
Reconfigurable Computing for Accelerating
Protein Folding Simulations�

Nilton B. Armstrong Jr.1,2, Heitor S. Lopes1, and Carlos R. Erig Lima1

1 Bioinformatics Laboratory, Federal University of Technology – Paraná (UTFPR),
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil

2 Artificial Intelligence Division, Technology Institute of Paraná,
Curitiba (PR), Brazil

narmstrong@tecpar.br, hslopes@pesquisador.cnpq.br, erig@utfpr.edu.br

Abstract. This paper presents a methodology for the design of a recon-
figurable computing system applied to a complex problem in molecular
Biology: the protein folding problem. An efficient hardware-based ap-
proach was devised to achieve a significant reduction of the search space
of possible foldings. Several simulations were done to evaluate the per-
formance of the system as well as the demand for FPGA’s resources.
Also a complete desktop-FPGA system was developed. This work is the
base for future hardware implementations aimed at finding the optimal
solution for protein folding problems using the 2D-HP model.

1 Introduction

Proteins are complex macromolecules that perform vital functions in all living
beings. They are composed of a chain of amino acids, and their function is de-
termined by the way they are folded into their specific tri-dimensional structure.
This structure is called its native conformation. Understanding how proteins fold
is of great significance for Biology and Biochemistry.

The structure of a protein is defined by its amino acid sequences. If we use
a complete analytic model of a protein, the exhaustive search of the possible
conformational space to find its native conformation is not possible, even for
small proteins. To reduce the computational complexity of the analytic model,
several simple lattice models have been proposed [4]. Even so, the problem is
still very hard and intractable for most real-world instances [1]. The solution is
either using heuristic methods that do not guarantee the optimal solution [7] or
some scalable strategy capable of intelligently sweep the search space and find
the optimal folding (that corresponds to the native conformation).

Reconfigurable computation is a methodology that has been sparsely explored
in molecular Biology applications. For instance, [10] presented a new approach
to compute multiple sequence alignments in far shorter time using FPGAs. In
the same way, [11] describe the use of FPGA-based systems for the analysis of
� This work was partially supported by the Brazilian National Research Council –

CNPq, under research grants no. 305720/2004-0 and 506479/2004-8.

P.C. Diniz et al. (Eds.): ARC 2007, LNCS 4419, pp. 314–325, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Reconfigurable Computing for Accelerating Protein Folding Simulations 315

DNA chains. A reconfigurable systolic architecture that implements a dynamic
programming algorithm and can be used for sequence alignment was presented by
[5]. Sequence alignment was also focused by [9], where a pipeline architecture was
implemented using reconfigurable hardware. In addition, [8] presents a parallel
hardware generator for the design and prototyping of dedicated systems to the
analysis of biological sequences. However, there are still few research exploring
the use of FPGAs in Bioinformatics-related problems.

On the other hand, recently, we have witnessed a pronounced growth of the
hardware and software technologies for embedded systems, with many techno-
logical options arising every year. The use of open and reconfigurable structures
is becoming more and more attractive, especially due to its robustness and flex-
ibility, facilitating the adaptation to different project requirements.

The possibility of massive parallel processing makes reconfigurable computing
(that is, systems based on reconfigurable hardware) an attractive technology to
be applied to the protein folding prediction problem addressed here. Hence,
the need for powerful processing of biological sequences, on one hand, and the
appealing flexibility and performance of reconfigurable logic, on the other hand,
are the primary motivations of this work.

The main goal of this project is to develop a methodology for sweeping all
possible folding combinations of a protein, using the 2D-HP model [3], in order to
find the conformation in which the number of hydrophobic contacts is maximized
(as explained in section 2).

2 The 2D-HP Model for Protein Folding

The Hydrophobic-Polar (HP) model is the simplest and most studied discrete
model for protein tertiary structure prediction. This model was proposed by Dill
[3], who demonstrated that some behavioral properties of real-world proteins
could be inferred by using a simple lattice model. The model is based on the
concept that the major contribution to the free energy of a native conformation
of a protein is due to interactions among hydrophobic (aversion to water) amino
acids. Such amino acids tend to form a core in the protein structure while being
surrounded by the polar or hydrophilic (affinity to water) amino acids, in such
a way that the core is less susceptible to the influence of the solvent [6].

The HP model classifies the 20 standard amino acids in two types: either
hydrophobic (H) or hydrophilic (P, for polar). Therefore, a protein is a string of
characters defined over a binary alphabet {H,P}. Each amino acid in the chain
is called a residue. In this model, the amino acids chain is embedded in a 2-
dimensional square lattice. At each point of the lattice, the chain can turn 90o

left or right, or else, continue ahead. For a given conformation to be valid the
adjacent residues in the sequence must be also adjacent in the lattice and each
lattice point can be occupied by at most one residue. A very simple example is
shown in Fig. 4.

If two hydrophobic residues occupy adjacent grid points in the lattice, not
considering the diagonals, but are not consecutive in the sequence, it is said that

316 N.B. Armstrong Jr., H.S. Lopes, and C.R. Erig Lima

a non-local bond (or H-H contact) occurs. The free energy of a conformation
is inversely proportional to the number of H-H contacts. This yields two basic
characteristics of real proteins: the protein fold must be compact and the hy-
drophobic residues are buried inside to form low-energy conformations [6]. The
protein folding problem may be considered as the maximization of the hydropho-
bic non-local bonds, since this is the same as the minimization of the free energy
of a conformation in this model.

Although simple, the folding process with the 2D-HP model has behavioral
similarities with the real process of folding [3]. Notwithstanding, from the com-
putational point of view, the problem of finding the native structure using the
2D-HP model was proved to be NP -complete [1,2]. Thus, many heuristic algo-
rithms have been proposed to solve this problem [7].

3 Methodology

The structure of the developed system is composed of several hardware and soft-
ware blocks, described in the next subsections. The system was designed to be ca-
pable of analyzing the folding of proteins using a FPGA as a sort of co-processor
of a desktop computer. This approach takes the advantage of the FPGA’s flex-
ibility and processing power and is integrated with the desktop computer by
a user-friendly interface. Also, intelligent strategies are proposed, leading to a
dramatic reduction of the search space.

3.1 User Interface

The software developed to run in the desktop computer implements a user-
friendly visual interface that enables anyone to easily understand the 2D-HP
model. This software was developed in C++ language and it is composed by
three basic modules.

The first module is aimed at enabling the user to have a fast visual reference of
the protein being analyzed. It automatically displays, on the screen, important
information to the researcher: the number of contacts (both graphically and
numerically), the collision between amino acids (with graphical marks), and
three ways of representing the folding itself: a decimal notation (that is easy to
handle), an absolute positional notation (that is easy to understand), and the
binary notation (that is the way the FPGA sees the folding). Fig. 1 presents a
screen shot of the graphical user interface.

The second module of the software is aimed at providing an intuitive way of
exploring the conformational search space. The exhaustive exploration of search
space is strongly reduced by using intelligent strategies.

The third module is the communication interface with the FPGA device. As a
matter of fact this module does not really communicate directly with the FPGA.
It was designed to do the required handshake with a Motorola MCU (Microcon-
troller Unit) MC68HC908JB8. This MCU is especially suitable for USB (Univer-
sal Serial Bus) applications. Considering the small amount of data to be trans-
ferred between the desktop computer and the dedicated hardware in our specific

Reconfigurable Computing for Accelerating Protein Folding Simulations 317

Fig. 1. Screen shot of the graphical user interface

application, the implemented USB interface is adequate. The implementation of
an USB interface external to the FPGA saves internal resources of the device and
gives more flexibility to the project. Based on the MCU’s architecture a small kit
was built to support its operation and allow it to communicate, simultaneously,
with the desktop computer and the FPGA. Therefore, a communication proto-
col has was developed to allow the desktop computer to use the MCU just as a
data gateway to reach FPGA. The FPGA works as a slave of the MCU and so
it does to the desktop computer. Therefore, the computer communicates to the
MCU through the USB and the MCU uses its multi-purpose pins to communi-
cate with the FPGA. When an analysis is to be done, the desktop computer sends
the hydrophobicity data related to the protein to the MCU through the USB in-
terface. Then, the MCU serializes this data and shift it into the FPGA input shift
register. When the analysis is complete, the MCU acknowledges this completion

318 N.B. Armstrong Jr., H.S. Lopes, and C.R. Erig Lima

 U
S

B

Computer

Interface with 68HC908JB MCU

Input
Shift

Register

Parallel
Data

Folding
System

Parallel
Data

Output
Shift

Register

Output
SerialData

Input
SerialData

FPGA

68HC908JB
MCU

Fig. 2. FPGA solution block diagram

and sends a message to the desktop computer. Next, the computer requests the
MCU to retrieve the results and it assembles the data clocked out from the FPGA’s
output shift register. This FPGA’s internal structure is shown in Fig. 2, which we
called of FPGA Solution. This architecture based on shift registers to enable a
serial communication between the FPGA and the MCU. This serial protocol was
used in order to avoid the problems related to the variable width of a parallel
bus. With this serial approach, the only thing that changes with the change of
the number of amino acids is the number of clock pulses that have to be issued
to send the input data and receive back the results.

3.2 Topology of the Folding System

Fig. 3 shows a functional block diagram of a hardware-based system for finding
the optimum conformation (folding) of a protein. This system uses the primary
structure of a protein and is based on the 2D-HP model. Basically, a counter
will swap all possible conformations, according to a given encoding (section 3.3).
Conformations have to be converted to Cartesian coordinates (section 3.5) and
then checked for validity (sections 3.4 and 3.6). This validity checker reduces the
search space analyzed by the next block. After, the number of H-H contacts is
counted for the valid conformations found. The conformation with the largest
number of contacts is kept and this is one of the solutions for the problem.

3.3 Representation

In order to efficiently sweep the conformational space, the central issues to be
addressed is how to represent a protein chain folded in the 2D-HP model using
reconfigurable logic, and how to browse the search space.

Reconfigurable Computing for Accelerating Protein Folding Simulations 319

Comparator

Contact
Counter

Loop Detector
Coordinates
Converter

Intelligent
Counter

Best Folding

Fig. 3. Functional blocks of the proposed folding system

To solve the representation problem, an absolute positional convention and
hydrophobicity information was defined. Basically, only the relative positional
information was stored, saving the system from storing the set of Cartesian
coordinates of the amino acids in the lattice. This convention is simple and
comprises the four possible relative folding directions: North (N), South (S),
East (E) and West (W), encoded with two bits, respectively, 00, 01, 10 and 11,
and stands for the bindings between the amino acids. Therefore, a complete fold
of N amino acids has (N − 1) bindings and is represented by a 2(N − 1) long
binary number. It is important to note that this representation, by itself, does
not avoid any collisions among the amino acids, it needs a validity check, as will
be explained later in section 3.6.

Another relevant information is the hydrophobicity data (HD), that is, a single
binary number representing which amino acids are Hydrophobic (bit 1) and
which are Polar (bit 0). Therefore, an entire protein can be represented by two
binary numbers: its positional information and its HD configuration. According
to this convention, Fig. 4 shows an example of a hypothetical 6 amino acids-
long protein fragment, its representation and how this specific folding would be
represented in the lattice. Black dots represent hydrophobic amino acids, and
white dots, the polar ones. The square dot indicates the first amino acid of the
chain. However, as our model uses an absolute coordinate system, it is necessary
to define an initial point as it would result in different folding, yet belonging to
the same set of possible foldings for that protein. It is important to notice that
both information are read from the left to the right, meaning that the leftmost
amino acid is represented by the leftmost letter in the HD info and the leftmost
pair of bits in the absolute positional code.

3.4 Intelligent Counter

The straightforward advantage of the binary representation mentioned before,
from the folding perspective, is that it enables the creation of a single step binary
counter to generate every possible folding (described by a binary number) for a
given amino acids chain. In other words, each count would represent a different
folding. However, there is a serious drawback. For a N amino acids-long protein

320 N.B. Armstrong Jr., H.S. Lopes, and C.R. Erig Lima

HD info: H H P P H P

HD info code: 1 1 0 0 1 0

Absolute position: E N E S E

Absolute position code: 1000100110

Decimal notation: 550

Cartesian coordinates:

 (0,0);(1,0);(1,1);(2,1);(2,0);(3,0)

Fig. 4. Example of a folded protein fragment and its 2D-HP representation

it is necessary a number of bits that is almost twice the number of bindings
(2(N − 1)), according to the proposed representation, it would result in 22(N−1)

possible foldings. For instance, to analyze a 50 amino acids protein there would be
298 (or ≈ 3.16913×1029) possible combinations. Such a combinational explosion
could render the counter unlikely to sweep through all these combinations in an
useful time, even considering a typical maximum clock of 500 MHz of modern
FPGA devices.

If it was possible to analyze a valid folding in a single clock time, with a
500MHz clock, it would result in a analysis time of 6.34×1020 seconds or 2.01×
1013 years for 50 amino acids proteins. Besides, such a high clock speed is very
difficult to achieve in physical implementations, thus increasing even more the
processing time.

However, checking closely the physical behavior of the folding representation,
it can be noticed that the folding must follow a self-avoiding path in the lattice.
That is, if the previous fold was to the North direction, the next fold cannot be
to the South. The same applies to the West-East directions. According to the
HP model, these foldings are invalid. In a valid protein conformation a point
in the lattice can have at most a single amino acid. Thus, there is no reason
to consider any folding that violate this rule, leading to the need of preventing
the system of analyzing them, as they are previously known to be invalid. These
violations were named of Rule2 violations, for being related to consecutive and
adjacent invalid foldings. This counter approach attempts to foresee an invalid
folding, according to the Rule2, and skips all binary numbers that could contain
that invalid folding at that position.

Consequently, we created an intelligent counter that generates only Rule2
compliant foldings. It can be proved mathematically (not shown here) that using
this type of counter a significant reduction of the combinations in the search
space is obtained.

Notice that Rule2 does not prevent violations caused by the overlapping of
distant amino acids in the chain, as a consequence of a loop in the folding. Al-
though these loop violations are desirable to be eliminated from the analysis,
they were not removed from the counting as they are very difficult to be pre-
viewed, as will be explained later. As a matter of fact, we already developed
a single-clock parallel method to solve this issue. This new approach not only

Reconfigurable Computing for Accelerating Protein Folding Simulations 321

detects any collision in the folding but also counts the number of H-H contacts.
However, it is being tested but already represents a significant enhancement to
this algorithm.

Another important feature addressed in this counter are two other search
space reductions which, even not being as huge as the Rule2 elimination, they
also contribute to enhance the processing time. The first one is related to the
elimination of repetitive foldings. As shown in Fig. 5, for a protein fragment
with 3 amino acids, if all of the possible foldings of this fragment were drawn,
it can be seen that there is a pattern (shown in light gray) that repeats itself,
rotated in the plane. Since each of the four occurrences of this pattern contains
exactly the same set of foldings, 3/4 of the possible foldings can be discarded
saving processing time. This strategy adds no complexity to the design of the
system. That is, only the most significant pair of bits, which encodes the binding
between the first and the second amino acid, would not be part of the counter
having its value fixed in “00” or North (see Fig. 5). In other words, the binary
count is simply limited to 1/4 of its whole range. Applying this feature to the
Rule2, the search space is divided by 4, reducing yet further the processing time.

N

N

W E

Fig. 5. Sketch of all possible foldings for a hypothetic protein fragment with 3 amino
acids. The square dot is the initial amino acid.

The second reduction to the search space can be also seen in Fig. 5 (in light
gray). One more duplicate folding can removed, which is related to the mirroring
of the foldings from the right to the left of the central vertical axis. This reduction
is achieved by making the counter skip every number composed of a folding to the
West preceded purely by North folding. In Fig. 5, the eliminated folding would
be the NW folding (which is hatched), leaving only two foldings left to be ana-
lyzed out of the original search space of 16 foldings. Notice that such elimination
of repeated foldings still leaves a set of foldings that represents all the important
folding information. Considering the use of Rule2, overall the search space is ex-
ponentially reduced. It can be demonstrated that effective search space behaves
as: y = 0.2223.e−0.2877.x, where x is the size of the amino acid chain and y the
effective percent of the search space to be swept by using Rule2.

322 N.B. Armstrong Jr., H.S. Lopes, and C.R. Erig Lima

3.5 Coordinates Converter

The output of the counter, representing a given conformation, has to be con-
verted into Cartesian coordinates (see Fig. 4) so as to effectively embed the
amino acid chain in the lattice. Notice that the absolute position encodes only
the bindings between the amino acids. However, the Cartesian coordinates rep-
resents the amino acids themselves.

Using the first amino acid as reference, the coordinates are generated by a
combinational circuit, in real-time, for the whole protein. When a new count,
or folding, is generated, based on the absolute reference of the bindings of the
protein, the position occupied by each amino acid is promptly computed. This
process is done in such a way that the system generates for the current folding
being analyzed all the Cartesian Coordinates of its amino acids, all in a parallel
circuit. These coordinates need not to be stored as they will be stable for as
long as the output of the counter is stable. Therefore, in order for an analysis to
be carried out, the counter must be frozen until the Loop Detector and Contact
Counter enables it to generate the next folding.

3.6 Loop Detector and Contact Counter

The detection of loops is done at the same time the number of contacts of a
valid folding is computed. This block checks for valid conformations, in which
there are no overlapped aminoacids. For this purpose, we used the absolute
positional information generated by the intelligent counter (section 3.4), based
on the Cartesian coordinates explained in section 3.5.

The model intends to validate the current folding as a collision-free chain (i.e.
a self-avoiding path). This module is composed basically by a finite state machine
(FSM) that has the purpose of accomplishing this validation by building a circuit
capable of detecting any pair of identical Cartesian coordinates. The FSM does
sequential comparisons, starting at coordinates (0, 0), until the last pair. For each
new coordinate pair read, a comparison is carried out with all the pairs yet to be
analyzed, to check for collisions of any distant amino acids with the current one.
Simultaneously, if the amino acid is hydrophobic, its neighborhood is checked
for non adjacent hydrophobic amino acids. As new H-H contacts are found, a
contacts counter is incremented. Therefore, this block performs two functions at
the same time: detects loops (invalid foldings) and counts H-H contacts (for the
valid foldings). If a loop is found, invalidating the folding, the process is aborted
and the intelligent counter is requested to generate the next folding.

Currently, this approach stores the absolute position code of the first occur-
rence of the highest contact count and also its hydrophobic count. Any subse-
quent occurrence of a folding with the same number of contacts is discarded.
To date, there is no known method for predicting how many occurrences of the
optimum folding will appear for a given HD configuration.

The main drawback of this approach is that each coordinate pair has to be
compared with almost all of the pairs yet to be analyzed. This yields a number
of comparisons (nc) computable by the expression: nc = Σna−1

i=1 i, where na is

Reconfigurable Computing for Accelerating Protein Folding Simulations 323

the number of amino acids of the chain. This expression represents the sum of a
linear progression. Therefore, the number of comparisons grows quadractically
as the number of amino acids increases.

4 Results

In order to evaluate the efficiency of the proposed approach, two sets of exper-
iments were done: simulations in software and hardware implementation. The
results of these simulations are grouped in a single table (Table 1).

Several simulations were done using the Quartus II environment from Altera
(http://www.altera.com). The motivations for these simulations are as follows:

– Check if the system can really identify the first occurrence of the optimum
folding, compared to the known value of a benchmark.

– Determine the required processing time for foldings with a given number
of amino acids and, further estimate the time required to process larger
proteins.

– Estimate the FPGA’s resources usage growth with the increment of the size
of the amino acids chain.

Table 1. (Left)Comparison of software simulation and hardware. (Right) Resources
usage and maximum clock.

na topt tsim thard tpc na ALUT ′s Clkmax

6 2.08E-6 1.21E-5 - - 4 106 274.88
7 2.93E-6 4.84E-5 - - 5 173 228.26
8 1.32E-5 2.27E-4 - 2.00E-2 6 243 217.78
9 1.52E-4 9.63E-4 - 5.00E-2 7 268 235.18
10 6.98E-5 3.68E-3 4.00E-3 1.30E-1 8 442 205.47
11 7.26E-4 1.37E-2 1.50E-2 4.01E-1 9 520 186.39
12 - - 6.20E-2 6.00E+1 10 604 184.37
13 - - 1.87E-1 3.00E+1 11 687 177.12
14 - - 9.90E-1 1.20E+2 30 3241 106.40
15 - - 2.03E+0 3.00E+2 50 7611 73.42

For the hardware experiments we used an Altera Stratix II EP2S60F672C5ES
device. Each on-board simulation was done considering that the system will sup-
ply results to a desktop computer, by reading directly the FPGA’s internal mem-
ory. Every experiment respected the clock restrictions of the whole system, which
is known to decrease as the internal logic is increased. The hardware experiments
were carried out using the complete software solution, described earlier.

Table 1(left) shows the processing time needed to find the optimum folding
(topt) and the total processing time necessary to sweep the search space of possi-
ble foldings for the simulation, the software (tsim) and the hardware (thard) im-
plementations. It is also presented the processing time using a desktop computer

324 N.B. Armstrong Jr., H.S. Lopes, and C.R. Erig Lima

(tpc) with Pentium 4 processor at 2.8 GHz. These results are merely illustrative,
since the timer resolution of a PC is 1 millisecond, and the algorithm (imple-
mented in C language) is not exactly the same as the one simulated in hardware.

Table 1(right) shows the resources usage of the FPGA device for a growing
number of amino acids chains. It is important to note that these values are
specific to the FPGA device chosen and may be different for other chips. Column
Clkmax is the speed the system is able to run in MHz, according to each amino
acid chain simulated. The term ALUT ′s (Adaptive Look-Up Table) is an Altera
specific naming used to represent the amount of internal functional logic blocks
within the chip. Actually, the chosen FPGA has 48,352 ALUTs (corresponding
to 60,440 logic elements).

5 Conclusions

Results of the simulations showed that the proposed algorithm is efficient for
finding the optimal folding. The number of H-H contacts found by the system
for each simulation did match the expected value of the benchmark. Therefore,
the proposed methodology for solving the protein folding problem gives correct
answers and is reliable to run such analysis.

The integration between the software and hardware indeed performed well, as
expected. Certainly the graphical user interface contributed to the development
and the validation of the proposed algorithm. Moreover, the USB interface, using
the Motorola MCU, also added flexibility to the project, allowing a transparent
communication between the desktop and the FPGA. This USB-based communi-
cation protocol allows further development of the systems, especially with other
improved protein-related analysis. Future development will focus on a USB 2.0
interface, allowing faster data transfers.

Regarding the growth of resources usage, the implementation behaved within
satisfactory limits. Despite this growth is not linear with the increase of the
amino acids chain, it does not increase exponentially. The maximum allowed
clock cycle decreased slower than expected, and it still can be run in a fair speed
even with 30 or 50 amino acids.

The main focus of this work was to devise a methodology for finding the
optimal folding of a given protein sequence, in a feasible processing time. This
objective was achieved thanks to Rule2 that allowed a dramatic reduction the
search space. In some cases, less than 0.001% of the original search space has
to be analyzed. These achievements were possible only due to the features of
reconfigurable computing, especially the parallelism.

Since one of the main purposes was to find the first occurrence of the optimum
folding, sweeping the search space as fast as possible, the system achieved this
goal. Recall that the optimum folding is the one with the highest number of H-H
contacts. The Table 1(left) shows that the time necessary to run the complete
analysis is indeed small, when compared to the time needed by the software
implementation. It also shows that the hardware implementation in fact yields a
significant improvement on the total analysis time. However, the time required

Reconfigurable Computing for Accelerating Protein Folding Simulations 325

to accomplish the analysis still grows too fast, and can be a serious limitation
for sequences with an increased number of amino acids.

A few points should yet be addressed by future versions of this system. Since
the search space grows faster, the main priority would be devising strategies
for reducing it even more, perhaps by predicting and avoiding any folding that
could contain a collision not discarded by Rule2. The idea would be to build a
“RuleN” algorithm, in which any collision could be previously detected, not only
the adjacent collisions, as does Rule2, yet keeping the capability of counting the
H-H contacts in a single step.

On the theoretical ground, further research is necessary to find a method for
predicting the maximum number of contacts in a given HP configuration by using
only de amino acids sequence. Such upper-bound would allow the system to stop
when the first occurrence of the best folding was found. Since such upper-bound
value is not known, a full sweep of the search space is required.

Overall, the use of reconfigurable computing for the folding problem using the
2D-HP model is very promising and, for short sequences, it allows obtaining the
optimal folding in reasonable processing time.

References

1. Berger, B., Leight, T.: Protein folding in the hydrophobic-hydrophilic (HP) model
is NP-complete, J. Comput. Biol. 5 (1998) 27–40.

2. Crescenzi, P., Goldman, D., Papadimitriou, C., Piccolboni, A., Yannakakis, M.: On
the complexity of protein folding, J. Comput. Biol. 5 (1998) 423–466.

3. Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan,
H.S.: Principles of protein folding - a perspective from simple exact models, Protein
Sci. 4 (1995) 561–602.

4. Dill, K.A.: Theory for the folding and stability of globular proteins, Biochemistry
24 (1985) 1501–1509.

5. Jacobi, R.P., Ayala-Rincón, M., Carvalho, L.G., Quintero, C.H.L., Hartenstein,
R.W.: Reconfigurable systems for sequence alignment and for general dynamic
programming. Genetics and Molecular Research 4 (2005) 543–552.

6. Lehninger, A.L., Nelson, D.L., Cox, M.M.: Principles of Biochemistry, 2nd ed.
Worth Publishers, New York (1998).

7. Lopes, H.S., Scapin, M.P.: An enhanced genetic algorithm for protein structure
prediction using the 2D hydrophobic-polar model. in Proc. Artificial Evolution,
LNCS 3871 (2005) 238–246.

8. Marongiu, A., Palazzari, P., Rosato, V.: Designing hardware for protein sequence
analysis. Bioinformatics 19 (2003) 1739–1740.

9. Moritz, G.L., Jory, C., Lopes, H.S., Erig Lima, C.R.: Implementation of a parallel
algorithm for pairwise alignment using reconfigurable computing. Proc. IEEE Int.
Conf. on Reconfigurable Computing and FPGAs, (2006) pp. 99-105.

10. Oliver, T., Schmidt, B., Nathan, D., Clemens, R., Maskell, D.: Using reconfigurable
hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics
21 (2005) 3431–3432.

11. Yamaguchi, Y., Maruyama, T., Konagaya, A.: High speed homology search with
FPGAs. in Proc. Pacific Symposium on Biocomputing (2002) 271–282.

	Introduction
	The 2D-HP Model for Protein Folding
	Methodology
	User Interface
	Topology of the Folding System
	Representation
	Intelligent Counter
	Coordinates Converter
	Loop Detector and Contact Counter

	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

