
Multiple Sequence Alignment Using
Reconfigurable Computing�

Carlos R. Erig Lima, Heitor S. Lopes, Maiko R. Moroz, and Ramon M. Menezes

Bioinformatics Laboratory, Federal University of Technology Paraná (UTFPR),
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil
erig@utfpr.edu.br, hslopes@pesquisador.cnpq.br

Abstract. The alignment of multiple protein (or DNA) sequences is a
current problem in Bioinformatics. ClustalW is the most popular heuristic
algorithm for multiple sequence alignment. Pairwise alignment has expo-
nential complexity and it is the most time-consuming part of ClustalW.
This part of ClustalW was implemented using a reconfigurable logic hard-
ware solution: Hardalign. The system was evaluated using data sets of dif-
ferent dimensionality, and compared with a pure software version running
in a embedded processor, as well as running in a desktop computer. Results
indicate that such implementation is capable of accelerating significantly
part of the algorithm, and this is especially important for processing large
protein data sets.

1 Introduction

Sequence alignment is a basic procedure frequently used in Bioinformatics. In the
case of proteins, the alignment is done by a systematic comparison of the amino
acids throughout the whole extension of the sequences. The main objective is to
compute a score that indicates the similarity between proteins. Alignment can
be done with a pair of sequences (pairwise alignment) or with several ones (mul-
tiple sequence alignment). In general, sequence alignment is the most important
method for discovering and representing similarities between sequences.

From the computational point of view, sequence alignment, especially for mul-
tiple sequences, is a difficult task. In recent literature, many computational al-
gorithms were proposed for this purpose. The main differences between them
is the overall quality of the alignment and the computational effort required.
Therefore, many heuristic methods have been proposed for multiple sequence
alignment [3,6], since the exact algorithm is computationally unfeasible.

Recently, we have witnessed a pronounced growth of the hardware and soft-
ware technologies for embedded systems, with many technological options arising
every year. In particular, applications based on reconfigurable computing for se-
quence alignment can found in recent works [1,5].

The objective of this work is to implement a multiple sequence alignment al-
gorithm in reconfigurable hardware, taking advantage of the possible parallelism
of operations.
� This work was partially supported by the Brazilian National Research Council –

CNPq, under research grants no. 305720/2004-0 and 506479/2004-8.

P.C. Diniz et al. (Eds.): ARC 2007, LNCS 4419, pp. 379–384, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

380 C.R. Erig Lima et al.

2 The ClustalW Algorithm

This work is based on ClustalW [6], a progressive alignment algorithm for mul-
tiple sequencesThe algorithm is divided into three basic steps, as follows:

The first step is the pairwise alignment, where all pairs of sequences are aligned
using a dynamic programming (DP) algorithm for global alignment. It builds a
m × n matrix (m and n are the length of the two sequences) and computes a
score walking backwards in the matrix, looking for the minimal cost associated
with substitutions, insertions and deletions. This step is repeated iteratively for
all n(n−1)/2 pairs of sequences to be aligned, thus obtaining a distance matrix.
The computed score is meant as the similarity degree between two sequences
and is computed as evolutionary distances using the Kimura [2] model.

The second step is the computation of an unrouted guide tree (a kind of
phylogenetic tree) based on the constructed distance matrix. This tree shows
the evolution of the sequences, grouped in pairs of minimum distances (scores)
using a neighbor-joining clustering algorithm. This tree is a profile of the order
in which sequences should be aligned for maximal efficiency of the next step.

Finally, the final step is a progressive alignment of the sequences, traversing
the distance tree in order of decreasing similarity: sequence-sequence, sequence-
profile, and profile-profile alignment. This step is based on an improved DP
algorithm [6]. Although it is very time-consuming, the final alignment is not the
optimal alignment for the sequences under study.

3 Pairwise Alignment with Hardalign

Hardalign [4] is a dedicated processing system, working as a peripheral of the
NIOS II Altera embedded processor, interconnected via the Avalon bus Hardalign
contains an arrangement of N Matrix Line Processor Units (MLPUs - see below)
and all logic for driving the arrangement. The critical part of the process that
requires computational power is the computation of the DP matrix and, for this
reason, it is run in parallel by the MLPUs. The software running in the NIOS
II processor performs the first two steps and writes data to internal registers of
Hardalign. Then, the driving logic is started and NIOS II reads sequentially the
results. A SDRAM memory is used for storing vectors generated by the MLPUs.
Next, the progressive alignment routine is started by software running in NIOS
II. This algorithm uses the vectors previously generated and finds a path from
the last cell of the matrix towards the first one.

Each MLPU computes one cell of the DP matrix, in a single clock cycle, and
it is responsible for computing a line of the matrix. Once completed, a new line is
started until the matrix is fully done. Since N cells are computed by clock cycle,
the whole matrix is concluded in L.C/N clock cycles, where L is the number of
lines and C the number of columns of the matrix. The substitution matrix is
encoded as a combinatorial circuit: every possible combination of the 20 amino
acids gives an evolutionary distance value as result.

The MLPU entity can be replicated to compute simultaneously several lines in
parallel. All the data for an entity can be read from other entities.The line amino

Multiple Sequence Alignment Using Reconfigurable Computing 381

acids are read in the beginning of the process, and the pipeline used for the first
line of alignment should receive the column amino acids sequentially. Fig. 1(left)
shows the MLPU entity in details, where an amino acid requested by a line is
always requested by the pipeline that was above it in the previous clock cycle.
The previous computed value is registered to be reused for the computation of
the subsequent cells. The values computed in the two subsequent clock cycles
are registered. They are necessary for the computation of the line below. The
gap penalty is common to all of the entities and registered outside of the MLPU.

The pipeline entity is arranged to compute several lines in parallel. In
Fig. 1(right) an arrangement with 3 MLPUs is shown, allowing the simultane-
ous computation to 3 lines of the DP matrix. The inputs of this entity are the gap
penalty, the line amino acids and the column amino acids, in a sequential way.

Each MLPU entity has four outputs: two cell values, an amino acid value
and a vector. Only the vector is necessary for the backtracking procedure later
performed. The other outputs are important for the computation of the subse-
quent cells. In fact, only the vectors are defined as outputs, and the other signals
are internal values of the pipeline. These vectors are defined like an output bus
(vector bus) of 2 × N bits, where N is the pipelines number. Initially, just the
first MLPU contains valid values in their internal registers, and only some bits

ColAA

VK1

VK2

LinAAWe

LinAA

GAP

Vector

ColAA (K-1)

Value(K-1)

Value (K-2)

ColAA

VK1

VK2

LinAAWe

LinAA

GAP

Vector

ColAA (K-2)

Value(K-2)

Value (K-3)

ColAA

VK1

VK2

LinAAWe

LinAA

GAP

Vector

ColAA (K-3)

Value(K-3)

Value (K-4)

GAP

LinAA

ColAA

Simplified Pipeline

MLPU

MLPU

MLPU

LinAAWe

LinAA

ColAA

GAP

VK2

VK1

MLPU

Vector

Value(K-2)

Value(K-1)

ColAA(K-1)

CELL

LC

DC SC

GP

LnA

CA

CC

V

Register

Register

R
e
g
i
s
t
e
r

Register

Register

INPUTS OUTPUTS

Fig. 1. Left: Block diagram of the MLPU. Right: Block diagram of the Pipeline.

382 C.R. Erig Lima et al.

of the vector bus are valid. After some cycles the own MLPU apply valid values
to the subsequent MLPU.

4 Computational Experiments and Results

The hardware was synthesized in an Altera Stratix II EP2S60F672C5ES device
(http://www.altera.com) running at 40 MHz. We used the SOPC builder (System
on a Programmable Chip Builder) software to integrate the several modules with
the NIOS II core. The physical synthesis and simulations was done using Quartus
II environment.

The first experiment is a performance analysis for different sizes of DP matrix,
comparing an implementation in PC and the hardware (with 8 MLPUs). The C
language version running in the PC version runs the same algorithm implemented
in hardware.Weused aPCwithAthlonXP1600+processor, 512MbdeRAMDDR
266 andWindowsXPoperational system.Three experimentswere done, as follows.

Table 1 shows the computation time for pairs of 20- to 2000-amino acids-long
sequences. The resolution of the PC timer is 1 millisecond, precluding to measure
the processing time for the 20 x 20 matrix. In this table, we observed a 1:10 ratio,
approximately. A further improvement of Hardalign is the use of a DMA (Direct
Memory Access) controller module to improve the transfer rate between the
SRAM and the Hardalign Pipeline Data was obtained by simulation and the
comparison is shown in the same Table. An improvement of about 28 times in
performance can be observed comparing the approaches with and without DMA.

The second experiment analyzes the performances of multiple sequence align-
mentwith and without the use ofHardalign. For this experiment, we fixed the num-
ber of proteins to 5 and analyzed the performance for sequences of several amino
acids lengths, as shown in Table 2. For each comparison (Software approach ver-
sus Hardware approach), three columns are presented: the time necessary for the
pairwise alignment of all pairs of sequences (Pairwise), not including data transfer
time; the time necessary for the whole progressive alignment using the guide tree
(Progressive); and the total time for the multiple alignment (Total).

Regarding the time for pairwise alignment only, an improvement of of about
110 times in performance can be observed comparing the hardware approach
and the software approach. On the other hand, the total processing time did
not presented a significant improvement. In this case, besides the speed-up ob-
served in pairwise computation, the advantage obtained is surpassed by the
larger time demanded in the progressive alignment computation step. Another
feature observed was the advantage of the hardware approach for larger amino
acids sequences. In this case, the efficiency of Hardalign can be better explored.

In the third experiment, performance was tested for several sets of proteins to
be aligned using the same protein size. Table 3 shows the computation time for
sets of 10- to 100 proteins using a 200-amino acids-long sequence. The meaning
of the columns in both comparisons are the same as in Table 2.

The demand for LUTs (Look Up Table) and internal registers grows up linearly
as function of the number of MLPUs. For 8 MLPUs, 2189 LUTs and 589 registers

Multiple Sequence Alignment Using Reconfigurable Computing 383

Table 1. Performance comparison of pairwise alignment (Hardalign versus PC)

Matrix size
(lines x columns) Hardalign (ms) Hardalign with DMA (ms) Athlon XP (ms)

20x20 0.074 0.001 -
100x100 0.949 0.031 10
200x200 3.548 0.125 30
500x500 22.123 0.781 200

1000x1000 87.618 3.125 831
2000x2000 350.207 12.500 3465

Table 2. Performance comparison between hardware and software for pairwise align-
ment (different lengths, same set). Processing time is given in seconds.

NIOS II - Software NIOS II - Hardalign
#Amino Acids Pairwise Progressive Total Pairwise Progressive Total

30 0.03 0.56 0.63 0.01 0.56 0.61
90 0.21 3.46 3.73 0.02 3.41 3.50
200 1.04 14.67 15.85 0.05 14.89 15.08
300 2.98 30.80 34.26 0.09 31.24 31.80
901 35.20 263.94 301.31 0.46 269.74 272.29
1703 155.58 1060.01 1224.00 1.38 1009.75 1018.89

Table 3. Performance comparison between hardware and software for pairwise align-
ment (different sets, same lengths). Processing time is given in seconds.

NIOS II - Software NIOS II - Hardalign
#Amino acids Pairwise Progressive Total Pairwise Progressive Total

10 13.467 35.710 50.006 0.308 35.297 36.307
20 30.121 84.643 116.650 2.097 74.270 78.368
50 215.595 228.133 455.059 27.530 194.432 235.377
100 776.435 494.265 1323.333 205.260 397.789 668.648

are used, taking into account only the pipeline logic, excluding the Avalon bus,
NIOS II core, additional memories and pipeline drivers. The maximum frequency
operation of pipeline is not affected by the number of MLPUs used.

5 Conclusions and Future Work

Multiple sequence alignment is an important problem in Bionformatics, but still
open issue when dealing with large sequences. This work aims at exploring an
alternative solution to this problem, using reconfigurable computing to substitute
a computationally-intensive part of the ClustaW algorithm. The methodology
for parallelizing a pairwise sequence alignment algorithm contributes to identify
and circumvent the bottlenecks of a conventional software implementation.

384 C.R. Erig Lima et al.

The performance analysis reveals that the improvement by using the hardware
approach achieves around 1:10 ratio of speed-up, compared with the conventional
PC software processing. Using DMA, the ratio achieves around 1:280.

The performance of NIOS II software processing achieves a speed-up ratio of
around 1:140 ratio, when compared with the NIOS II with Hardalign. This huge
difference is due to features such as operational system, clock frequency and
implementation languages used. Particularly, the comparison between different
hardware platforms such as PC and FPGA-based kits is not completely fair, but
necessary to emphasize significant performance differences.

Besides the significant minimization of computation time of the DP matrix,
a relative low minimization in total computation time of ClustaW algorithm
was observed: only 100% speed-up. There are some reasons for this shallow
result: important time is spent to manage and transfer data, particularly in the
progressive part of the algorithm and the fact that no parallel resources in the
progressive part of the algorithm were used.

We observed that the growth in the number of proteins to be aligned decreases
the speed-up of the system, and the growth of the length of the sequences in-
creases speed-up. Therefore, the proposed system is more efficient for alignments
with few sequences of large number of amino acids. Fortunately, this is the case
of many real-world applications.

We believe that the proposed solution is an important contribution to both
reconfigurable systems technology and Bioinformatics. Further research will fo-
cus on devising new parallelization levels for the multiple sequence alignment
problem. ClustalW was developed to run using sequential processor. On the
other hand, reconfigurable computing is a paradigm that strongly suggests the
conception of new algorithms that explores multiple levels of parallelization.

References

1. Jacobi, R.P., Ayala-Rincon, M., Carvalho, L.G.A., et al.: Reconfigurable systems for
sequence alignment and for general dynamic programming, Genet Mol Res 4 (2005)
543–552.

2. Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University
Press, New York (1983).

3. Lopes, H.S., Moritz, G.L.: A graph-based genetic algorithm for the multiple sequence
alignment problem, Lect Notes Artif Intel 4029 (2006) 420–429.

4. Moritz, G.L., Jory, C., Lopes, H.S., Erig Lima, C.R.: Implementation of a parallel
algorithm for pairwise alignment using reconfigurable computing. Proc. IEEE Int.
Conf. on Reconfigurable Computing and FPGAs, (2006) pp. 99-105.

5. Oliver, T., Schmidt, B., Nathan, D., et al.: Using reconfigurable hardware to ac-
celerate multiple sequence alignment with ClustalW. Bioinformatics 21 (2005)
3431–3432.

6. Thompson, J.D., Higgins, D.G., et al.: CLUSTALW: improving the sensitivity of
progres-sive multiple sequence alignment through sequence weighting, position spe-
cific gap penalties and weight matrix choice, Nucleic Acids Res 22 (1994) 4673–4680.

	Introduction
	The ClustalW Algorithm
	Pairwise Alignment with Hardalign
	Computational Experiments and Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

