
Simulation of the Dynamic Behavior of
One-Dimensional Cellular Automata Using

Reconfigurable Computing

Wagner R. Weinert, César Benitez, Heitor S. Lopes�, and Carlos R. Erig Lima

Bioinformatics Laboratory, Federal University of Technology Paraná (UTFPR),
Av. 7 de setembro, 3165 80230-901, Curitiba (PR), Brazil
hslopes@pesquisador.cnpq.br, erig@utfpr.edu.br

Abstract. This paper presents the implementation of an environment
for the evolution of one-dimensional cellular automata using a recon-
figurable logic device. This configware is aimed at evaluating the dy-
namic behavior of automata rules, generated by a computer system. The
performance of the configware system was compared with an equivalent
software-based approach running in a desktop computer. Results strongly
suggest that such implementation is useful for research purposes and that
the reconfigurable logic approach is fast and efficient.

1 Introduction

Cellular automata (CA) are discrete distributed systems formed by simple and
identical elements. The dynamic behavior of a CA is represented by its evolution
along time and this evolution depends on a transition rule [8]. Finding a transi-
tion rule capable of modelling a given behavior is a rather difficult task, since the
search space promptly becomes computationally intractable. Many works in the
literature proposed the use of evolutionary computation techniques for the task
of finding suitable transition rule that leads a CA to display a desired behav-
ior (see, for instance, [3,5,6]). Usually, the basic approach in these cited works
is to induce rules. Rules are evaluated according to a fitness function, regard-
ing its utility to simulate the desired behavior. Iteratively, the best performed
rules are selected and modified by using genetic operators. The evolutionary
process finishes after n generations when a given rule achieves the a satisfac-
tory behavior. Frequently, the computation of the fitness function is the most
time-consuming task in an evolutionary computation algorithm. Recently, we
have witnessed a pronounced growth of the hardware and software technologies
for embedded systems, with many technological options arising every year. In
particular, applications based on CA can found in recent works [1,2,7]. In our ap-
proach to use evolutionary computation for inducing transition rules for cellular
automata, the fitness function is computed by simulating the dynamic behavior
of the automaton. This is accomplished evolving many automata using a single
� This work was partially supported by the Brazilian National Research Council –

CNPq, under research grant no. 305720/2004-0 to H.S. Lopes.

P.C. Diniz et al. (Eds.): ARC 2007, LNCS 4419, pp. 385–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

386 W.R. Weinert et al.

transition rule. Such automata are randomly generated and evolved during a
fixed number of time steps. The computation of the fitness function is based
on the comparison of the obtained behavior and the desired one. The discovery
of transition rules for CAs requests the computation of a fitness function that
is computationally-intensive. To reduce this computational cost, we propose a
methodology for evolving CAs using reconfigurable computing. The system was
developed in VHDL (VHSIC Hardware Description Language) and implemented
in a FPGA (Field Programmable Gate Array) device.

The case-study addressed in this work is the classic problem of a CA to
perform a density classification task [1,3,5,6]. A typical evolutionary computation
algorithm for finding a transition rule for such CA will need to try some 1500
different rules until finding a good one. For each rule, its appropriateness is
evaluated by applying it to a randomly generated automaton and evolving it for
a given number of time steps. Due to the stochastic nature of the algorithm and
the randomness of the initial condition of the automaton, around 10,000 different
automata are evolved for each rule, and results are statistically evaluated.

In this work it is not aimed to propose any evolutionary computation
technique for inducing CAs, but evaluating the usefulness of reconfigurable
computing as a hardware accelerator for evolving CAs, in comparison with a
software-based approach.

2 Cellular Automata and the Density Classification Task

A Cellular Automata is defined by its cellular space and by its transition rule.
The cellular space is represented by a lattice of N cells connected according a
boundary condition in a d-dimensional space. The transition rule gives the next
state for the cell, considering the configuration of its current neighborhood. At
each time step, all cells in the lattice update their current state, according to
the transition rule (representing the dynamic nature of the system)[8]. A formal
definition of CA is given by [4]:
��������
�������

Σ : set of possible states for each cell;
k : cardinality of Σ;
i : index of each cell;
St

i : state of a given cell i at time t (St
i ∈ Σ);

ηt
i : neighborhood of cell i;

Φ(ηi) : transition rule that leads cell i to the next state (St+1
i) as function of ηt

i .
(1)

Two parameters are necessary to deal with the neighborhood concept: (m)
that represents the size of the neighborhood, and (r) representing its radius.
Usually, parameter m is given as function of r, in the form: m = 2r + 1. Since a
CA is represented by a linear structure, the leftmost cell (i0) and the rightmost
cell (in−1) of a one-dimensional automaton do not have left and right neighbors,
respectively. Therefore, a bounding condition is necessary, such that the leftmost
cell is connected with the rightmost cell, and then the transition rule Φ(ηi)
can be applied to the whole lattice. Considering that the number of cells of a

Simulation of the Dynamic Behavior of One-Dimensional CA 387

given neighborhood is 2r + 1, the number of different neighborhood that can be
generated using a given rule is k(2r+1). Also, the number of possible transition
rules that can be generated for a CA is kk(2r+1)

.
The dynamic behavior of an one-dimensional CA generated by the application

of a transition rule over the automaton for n time steps is usually illustrated by a
spatiotemporal diagram. In such diagram, the configuration of states in a lattice
is plot as a function of time.

The number of possible rules for a given automaton is kk(2r+1)
. The larger k

and r, the larger the set of rules applicable to a given CA. In most cases it is not
computationally feasible to evaluate the whole set of rules so as to find a given
one that explains the dynamic behavior of a system.

The density classification task, also known as majority problem, is a classical
problem in CA theory [8]. The objective is to find a transition rule such that,
when applied for M time steps to a random initial configuration, will lead all cells
either to state 0 or state 1, depending on the density of the initial configuration.
The parameter ρ is defined as a threshold for the density classification task [4],
in such a way that ρ0 represents the density of cells in state 1 in the initial
configuration, and ρc is the same density in a given configuration (for ∀t > 0).

The density classification task can be modelled in several ways. Here we use
the approach proposed by [3]. In this model, all cells can have binary states
(k = 2), the lattice is composed by an odd number of cells (N = 149), and the
neighborhood radius of r = 3. The number of possible transition rules for this
CA is 2128.

3 Methodology

To implement the system, we used the Altera Quartus II development system,
version 5.1, and a Cyclone EP1C6Q240C8 FPGA device. The software running
in the desktop PC was developed in C++ language.

The software running in the desktop PC generates a transition rule (as part
of other evolutionary strategy for inducing rules), encodes and sends it to the
FPGA through a parallel interface. Inside the FPGA, several hardware blocks
(see Figure 1 perform the evaluation of the transition rule, and send back both,
the result of such evaluation and the processing time.

Using a serial to parallel converter, a 128-bits long transition rule is assembled
(from the parallel interface block) and stored in the register block.

The command decoder block decodes the received commands and executes
control actions in the other FPGA blocks: the pseudo-random number generator
block, the CA evolver block, the chronometer block and to the accuracy calcu-
lator block. In the current version, five different commands can be decoded and
executed:

– Internal reset.
– Restart MLS pseudo-random number generator.
– Clear current transition rule in register.

388 W.R. Weinert et al.

clock CA

Parallel Interface
 EPP mode

address strobe

data strobe

write

data bus

wait

parallel port

 Append bytes
to transition

rule

write data

comand / address

data

Transition rule
Register

MLS Random
Number

Generator

Command Decoder

Results MUX
* Accuracy

* Chronometer

data to PC

read data

clear rule

copy rule

reset AC

load seed

clock

Cellular
Automata
Evolver

clock

rule

initial CA

Chronometer

clock

stop

Accuracy
calculator

Processing time

Accuracy

CA out

FPGA

Fig. 1. Block diagram of the proposed system for evolving CAs

– Latch transition rule.
– Start CA evolution.

The CA evolver block receives a previously registered transition rule and an
initial configuration for the automaton, generated by the pseudo-random number
generator, and evolves the CA for a given number of iterations (in our case,
200). Inside this block there are two Finite State Machines (FSM). The first
one controls the number of iterations of the CA. The second FSM controls the
execution of 10,000 runs, with a random initial configuration.

The accuracy calculator block verifies if the final configuration is the expected
one, considering the density of the initial configuration. If positive, the score of
the rule under evaluation is incremented. At the end of all runs, this block retains
the total number of hits, which, divided by the number of runs and taken as a
percentage, is the accuracy rate.

To generate random initial configurations, a Maximum Length Sequence
(MLS) pseudo-random number generator is used 1. MLS is an n-stage linear
shift-register that can generate binary periodical sequences of maximal period
length of L = 2n−1 These sequences are referred to as maximal-length sequences
(MLS), and n is said to be the degree of the sequences. In our work, we used
n = 16, thus generating 16-bits sequences. The random seed is loaded into the

1 Available in http://www.ph.ed.ac.uk/˜jonathan/thesis/node83.html

Simulation of the Dynamic Behavior of One-Dimensional CA 389

shift-register by a command. Ten parallel shift-registers were implemented, and
out from these 160 bits, 149 are used for the initial configuration of the CA.

The chronometer block counts and register the total elapsed time for generate,
evolve and evaluate the behavior of 10,000 CAs. The multiplex block selects
output data between the computed accuracy rate and the processing time, to be
sent out to the desktop computer.

4 Results

The evaluation of the proposed system consists of five experiments. For each
experiment, 10,000 one-dimensional CAs were randomly generated and evolved
for 200 iterations. For these experiments, we used a single rule, proposed by
Juillé et al. [3], named “Coevolution(1)”. To date, this rule is supposed to be the
best known rule for the density classification task. Results take into account the
average accuracy (that evaluates how good the rule performs) and the average
processing time (that represents the computational cost). In order to compare
such results with other implementation, a similar software was developed in
C++ programming language, compiled without any optimization flag and run
in a desktop computer under Microsoft Windows XP operational system. Exactly
the same rule and parameters were used for both systems, and Table 1 shows
the results obtained. The FPGA was run at 33,33 Mhz and the real clock of
the desktop PC was 1800 MHz. The comparison between different hardware
platforms such as a desktop PC and FPGA-based system is not completely fair,
but necessary to emphasize the dramatic performance difference.

Table 1. Comparison PC versus hardware-based approach

Device Accuracy Processing Time

FPGA CYCLONE EP1C6Q24068 82.28 58.660ms

PC AMD Athlon XP 2400+, 512MB 79.33 3h:9m:26.6s

5 Conclusions and Future Work

In this work we described a reconfigurable computing system for evolving cellular
automata. This system is to be used in conjunction with a software application,
running in a desktop PC, to study the behavior of transition rules. The recon-
figurable hardware is able to communicate with any software application, since
a standard parallel interface was implemented.

For this work, the average accuracy of the system has small importance, since
the main focus is the processing speed. The difference of 2.95% between the
accuracy rates of the hardware-based system and the software-based system is
due to different random number generators, responsible for the generation of the
initial configuration of the CAs.

390 W.R. Weinert et al.

The processing time needed to evolve the CAs in the PC is extremely high,
when compared with the time needed by the hardware approach. This is due to
the fact that, in the PC, processing is sequential, and in the FPGA parallelization
was largely explored. Even considering that the FPGA was running at 33,33 MHz
and the PC was 54 times faster, the processing time of the later was more than
5 orders of magnitude higher than the former. This makes evident the great
advantages of reconfigurable computing, strongly suggesting its adequacy for
this kind of task.

Future work will focus on the implementation of some evolutionary compu-
tation technique to search transition rules for one-dimensional CA, using the
reconfigurable computing module as an external accelerator. Also, other levels
of parallelization will be sought, thus improving even more the efficiency of the
system.

References

1. Corsonello, P., Spezzano, G., Staino, G., et al.: Efficient implementation of cellular
algorithms on reconfigurable hardware. In: Proc. of the 10th Euromicro Workshop
on Parallel, Distributed and Network-based Processing (2002) 211–218.

2. Halbach, M., Holffmann, R.: Implementing cellular automata in FPGA logic. In:
Proceedings of the 18th International Parallel and Distributed Processing Symposium
(2004) 258–262.

3. Juillé, H., Pollack, J.B.: Coevolving the ideal trainer: application to the discovery
of cellular automata rules. In: Koza, J.R et al. (eds.), Genetic Programming 1996:
Proc. 3rd Annual Conference, (1998) 519–527.

4. Mitchell, M.: Computation in cellular automata: a selected review. In: Gramms, T.,
ed., Nonstandard Computation. VCH Verlagsgesellschaft, Weinheim (1996).

5. Morales, F.J., Crutchfield, J.P., Mitchell, M.: Evolving two-dimensional cellular au-
tomata to perform density classification: a report on work in progress. Parallel Com-
puting 27 (2001) 571–585.

6. Oliveira, G.M.B., Bortot, J.C., Oliveira, P.P.B.: Multiobjective evolutionary search
for one-dimensional cellular automata in the density classification task. In: Proc.
8th Int. Conf. on Artificial Life, (2002) 202–206.

7. Shackleford, B., Tanaka, M., Carter, R.J., et al.: FPGA implementation of
neighborhood-of-four cellular automata random number generators. In: Proceedings
of the 2002 ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, (2002) 106–112.

8. Wolfram, S.: Cellular Automata and Complexity. Westview Press, Boulder (1994).

	Introduction
	Cellular Automata and the Density Classification Task
	Methodology
	Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

