration in the fitness function is one
of the main contributions of this approach. It takes smoothness to the fitness
landscape, allowing better solutions to be found by forcing the hydrophobic
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Table 3. Results for real-world proteins

PDB NA Protein sequence maxHH
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residues to be placed in the core of the conformation. Using this fitness
function improvement, two conformations with the same number of H–H
bonds can be adequately discriminated.

Another important enhancement is the Partial-Optimization operator,
which performs a local search in a part of the individual and, most times,
improves the overall conformation. Despite its utility, it tends to be compu-
tationally expensive as the number of intermediate residues increases, and
should be used with parsimony.

The Improved-Mutation operator also added significant improvement to
the GA, working together with the regular genetic operators. This special
operator is especially useful in the last generation when it is applied to all
individuals of the population hopefully improving further the solutions found.
The U-Fold and Make-Loops operators have also contributed to the interesting
results obtained.

The Decimation-and-Hot-Boot strategy was necessary because of the many
local maxima in the fitness landscape. This strategy allows the algorithm to
restart without loosing useful information (represented by the best individual
found up to that moment). DHB does not improve individuals, but gives
conditions to the GA to recover from the effects of a premature convergence,
possibly allowing a more efficient exploration of the search space.
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Genetic algorithms have been applied to many problems and, as a matter
of fact, the more complex and complicated a problem is, the more sophisti-
cated a GA have to be. As a consequence, a GA implementation will have
many parameters to be tuned for the specific class of problems. Therefore,
such kind of application will require a previous analysis of parameters’ sensi-
tivity. Our analysis of the GA parameters aimed at suggesting a set of values
to the parameters. Those values are expected to make the GA perform well for
many instances of the problem. Several tests were done to evaluate the influ-
ence of each parameter over the evolution process. For the parameters related
to improved mutation and partial optimization operators, a different analysis
was done because they are very time costly. The analysis of the Pareto front
identifies not a single value, but a set of values that are equally good, consid-
ering both conflicting objectives: performance maximization and processing
time minimization. Users will choose specific sets of parameter values accord-
ing to specific situations, deciding what is more important at the moment,
better results or a shorter processing time. It is worth to recall that the more
sophisticated a GA, the more difficult is to adjust its running parameters for
a given problem. This is where methods for self-adjustment of parameters [30]
may be a valuable aid to the user.

It is important to emphasize the results obtained over the case studies.
The first data set was taken from the literature and comprises synthetically
designed amino acids chains with different lengths whose optimal folding is
supposed to be known. Most algorithms in the literature perform well for
short chains. However, for the longer ones, different local maxima were found,
suggesting that there is room for further testing with longer chains. Our pro-
posed GA performed better or, at least, similarly to other algorithms found
in the literature.

The second data set was composed by six real-world proteins selected from
PDB and translated to the HP model according to the PDB definitions. After
some non-exhaustive runs, the best conformation found for each sequence was
presented. The maximum number of H–H bonds presented for these proteins
is certainly far from the optimal unknown value, but, even so, they represent
good foldings. A graphical analysis of the conformations found reveals that,
our GA was able to group most of the hydrophobic residues conveniently in the
core of the protein, pushing hydrophilic residues away to peripheral regions.
We can also notice that in real proteins there are some hydrophilic residues
isolated in the sequence, what makes this kind of sequence very complicated to
be folded. As we mentioned before, due to the nature of the fitness landscape,
small improvements (i.e., increasing the number of H–H bonds by few units)
in a given conformation are very hard to obtain.

Let us consider that the folding process takes several steps, from an
unfolded sequence to its minimal energy conformation. It is not difficult to
imagine that, the more folded the chain, the more difficult is to find one
or more changes in the structure that can lead to a better conformation.
Therefore, from the computational point of view, the folding is a problem
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of increasing difficulty. Hence, any heuristic algorithm devised to solve this
problem must be powerful enough to cope with this situation. The hybrid GA
approach proposed in this work has some limitations, especially when deal-
ing with long chains. This fact suggests the necessity of even more intelligent
operators that can analyze regions of the conformation and make context-
dependent changes. Possibly, such improvements will lead to computationally
intensive local search strategies, and this is an issue to be addressed in a
future work.

The 2D-HP model is very popular, but it is far away from reality. More
realistic models are needed, despite its computational complexity. In the same
way, heuristic methods will play an important role to offer solutions for the
protein folding problem. Also, more powerful computational resources cer-
tainly will be required for dealing with real-world instances of the problem.
This is a current trend in the area, since researchers are moving from sim-
ple workstations to hardware-based reconfigurable computing [31] and grid
computing [32]. Overall, results of this work encourage the continuity of the
research, since there is still no efficient method for solving large instances of
the PFP. Particularly, future developments will be towards a more complex
lattice model and improved genetic operators.
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