A New Mutation Operator for the Elitism-Based
Compact Genetic Algorithm

Rafael R. Silva, Heitor S. Lopes*, and Carlos R. Erig Lima

Bioinformatics Laboratory, Federal University of Technology Parana (UTFPR),
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil
rafael.rsi@gmail.com, hslopes@pesquisador.cnpq.br, erigQutfpr.edu.br

Abstract. A Compact Genetic Algorithm (CGA) is a genetic algorithm
specially devised to meet the tight restrictions of hardware-based imple-
mentations. We propose a new mutation operator for an elitism-based
CGA. The performance of this algorithm, named emCGA, was tested
using a set of algebraic functions for optimization. The optimal muta-
tion rate found for high-dimensionality functions is around 0.5%, and
the low the dimension of the problem, the less sensitive is emCGA to the
mutation rate. The emCGA was compared with other two similar algo-
rithms and demonstrated better tradeoff between quality of solutions and
convergence speed. It also achieved such results with smaller population
sizes than the other algorithms.

1 Introduction

Since long ago, Genetic Algorithms (GA) have been used as efficient tools for
optimization problems, not only in Computer Science, but also in Engineering
[4]. For most applications, GAs are implemented in software running on general-
purpose processors. However, for applications that require the algorithm to run in
real-time, hardware-based implementations are more adequate. Reconfigurable
logic can be used for such implementations, by using high-performance FPGA
(Field Programmable Gate Array) devices [2]. Even the most advanced devices
have limited resources, specially regarding available memory. The Compact Ge-
netic Algorithm (CGA) was devised to meet tight requirements of hardware-
based implementations. For instance, a CGA represents a population of individ-
uals by using a single probability vector, thus reducing significantly the amount
of memory needed.

The CGA has been sparsely explored in the recent literature. Therefore, there
is much room for theoretical development and research that can improve its
efficiency. In this work we present a new mutation operator for an elitism-based
CGA, capable of better controlling the selective pressure and improving the
quality of solutions found. This is achieved without significant decrement of
the convergence speed of the algorithm. Following the terminology previously
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used by other authors, the proposed algorithm is named “Elitism with Mutation
Compact Genetic Algorithm”, or, in short, emCGA. The performance of the new
operator is analyzed by means of computational simulations. We also perform
simulations comparing the proposed algorithm with other algorithms proposed
in the literature.

This paper is divided as follows. In Sect. 2l a formal description of the CGA
is presented, with special focus on those works that use elitism to minimize
the perturbations caused by the crossover operator in a CGA. The emCGA is
presented in details in Sect. Bl Sectiond presents the results of the computational
simulations. Finally, Sect. Bl presents the conclusions of the work.

2 The Compact Genetic Algorithm

The Compact Genetic Algorithm was first proposed by [5]. This algorithm uses
a random-walk approach to represent a conventional genetic algorithm in a com-
pact way. This technique is a stochastic process that formalizes successive steps
towards a random direction. CGA simulates random-walks for each bit in the
chromosome.

In short, in the CGA, individuals are generated randomly based on a prob-
ability vector and, at each generation, a tournament among individuals takes
place. The probability vector is then updated towards the tournament winner.
The elements of this vector represents the probability that each bit in the in-
dividual’s chromosome to be either 0 or 1. The population of individuals is,
therefore, represented compactly and it converges when all the elements of the
probability vector reach either 0% or 100%. Since the probability vector repre-
sents itself the whole population, the amount of memory necessary to hold the
population is much smaller when compared to a conventional GA. The memory
resources needed by a conventional GA are estimated in N x L bits, where N
is the population size and L is the number of bits of the chromosome. For a
CGA, the elements of the probability vector are quantized with resolution 1/N.
Therefore, the amount of memory resources needed by a CGA falls down to only
L xloga(N). This feature of CGA makes it an appealing alternative for hardware
implementations, rather than the conventional GA.

In the CGA, the selection phase is called random generation of chromosomes,
or simply, generation, and the reproduction phase is known as updating the
probability vector, or simply, updating. In a conventional GA, the Darwinian
principle of survival of the fittest is most evidenced in the selection phase, where
high-fitted individuals have more chance to survive and spread their genetic
material. In a CGA, this phase is embedded in the generation. Recalling that
the probability vector is updated towards the direction of the tournament winner
at each generation, the chromosome will tend to retain the genetic information
of the best individuals, thus influencing the upcoming generations.

Reproduction, the other phase of the algorithm, is typically represented in a
conventional GA by the application of genetic operators, mainly crossover and
mutation. Crossover is an operator capable of recombining parts of parental
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chromosomes and generating two new offsprings. Throughout generations, the
repeated applications of crossover leads to a decorrelation of the genes in a pop-
ulation. According to [5], in such decorrelated state, a simple probability vector
can be a more compact and suitable representation for the whole population
of individuals. In this case, updating the probability vector is analog to the
crossover operator action in the conventional GA. Most of the CGAs reported
in the literature do not use the mutation operator.

The typical stopping criterion for a conventional GA is when the number of
generations achieves a predefined number of generations. In a CGA, the stopping
criteria cannot be other than the convergence of the probability vector.

Crossover can generate critical perturbations in problems with high-order
building blocks [4]. Harik and colleagues [5] demonstrated that such pertur-
bations can be minimized when the selective pressure is increased. Further, [1]
showed that elitism is even more suited for this purpose. This fact has motivated
the emergence of several elitism-based CGAs in recent years [I], [3].

When elitism is used in a conventional GA, one or more top-fitted individuals
are copied with no change to the next generation. In the original CGA, at each
generation, two individuals are randomly generated using the probability vector.
These two individuals compete in a tournament. In an elitism-based CGA, only
one individual is randomly generated and the other competitor of the tournament
is a copy of the best individual of the current generation. Examples of elitism-
based CGAs are: persistent elitist CGA (pe-CGA) and nonpersistent elitist CGA
(neCGA) [I], and CGA with elitism and mutation (mCGA) [3].

Depending on the nature of the problem dealt by a CGA, the use of elitism
can induce a too high selective pressure. Hence, some technique for controlling
selective pressure is necessary. Inheritance control of the best individuals was
proposed by [1] in the neCGA. Also, a mutation operator was proposed by [3]
in the mCGA. Both works present important improvement in the quality of
solutions obtained by the algorithm.

Two features of CGA make it appealing for hardware implementations: the
binary representation of solutions and its small demand of memory resources.
However, a CGA does not explore all the typical features of a conventional GA
and, thus, a more limited performance is expected. Therefore, this fact suggests
that, by using specific features of a conventional GA in a CGA it is fair to believe
that a better performance can be achieved, as shown later in this work.

3 The emCGA

The previously mentioned works (neCGA and mCGA) perform better than the
original CGA [1]]. This is obtained by minimizing the perturbation provoked by
the crossover operator, and thus, leading to a significant improvement in the
quality of solutions. In this work we propose a new mutation operator, aimed
at improving even more the quality of obtained solutions but, also, keeping a
reasonable convergence speed. This operator allows a more efficient control of
the selective pressure, adjusting the population diversity as the consequence of
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the manipulation of the probability vector. Comparing the proposed mutation
operator with that of mCGA [3], the new operator decreases the number of tour-
naments per generation and, consequently, the total number of fitness evaluations
per generation. The consequence is a significant improvement in the convergence
speed of the algorithm. On the other hand, the mutation in the mCGA works
on the best individual of the current generation. This method requests a new
tournament and, consequently, one more fitness evaluation.

The new CGA resulting from the use of the proposed mutation is named em-
CGA (elitism with mutation CGA). Basically, the proposed mutation operator
changes the random generation phase, by modifying the chromosome generated
by the probability vector.

4 Computational Experiments and Results

Mathematical functions have been frequently used as a benchmark for optimiza-
tion algorithms, including GAs. In this work we selected a suite of complex math-
ematical functions defined in a n-dimensional space (R"™). This suite includes the
following problems, with respective dimensions: Sphere(15), Circle(2), Shaffer-
F6(2), Griewank(15), Discrete-1 (15) and Discrete-2(15). Such problems were
chosen because some of them were used to evaluate performance of evolutionary
computation algorithms [6].

For the Sphere problem (Sect. A1) we used a population of 255 individuals,
whereas for the remaining problems (Sect. £2]) we analyzed the performance
of the algorithm using 31, 63, 127, 255, 511, 1023 and 2047 individuals. These
values were chosen based on the current literature. The stopping criterion is
not based on a predefined number of generations, but in the convergence of the
probability vector. This approach leads to a variable number of generations, and
this in an observable parameter in these experiments.

All functions represent minimization problems, and the optimal solution is a
multidimensional null vector. For each problem, a different representation was
used for the elements of the vectors applied to the functions. For the Circle
problem we used 16 bits to represent the range from -32.767 to 32.768. For
Discrete-1 and Discrete-2, we used 16-bit integers, ranging from -32768 to 32767.
For the remaining problems, we used 18 bits to represent the range -131.071 to
131.072.

For each problem, 100 independent runs were done. Values reported in Sect.
[Tl and Sect. sec-compare are: the average best fitness value and the average
number of generations until the convergence of the probability vector.

4.1 Analysis of the Mutation Parameter in the emCGA

The first group of experiments aimed at finding the best value for the mutation
rate in the emCGA. The higher the dimension of the problem, the larger the chro-
mosome size and the more complex the problem becomes. Therefore, this exper-
iment will evaluate how the dimension of the problem affects the best mutation
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Fig. 1. Best mutation rate as a function of the dimension, for the Sphere problem

rate. For this experiment we used the Sphere problem up to 15 dimensions, and
mutation rate ranging between 0 and 15%, with resolution of 0.1%.

In this experiment we observed that the best value for the mutation rate is
a function of the dimension of the problem. The best mutation rate is inversely
proportional to dimension. That is, the mutation rate that leads to the smallest
fitness value depends on the dimension of the problem. It was also observed that
exists a range of mutation rates for which the best values of fitness are found,
resembling a plateau. This range narrows as the dimension grows. Also, at the ex-
tremes of that plateau, the behavior is exponential. As the dimension decreases,
the problem becomes less complex and, therefore, it also becomes less sensitive
and more tolerant to different values of the mutation rate. Figure [Il shows in a
simplified way the behavior of the best mutation rate for all dimensions of the
problem tested. It can be observed in this figure a nonlinear relationship between
the dimension and the best mutation rate. For high dimensions of the problem,
the mutation rate that leads the algorithm to the best performance (regarding
fitness values) is around 0.5%. On the other hand, when the dimension of the
problem is low, the value for the best mutation rate tends to grow exponentially.

The same experiments done for the Sphere problem were repeated for the
other problems. Results obtained (not shown here) were qualitatively equivalent

Table 1. Best mutation rates for the problems tested

Dimension Problem Best mutation rate

2 Circle, Shaffer-F6 8.5%
15 Sphere, Griewank, Discrete-1, Discrete-2 0.5%
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Fig. 2. Comparative analysis in the Pareto front of three CGAs

to those obtained with the Sphere problem. That is, even if we consider different
problems, with different dimensions, the behavior is similar to that shown in
Fig. [0 This fact suggests that the best mutation rate for a given problem is really

dependent on the problem and its dimension. According to these experiments,
the best mutation rate found is shown in Table [l
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4.2 Comparison of emCGA With Other Algorithms

Here we compare the performance of the proposed emCGA with other algo-
rithms published in the recent literature, the mCGA [3] and the neCGA [I]. The
parameters used in these algorithms are those suggested by respective authors
in their publications. In particular, for the mCGA, the mutation rate used was
5% and, for the neCGA the inheritance length was set to 10% of the population
size. For the emCGA the mutation rate was set according to the problem, that
is, 8.5% for Circle and Shaffer-F6, and 0.5% for the remaining problems.

Considering the nature and purpose of a CGA, for this type of analysis it is
important not only the quality of the solution (that is, the best fitness), but also,
the number of fitness evaluations to achieve such quality (that is, the number of
generations). For a CGA it is important to obtain a good solution in as few as
possible generations. Since both objectives are contradictory, the analysis in the
Pareto plane can be more useful instead of analyzing both objectives separately.
In the Pareto plane, the best tradeoff between the two objectives is that closest
to the origin of coordinates system.

Therefore, we used the Pareto plane to compare the behavior of the three
algorithms for the test problems (excluding the Sphere problem, used in Sect.
[41)), regarding the best fitness and the number of evaluations. This comparison is
shown in Fig.[2l All values in these plots are the average of 100 independent runs.
Recall that 100 independent runs were done for each of the several population
sizes and for each algorithm. In the plots we show only the results regarding the
population size that yielded the best performance for the algorithms. The closest
point to the origin is highlighted in the plot with the corresponding population
size used. Some of the algorithms had a very poor performance. Consequently its
value for fitness and/or number of evaluations was so high that the corresponding
point could not fit the scale of the plot.

5 Conclusions

In this work we proposed a new mutation operator for an elitism-based CGA.
We analyzed the performance of the proposed operator on several test prob-
lems, for different mutation rates and problem dimensions. We also compared
the performance of the proposed algorithm with other two recently published
algorithms.

The performance analysis of the proposed emCGA reveals that using specific
mutation rates for each problem (and each dimensionality) leads to better perfor-
mance compared with a fixed rate for any problem. Also, we observed a nonlinear
relationship between the dimension of the problem and the mutation rate that
gives best performance (regarding average fitness). For high-dimensionality prob-
lems, a mutation rate of 0.5% seems to be appropriated. For low-dimensionality
problems, higher values give better results. However, the low the dimension of
the problem, the less sensitive it is to the mutation rate.

Comparing the proposed emCGA with mCGA and neCGA, we observed that,
except for the Circle problem, emCGA achieved, at the same time, better
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convergence speed and better fitness value than the other algorithms. The Circle
problem is the simplest one of the suite, furthermore it is a low-dimensionality
problem. Possibly, these are the reasons why emCGA achieved a performance
quite similar to mCGA, however with a better convergence speed.

For the high-dimensionality problems (and also for Shaffer-F6 problem), em-
CGA found solutions using smaller populations than those used by the other
algorithms. This is an important issue since such algorithms were proposed for
hardware implementations, where memory resources are limited.

Figure 2 shows that emCGA is the algorithm that has the better tradeoff be-
tween quality of solution and convergence speed. This fact suggests that emCGA
is an interesting alternative for implementations that require compact genetic
algorithms.

Future work will focus on evaluating the overall limits of the proposed ap-
proach, by implementing emCGA in a FPGA device do deal with a real-world
difficult problem such as [7], [§].
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