Lecture Notes in Computer Science, v. 4419, p. 326-336, 2007

Reconfigurable Parallel Architecture for Genetic
Algorithms: Application to the Synthesis of
Digital Circuits

Edson P. Ferlin''2, Heitor S. Lopes?, Carlos R. Erig Lima?, and Ederson
Cichaczewski'

! Computer Engineering Department, Positivo University Center (UnicenP),
R. Pedro V. P. Souza, 5300, 81280-230 Curitiba (PR), Brazil
ferlin@unicenp.edu.br,

2 Bioinformatics Laboratory, Federal University of Technology Parana (UTFPR),
Av. 7 de setembro, 3165, 80230-901 Curitiba (PR) , Brazil
hslopes@pesquisador.cnpq.br,erigQutfpr.edu.br

Abstract. This work presents a proposal and implementation of a re-
configurable parallel architecture, using Genetic Algorithms and applied
to synthesis of combinational digital circuits. This reconfigurable paral-
lel architecture uses concepts of computer architecture and parallel pro-
cessing to obtain a scalable performance. It is developed in VHDL and
implemented totally in hardware using FPGA devices. The concept of
reconfigurable and parallel architecture enables an easy hardware adap-
tation to different project requirements. This approach allows applies
with flexibility different strategies to synthesis of combinational digital
circuits problem.

1 Introduction

Recently, we have witnessed a pronounced growth the hardware and software
technologies for embedded systems, with many technological options coming up
every year. The use of open and reconfigurable structures is becoming attractive,
especially due to its robustness and flexibility. The possibility of massive parallel
processing makes reconfigurable computing a suitable technology to be applied
to the growing computational demand of scientific computation.

Reconfigurable architectures or reconfigurable computational systems archi-
tecture are those where the logic blocks can be reconfigured, in their logical
functions and internal functionality. The interconnection between these logic
blocks, that usually performs computational tasks such as processing, storing,
communication or data in/out, can be reconfigured too [6].

Because these logic blocks are implemented directly in hardware, it is possi-
ble to run algorithms exploiting the inherent parallelism of a hardware solution,
achieving a throughput, much higher than if they were run in a sequential pro-
cessor, subjected to the Von Neumann model [8§].

For several complex problems, the solution using traditional software ap-
proach, where the hardware executes sequential algorithms, does not satisfy

the timing and performance requirements. This justifies the search for new ap-
proaches to minimize these bottlenecks. For example, reconfigurable logic al-
lows a dramatic minimization of the processing time, when compared with a
traditional software approach. Such performance is possible thanks to the par-
allel processing and reduced computation time, inherent to a FPGA (Field-
Programmable Gate Array) implementation [9].

The motivation for using parallel processing is increasing the computational
power of a limited processor. This is accomplished by exploiting the simultaneous
events in a software execution [3].

The Genetic Algorithm (GA) was proposed in the 60’s by Holland [7], with
the initial aim of studying the phenomenon related to species adaptation and
natural selection that occurs in the nature. Later, GAs becomes a powerful
computational method to solve optimization and machine learning problems in
the areas of engineering and computer science [4]. GAs are intrinsically parallel
algorithms and are particularly attractive for parallel implementations [1].

This work proposes the implementation of a reconfigurable parallel architec-
ture, applied to the synthesis of a combinational digital circuit by using a Genetic
Algorithm. This system uses concepts of parallel processing and reconfigurable
computing to achieve a scalable performance. It is developed in VHDL (VHSIC
Hardware Description Language) [13] and fully implemented in hardware using
a FPGA device.

2 Problem Description

The problem treated in this work consists in obtaining a minimal Boolean
equation for a combinational digital circuit that implements a determined func-
tion specified by a truth-table.

In the project of logic circuits we can use many criteria to define the minimal
cost expression. The complexity of a logic circuit is a function of the number and
complexity of circuit gates. The complexity of a gate is, in general, a function of
the number of gate inputs. Since logic circuits will implement a Boolean function
in hardware, reducing the number of function literals, will reduce the number of
inputs for each gate and the number of gates in the circuit. Consequently, the
overall complexity of the circuit will be reduced.

The implementation described here can be used for circuits with up to four
input bits and one output, such as the one shown in the example presented in
table 1. In the case of problems that have two or more outputs, each output is
treated independently.

This work presents a multi-objective GA for the synthesis of combinational
digital circuits. The basic idea is to evaluate fitness in two stages. Firstly, to
obtain a circuit that matches the truth-table, that is, an equivalent circuit. When
this objective is achieved other fitness function is used. This second function aims
at minimizing the amount of logic gates in the circuit.

Table 1. Example of truth-table: A, B, C and D are inputs and S is the output.

A000O0O0OOOO11111111
Bj0000111100001111
C0011001100110011
D0101010101010101
S(1000111111100101

3 A Reconfigurable Parallel Architecture for GAs

One of the first parallel architectures for GAs was SPGA (Splash 2 Parallel
Genetic Algorithm) [5]. This architecture was applied to the travelling salesman
problem and was composed by 16 genetic processors which, in turn, included the
following modules: selection, crossover, fitness & mutation and statistics. Such
modules were grouped using an insular parallel model. The main difference of
SPGA architecture with the one proposed in this work is that the fitness function
is replicated to be processed in parallel, keeping a single population.

The proposed architecture uses the computational model known as Cartesian
Genetic Programming (CGP) [11]. This model, shown in figure 1, is based on
a geometric set of n x m Logic Cells (LC), with n inputs and m outputs. This
model was used because it is suited to the hardware parallelism given by the
simultaneous configuration of the logic cells by the chromosome, and also, the
way each logical function is mapped in a cell. The number of inputs (n) depends
on the problem, while the number of outputs (m) depends exclusively on the
number of logic cell lines of the geometric set (see figure 1).

The logical functions and the inputs for such logical functions can be selected
individually in each logic cell. The connectivity of the logic cells is arbitrary, since
they can use either the regular inputs of the system or the outputs of other logic
cells.

This same model was used in other projects such as [2], [14], [16], thus sug-
gesting its usefulness to this work.

This architecture is directed to the execution in the Farm model of paral-
lelism, also known as Global Parallel GA [15]. In this model, the Master-Slave,
in which the Master (Control Unit - CU) is responsible for the generation of the
initial population, and the selection, crossover and mutation of chromosomes,
while other Slaves (here called Processing Elements - PEs) calculate the fitness
of each chromosome. This model exploits the parallelism inherent to the evalua-
tion of fitness of individuals in the population. Each chromosome of population
is treated individually and, therefore, many chromosomes can be processed si-
multaneously, reducing the processing time.

The architecture proposed uses a single Control Unit, and several PEs. Fig-
ure 2 presents a block diagram showing the CU and several PEs implemented
using reconfigurable logic (FPGA). The host is responsible for sending to the
parallel machine the configuration parameters, such as probability of mutation,
crossover, number of generations, and the truth-table. After this configuration
the chromosomes are sent to PEs by the CU. The PEs evaluates the chromosomes
and computes the fitness. This result is send back to the CU.

Inputs Outputs
—“Hc b Hec L e
— 11 — 12 — 1m
X, — —Y,
X, ™ -] —,
] C21 [- Cll [- Clm
X, = — v,
X, — — Y,
GCy e EC, e —iC,
Logic Intern_al
cells connections

Fig. 1. Geometric mapping of logic cells in the CGP model.

The main contribution of this architecture is that it can be applied to several
different problems, providing the architecture (in special, the PEs) is reconfig-
ured for a particular problem. Besides being reconfigurable, the architecture is
parallel, thus exploring an important feature of implementations in FPGAs.

Configuration and
Parameters

Reconfigurable Parallel Machine

Chromosome

PC host

Y

v

Control
Unit

PE

PE

3} [z
3 i

PE

Processing
Elements
(PEs)

PE

PE

PE

Results

Fitness

Programmable
Logic (FPGA)

Fig. 2. General vision of the reconfigurable parallel architecture for GA.

4 Implementation

The chromosome was encoded with 25 genes (one gene for each LC) and
each gene has 7 bits. Therefore, the chromosome was 175 bits-long. Each gene
is responsible for the configuration of an LC, and it is composed by three fields:

address A, address B and the function. Four bits of the gene are used for the
selection of the LC inputs, and 3 bits are used for selecting the function (8
possible functions).

The fitness function for this problem is multi-objective. Initially, it is evalu-
ated how many lines of truth-table matches ("matching”). Next, the amount of
null logic cells is counted ("nulls”). The fitness value is composed by the concate-
nation of three information: matching (5 bits), nulls (5 bits) and output (3 bits)
- number of outputs of the LC matrix that produced these results.

The parallel architecture proposed is shown in figure 3. It receives from the
host four parameters: P. (crossover probability), P,, (mutation probability),
number of generations and reference truth-table. Crossover and mutation prob-
abilities are encoded with 10 bits, representing values from 0 to 0.999. Cyclically,
the system sends back to the host the best chromosome and respective fitness
at each generation.

The initial population is randomly generated with 100 individuals and stored
in chromosome memory. After, the individuals are sent to the PEs for computing
the fitness. When individuals are under evaluation, they are kept in the scratch
memory. At the same time, the best individual is updated to be sent back to the
host at the end of the generation. When all individuals are processed, the CU
performs the selection procedure and applies crossover and mutation operators
(according to P, and P,,). When this step is concluded, the new individuals
of the next generation are stored again in the chromosome memory, and the
whole process is repeated until reaching the predefined maximum number of
generations.

4.1 Control Unit

The Control Unit is responsible for managing input and output data as well
as the other operations previously mentioned. The width of the parallel busses
connecting the CU to the PEs is proportional to the number of PEs. This makes
possible the simultaneous communication between the memories (in the CU) and
the PEs, eliminating a possible communication bottleneck. The CU is composed
by the following components:

Random Number Generator : generates random numbers that will be used
for many functions in the architecture, for instance, generation of the ini-
tial population. In this case, each individual (chromosome) is obtained by
concatenation of many binary sequences (numbers). The random number
generator is very important to the performance of a GA system. In this
case, it was implemented in VHDL based on the Mersenne-Twister algo-
rithm described by [10]. The implemented generator uses 16-bits numbers,
allowing the economy of logic elements. This representation results in a rep-
etition cycle similar to the conventional “rand” function of C programming
language.

Chromosome Memory :stores the individuals (chromosomes) to be processed.
It is composed by 100 words of 175 bits. It is a double-access memory con-
trolled by the state machine. In a first step, this memory is used for storing

________________________ —_——_ ——
Chromosome h A
+ fitness Chromosome
Scratch Random num. | Chromosome
memory generator] memory
A
\ 4
Tournar_nent . Crossover > Mutation
selection operator operator
A
! control signals
Contro
\/ o Ap44444
Best Generation State
chromosome counter > machine
A
Num.
P P, um Reference
! generations
r - T 07— - - - 7 -~ A
| PC host |
\)

Fig. 3. Block diagram of control unit (CU).

the individuals of the initial population. Later, it stores the individuals of
the forthcoming generations.

Scratch Memory : stores the already-processed individuals and their fitness
value. It is capable of storing up to 100 individuals, each one composed by the
chromosome (175 bits) and the corresponding fitness (13 bits). This is also a
double-access memory controlled by the state machine. Selection, crossover
and mutation blocks use the information stored in this memory.

Best Chromosome : finds the best individual (chromosome) of a generation,
based in the fitness value. This individual is sent out to the host at the end
of the generation. The best individual is obtained by comparison. For each
new individual processed, this block compares its fitness with the best fitness
stored.

Tournament Selection : implements the well-known stochastic tournament
selection using two randomly chosen individuals of the scratch memory. The
individual with highest fitness of the two is selected to be submitted to the
genetic operators.

Crossover Operator : executes a classical one-point crossover operation with
probability P.. The crossover point is static and predefined to be after the
87" bit. Bits 1 to 87 of the first chromosome are concatenated with bits
88 to 175 of the second chromosome to form the first offspring. The second
offspring is formed in a similar way using the complimentary parts of the
original chromosomes.

Mutation Operator : executes a point-mutation operation: a randomly chosen
bit in the chromosome is complemented, with probability P,,.

Generation Counter : counts the number of generations. It is responsible for
controlling the number of generations. It signals to other blocks of the ar-
chitecture the end of processing when the maximum number of generations
is reached. This counter has 10 bits and thus allows the GA to run for up to
1023 generations.

State Machine : generates all the activation signals to the other components of
the architecture. The whole operational control of the system is accomplished
with 20 states.

4.2 Processing Element

The internal complexity of the PEs depends on the specific application. In
our case, each PE is composed by a 5x 5 LC matrix (25 LCs), the truth-table and
a counter to produce the input binary sequences (0 to Fh), besides the circuitry
for computing the fitness (see figure 4). These elements are detailed below.

It is important to notice that the LCs matrix is dynamically reconfigured at
running time. That is, for each new chromosome to be evaluated, the matrix is
reconfigured, both the specific function of the LCs and the connectivity between
them.

Therefore, each PE has to be as simple as possible to allow the implementa-
tion of a large number of PEs running in parallel in a FPGA device.

4T Y,
Truth bt Ly

-
N
&

Table X, Matix 3| Evaluate

. Y

X 5x5 4

— :
) fremm— > YS
: 51 --E Css g'
A A +
Fitness
‘ Gene 1 ‘ Gene 2 ‘ ‘ Gene 25 ‘
Chromosome

Fig. 4. Block diagram of processing element (PE).

The Processing Element is composed by following components:

Logic Cells : the LCs performs the Boolean operations shown in table 2.

Truth-Table : a 4-bits counter generates all possible input combinations (0000
to 1111) to the truth-table. Based on these values, the LCs matrix (after
being configured) generates five simultaneous outputs, one for each logic
expression, later used to compose the fitness value of the individual.

Evaluate : first, this block evaluates how many lines of the truth-table was
satisfied (matching). After, it counts the number of “null” logic cells. Finally,
it finds the number of outputs of the LC matrix that produced these results.
All these information compose the fitness value.

Table 2. Logic functions of logic cells.

#|Operation |Function
0| AND .y

1 OR z+y

2| XOR TQyY
3| NOT(z) T

4| NOT@) | o

5| Wire x T

6| Wire y y

7 Null null

5 Results

The hardware platform used in the development is Altera” EP1S10F484C5
Stratix device (http://www.altera.com). For compiling the circuitry described in
VHDL was used the Quartus IT Altera”™ design toll, version 5.0. The demands
of logic elements and internal memory up as function of the number of PEs. One
PE demands 5,174 logic elements and 36,300 bits of memory, occupying 48%
and 3% of available resources, respectively. Table 3 shows the main components
of the implemented architecture with one PE.

Table 3. Main components of the GA architecture and the respective cost of logic
elements (LE)

Component |Number of LE| %
CU - RNG 631 12
CU - Selection 567 11
CU - Crossover 626 12
CU - Mutation 864 17
CU - Other 1,861 36
PE - Fitness 625 12
Total 5,174 100

The architecture was run at 50MHz clock. The first generation processing
time is approximately 465us, with the generation of initial population spending
53us to be processed. Thus, considering that the mean time of each generation
is approximately 412us, this architecture can process around 2,426 generations
(with 100 individuals) in 1 second. The fitness processing time for a chromosome
in the PE is approximately 3.84us

The evaluation of the chromosome demands 384 us. This time corresponds to
93% of the time of processing. Thus, just 28us (7% of the time). This step that is
executed sequentially, and divided as follow: 2% for Selection, 1% for Crossover
and 4% for Mutation. So, the initial assumption used to justify the adopted
model (Master-Slave), where the fitness evaluation of the chromosome is done
by PE is correct. Thus, the parallelization of this stage, with the utilization of
several parallel PEs, can reduce the total processing time for obtain a generation,
what is the primary objective of this architecture.

An experiment with two PEs working in parallel reveals that, for the pro-
cessing of a generation with 100 chromosomes, a time of 223us was demanded,
achieving a time reduction of approximately 54%. This two PEs implementation,
using the same device, demands 6,966 logic elements and 36,300 bits of memory,
occupying 65% and 3% of available resources, respectively.

Other important issue is the Speedup [12], which is the ratio between the
time of execution with one PE and the parallel time of execution with two or
more PEs. It is fundamental to analyze the performance of parallel machines.
The tests done using this architecture with two PEs achieves around of 85% of
Speedup, close to ideal value of 100%.

6 Conclusions and Future Work

The main contribution of this work is the proposal and implementation of
a reconfigurable parallel architecture, using Genetic Algorithms and applied to
the synthesis (Boolean minimization) of combinational digital circuits.

With the processing in parallel way is to be possible a significant execution
time reduction.

In this implementation is observed that approximately 89% of a generation
processing time is spent with the chromosome fitness processing. This justifies
the PE parallelization approach, where several PEs process the individual fitness
in parallel way, regarding to CU other sequential operations processing, such
as the selection function operation, the crossover operation and the mutation
operation.

In the experiments using 2 PEs, we observe a performance improvement of
54%, or a speedup of 1.85, reaching 92% of the ideal value. However, we will
only be able to affirm the evolution of performance profit when the results will
be more consistent.

With the addition of one PE in the architecture, we observe a demand of
17% more logic elements. These additional device logic elements are used to
implement the additional PE, the interconnection of many components for the

parallel buses, and principally, the memories division in two separated modules.
This division avoids a possible bottleneck in input/output data transfer with
several PEs architecture.

This architecture explores many levels of parallelism. The first level can be
observed in several PEs operating in parallel way. The second level can be ob-
served in geometric set of 5 x 5 logic cells internally of each PE. Since each
gene configures just one individual LC, the complete configuration is made in
parallel. By other hand, since 5 logic expressions are simultaneously generated
to each input element, a parallel processing is also observed. The last level can
be observed in the operation proceeding of the "best chromosome" unit. This
operation determines the best chromosome, while the others units still process-
ing its operations simultaneously. Finally, the VHDL programming generates a
digital circuit implementation that enables a parallel execution of an algorithm.
The similar software solution can not be executed in same way.

Although several improvements can be made in the implemented architec-
ture, the partial obtained results demonstrate the correction of the approach
adopted.

Some aspects deserve special attention for the future improvements:

— Increase the number of PEs, to get greater performance;

— Adapt the parallel architecture to be possible working with more complex
problems;

— Optimize the circuits to consume less resources of FPGA device.

Finally, this work demonstrates that several positive factors like the process-
ing power of the Parallel Computation, the versatility of Reconfigurable Compu-
tation and the robustness of Genetic Algorithm, can be used to created powerful
tools to solution of many complex problems. Especially in Engineering and Sci-
ences problems were the processing time is critical restriction.

7 Acknowledgment

This work was partially supported by the Brazilian National Research Coun-
cil — CNPq, under research grant no. 305720/04-0 to H.S. Lopes.

References

1. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms, vol. 1, Kluwer
Academic, Norwel (2001).

2. Coello-Coello, C.A.; Aguirre, A.H.: On the use of a population-based particle swarm
optimizer to design combinational logic circuits. In: Proc. NASA/DoD Conference on
Evolvable Hardware (2004) 183-190.

3. Dongarra, J., Foster, 1., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White, A.:
Sourcebook of parallel computing. Morgan Kaufmann, San Francisco (2003).

4. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison Wesley, Reading (1989).

5. Graham, P., Nelson, B.: A Hardware genetic algorithm for the traveling sales-
man problem on Splash 2. In: Field- Programmable Logic and Applications, Springer-
Verlag, Berlin (1995) 352-361.

6. Hartenstein, R.: A Decade of reconfigurable computing: a visionary retrospective.
In: Proc. IEEE Conf. on Design, Automation and Test in Europe (2001) 642-649.
7. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan

Press, East Lansing (1975).

8. Lysaght, P., Rosenstiel, W.: New algorithms, Architectures and Applications for
Reconfigurable Computing. Springer, New York (2005).

9. Gokhale, M., Graham, P.S.: Reconfigurable Computing: Accelerating Computation
with Field-Programmable Gate Arrays. Springer, Berlin (2005).

10. M. Matsumoto, Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudorandom number generator. ACM Transactions on Modeling
and Computer Simulations (1998) 3-30.

11. Miller, J.F., Thomson, P.: Cartesian genetic programming. Proc. "¢ European
Conference on Genetic Programming, LNCS 1802 (2000) 121-132.

12. Murdocca, M.J., Heuring, V.P.: Principles of Computer Architecture. Prentice Hall,
New Jersey (2001).

13. Pedroni, V.A.: Circuit Design With VHDL. MIT Press, Cambridge (2004).

14. Sekanina, L., Ruzicka, R.: Fasily testable image operators: the class of circuits
where evolution beats engineers. In: Proc. NASA/DoD Conference on Evolvable Hard-
ware, (2003) 135-144.

15. Yue, K.K., Lilja, D.J.: Designing multiprocessor scheduling algorithms using a
distributed genetic algorithm system. Evolutionary Algorithms in Engineering Appli-
cations 33 (1997) 39-40.

16. Zhang, Y., Smith, S.L., Tyrrell, A.M.: Digital circuit design using intrinsic evolv-
able hardware. In: Proc. NASA/DoD Conference on Evolvable Hardware (2004) 55—
62.

	Lecture Notes in Computer Science, v:
	 4419, p:
	 326-336, 2007: Lecture Notes in Computer Science, v. 4419, p. 326-336, 2007

