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Abstract. The multidimensional 0/1 knapsack problem is a classical
problem of discrete optimization. There are several approaches for solv-
ing the different variations of such problem, including mathematical
programming and stochastic heuristic methods. This paper presents the
application of Particle Swarm Optimization (PSO) for the problem, us-
ing selected instances of ORLib. For the instances tested, results were
very close or equal to the optimal solution known, even considering that
the parameters of PSO were not optimized. The analysis of the results
suggests the potential of a simple PSO for this class of combinatorial
problems.

1 Introduction

There are problems with important practical applications concerned with the
search of the “best” configuration or set of parameters to achieve some objective
criteria. Such problems are generally referred to as optimization problems. The
knapsack problem is a classical optimization problem and has many practical
applications in industry, transportation and logistics. A simple and general de-
scription of the problem is as follows. Given a set of objects with corresponding
values and costs (weights), select some of them to put in a container (knap-
sack), without extrapolating its capacity, in such a way that maximize the sum
of values. This is the basic definition of the problem. However, there are several
variations, such that [10]:

— Single knapsack problem: all objects must be put in a single container;
Multidimensional knapsack problem: more than one container is available;
— Multiple-choice knapsack problem: objects are clustered into subsets and at
most one object can be selected;

Bounded knapsack problem: there is a limited number of objects available
to be selected.

This paper is related to the Multidimensional Knapsack Problem (MKP),
possibly, the most widely known version of the problem [2]. This same problem
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is also referred as: Multiconstraint, Multi-Knapsack or 0/1 Multidimensional
Knapsack Problem.

Many problem-independent and domain-specific heuristics have been devel-
oped for optimization problems and, in particular, to the MKP that is NP-
complete. The quest for a computational algorithm that are effective both in
terms of processing time and quality of the solutions is the motivation of this
work. Therefore, we propose a methodology for solving MKP using a relatively
recent evolutionary computation technique, the Particle Swarm Optimization
(PSO), proposed by Kennedy and Eberhart [7]. This problem has been explored
by using genetic algorithms [2],[6],[8], and there are evidences that PSO can
be useful for it [4]. PSO, in fact, has been applied successfully to several prob-
lems like pattern recognition, classification, scheduling, mobile robotics, image
processing, and others [3].

2 Particle Swarm Optimization

PSO is a heuristic method for optimization, inspired in the behavior of social
agents found in nature. This behavior can be observed in bird flocking, bee
swarming, and fish schooling, for instance.

The computational model is population-based. Agents, or particles, change
their position (state) in the multidimensional search space of the problem, ac-
cording to their own experience and the influence of the neighboring particles.
Each particle has a limited store capability, keeping track only of information
about its current position, speed and quality (fitness of the solution regarding
the problem), as well as its best position ever visited (“best particle solution” —
pbest). Amongst the swarm of particles, the one with best quality is referred as
“the best global solution” — gbest. Alternatively, only the neighborhood of the
particle is considered, that is, the (“best local solution” — lbest. At each time
tick, particles move, influenced by both pbest and gbest, to a new position in the
search space. This is an iterative process, repeated until a stop condition is met,
usually a predefined number of iterations. Whenever a better solution than the
previous is found, gbest is updated. This procedure is similar to the principle of
elitism, common in other evolutionary computation paradigms, since throughout
iterations the best solution is conserved. However, there is a subtle difference:
gbest is updated is a reference for all particles in the same iteration (in a genetic
algorithm, this would be similar to say that all individuals would mate with the
best individuals).

It is interesting that pbest would be a point with good fitness and also located
quite far from gbest in the search space, so as to improve diversity. In PSO, like
other population-based heuristics, maintaining diversity throughout iterations
is often a challenge, and it is a necessary condition to assure a satisfactory
exploration of the search space. When many pbest ’s are somewhat close to the
gbest, there will be a particle crowding and the search stagnates. A mechanism
to avoid the consequences of this unavoidable convergence is the explosion of the
swarm, sending particles to random positions and keeping gbest.
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In the classical PSO model, the movement of the i-th particle is defined by
(@, where its next position in the search space (X'*!) is updated using the
current position and a speed term (V;!):

X = XtV &)

In fact, the speed term actually does not have the dimension of velocity. It
could be better defined as AX; but, for the sake of simplicity, it is called speed,
following [5]. The speed term, in turn, is defined according to ([2):

‘/it = Cl.Tl.Apbest+CQ.TQ.Agbest, (2)

where: V! is the current speed of the i-th particle; 71 and ro are random values
in the range [0..1]; ¢; and ¢y are the weights of pbest and gbest, respectively (in
percentage); Apbest and dgbest are the distance between the current position
and pbest and the current position and pgbest, respectively. The speed term,
that is, the updating rate of the current position, is directly proportional to the
distance between the current position to pbest and gbest. Therefore, within few
iterations the particle will be attracted to either pgbest or gbest.

The speed term controls the amount of global and local exploration of the
particle (that is, the balance between exploration and exploitation). A high speed
facilitates global exploration, while small speed will encourage local search. A
user-defined upper bound (V;,4.) is established to limit the maximum speed of
particles. Figure [I] shows graphically the elements that influence the position of
a particle in the hypersurface of the search space (in this case, a bi-dimensional
space).

According to a psychological interpretation of PSO [5], the swarm of particles
is like a population of individuals. Then, the two terms of (2) represent the
cognitive and the social components of a particle’s behavior. The former leads
the particle to repeat its own past successful behaviors, while the latter makes it
follows the others’. There are no default values for weights ¢; and co; sometimes
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Fig. 1. Ilustration of how the position of a particle is updated in PSO
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they are set identical and sometimes they are set asymmetrical. It is commonly
accepted that those weights are problem-dependent and this seems to be an open
subject for further research [3].

3 Methodology

A description of the MKP includes n objects and m knapsacks with specific
capacities ¢; (j = 1,...,m). There are binary variables z; (i = 1,...,n) that
are set to 1 if the i-th object is selected to be put in the knapsacks, and 0,
otherwise. Every object has a satisfaction value p; (i = 1,...,n) and a specific
weight w;; for each knapsack. Therefore, the optimization problem is defined as
follows [g],[10]:

mazximize Y. | D%, (3)
subject to Z;n:l wij.xi < ¢j. (4)

The objective of the MKP is to fill the knapsacks with the most valuable
objects without extrapolating their capacities. Therefore, a particle should be
represented as a possible solution for the MKP. In words, a particle is a binary
vector, where each element indicates whether or not an object is selected to be
included in the knapsacks. The length of the vector depends on the number of
objects available for the selection, that is, it represents the n-dimensional search
space. It should be noted that, in this formulation, a given selected object is to
be included in all knapsacks.

The evaluation of a possible solution is given by a fitness function. This func-
tion is what PSO will optimize. The fitness function was defined before (3], but
the constraint (@) is not directly dealt by the algorithm, and so, unfeasible solu-
tions can be found during search. This policy is frequently used in evolutionary
algorithms because during evolution towards the best global solution, the algo-
rithm can pass through regions of unfeasible solutions. In PSO, a given particle
is dynamically attracted by the social and the cognitive components, and an
unfeasible particle now can be changed to a feasible one later. A particle rep-
resenting an unfeasible solution is allowed to exist in the swarm, but a penalty
will be imposed to the fitness of such particle. This penalty is proportional to
the total amount of excess in the knapsacks.

4 Computational Experiments

For the computational experiments, we used several instances of MKP found in
[I]. These instances were divided into two groups: the first one corresponded to
series “sento” [12] and “weing” [15], and the second group, to “weish” [13]. For all
experiments reported in this section, the PSO was run for 300 iterations.

The first group of experiments had 10 problems with either 2 or 30 knapsacks
and 28, 60 or 105 objects. For these experiments, results are shown in Table [Tl
In this table, n is the number of objects and m is the number of knapsacks.
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Table 1. Comparison of results obtained by PSO and the optimal known solutions

problem m n optimum best abs.diff.
sentol 30 60 7772 7725  0.605%
sento2 30 60 8722 8716 0.069%
weingl 2 28 141278 138927 1.664%

weing?2 2 28 130883 125453 4.149%
weing3 2 28 95677 92297 3.533%
weing4 2 28 119337 116622 2.275%
weingd 2 28 98796 93678 5.180%

weing6 2 28 130623 128093 1.937%
weing7 2105 1095445 1059560 3.276%
weing8 2105 492347 492347 0.000%
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Fig. 2. Performance of PSO regarding the complexity of the problem

Each experiment was repeated 100 times with different random seeds and the
best solution found by PSO is shown in the table. Therefore, a total of 1,000
experiments were run in this group.

The second group of experiments was to investigate the behavior of PSO
regarding the complexity of the problem. In this particular case, complexity
is understood as the number of possible combinations of objects x knapsacks.
The second group of experiments had 30 problems, always with 5 knapsacks,
but objects ranged from 30 to 90. Figure [2] shows the performance of PSO re-
garding the relative difference between the best value found in 100 independent
runs and the optimum known value. As mentioned before, for this group of ex-
periments the number of knapsacks is constant (5) and the number of objects
increases.

To investigate the convergence of the algorithm, we analyzed the experiments
of four different instances with the same number of knapsacks: weish2, weish12,
weish23, weish28, having 30, 60, 80, 90 objects, respectively. Figure [ shows
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Fig. 3. Evolution of solutions for some instances of the MKP

the evolution of the best solution found by PSO at each iteration for the four
instances (numbered as 2, 12, 23 and 28) in 500 iteractions. Each point of the
curves is the average of the best solution found in 100 independent runs with
random seeds.

It should be noted that [2] present a genetic algorithm for the MKP using
the instances used in our work, and they always found the optimum. However,
to achieve such performance, they needed to process 10* chromosomes, thus
requesting a large computational effort, not comparable with the PSO imple-
mentation.

5 Conclusions and Future Work

In table [ the average performance of PSO for the ten case studies considered
was 2.269% of the known optimum. This shows that PSO can perform well for
this class of combinatorial problem, even for large instances. That is, PSO seems
to be efficient in navigating the hypersurface of the search space and finding good
solutions (and, sometimes, the best solution) independently of the initialization
and the trajectory of particles.

The second group of experiments aimed at identifying how the performance
of PSO degraded as the difficulty of the problem increased. For the particular
range of experiments done, we observed that PSO tends to decrease the average
performance almost linearly, as shown in figure 2l However, more experiments
have to be done so as to confirm this tendency for even harder instances. Also,
it can be seen in the graphics that, for the same degree of difficulty, different
performances are achieved, depending on the specific nature of each instance.

Figure [3 indicates that, the harder the instance, the longer PSO takes to
converge. In the figure, it can be observed a positive derivative in the curves,
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suggesting that more iterations, besides 500, are needed to converge. This is
specially true for the harder instances.

It is a matter of fact that PSO is sensitive to its control parameters, partic-
ularly for hard combinatorial problems with large search space [14]. Recall that
no serious attempt was done to optimize the running parameters for the PSO,
what could improve the performance achieving better results. Therefore, future
work will focus on fine-tuning the PSO parameters for given classes of problems,
by using some kind of adaptive strategy [I1]. Recent literature have shown that
a PSO hybridized with a local search technique certainly can achieve better re-
sults than a “pure” PSO, independently of the problem [9]. Therefore, further
improvement of the system will be towards the hybridization with some local
search technique.

In general, the use of a problem-independent heuristics, such as PSO, gives
robustness and efficiency to the exploration of the search space of difficult prob-
lems. We believe that this is a promising method for solving several classes of
combinatorial problems.
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