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Abstract. An important problem in Bioinformatics is the reconstruction of phylogenetic trees. A phylogenetic tree aims at
unveiling the evolutionary relationship between several species. In this way, it is possible to know which species are more closely
related to one another and which are more distantly related. Established methods for phylogeny work fine for small or moderate
number of species, but they become unfeasible for large-scale phylogeny. This work proposes a methodology using the Ant
Colony Optimization (ACO) paradigm for the problem. A phylogenetic tree is viewed as a fully-connected graph using a matrix
of distances between species. We search for the shortest path in this graph, turning the problem to an instance of the well-known
traveling salesman problem. After, we describe how to build a tree using the directed graph and the pheromone matrix obtained
by the ACO. Two data sets were used to test the system. The first one was used to investigate the sensitivity of the control
parameters and to define their default values. The second data set was used to analyze the scalability of the system for a large
number of sequences. Results show that the proposed method is as good as or even better than the other conventional methods
and very efficient for large-scale phylogeny.
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1. Introduction

1.1. Phylogenetic trees

The evolutionary relationship among different
species can be accessed by means of phylogenetic trees.
Such assessment tries to unveil how these species might
have been derived during the evolution of live on earth.
This can be done by analyzing a set of DNA (or amino
acids) sequences from different species. The construc-
tion of phylogenetic trees is an important problem in
Bioinformatics and, like many others, it is still an open
subject for research. This is mainly due to the NP
complexity of the problem [8] that leads to intractable
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search spaces when dealing with the phylogeny of a
large number of species.

In a simple way, a phylogenetic tree can be con-
sidered a binary tree, whose leaf nodes represent the
species to be analyzed and inner nodes are the ancestral
species from which they have evolved. Phylogenetic
trees can have or not a root (see Fig. 1) that indicates
the oldest ancestral. Usually, a rooted tree represents
better the phylogenetic history of species. On the other
hand, an unrooted tree represents better the possible
correlation between species.

Equation (1) shows how many different trees (NT )
can be computed for both, rooted and unrooted trees,
usingn species [5]. For instance, if we would like to
find the best unrooted tree using the method of max-
imum similarity for (only) 20 species, we should try
8,200,794,532,637,891,559,375 trees. This simple ex-
ample shows how fast the problem becomes intractable
as the number of species increase. Therefore, a num-
ber of heuristic methods have been proposed for the
reconstruction of phylogenetic trees, such as genetic
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Fig. 1. Topologies of phylogenetic trees: (a) unrooted tree, (b) rooted tree.

algorithms [12] and simulated annealing [18].

NT =




(2n−3)!
2(n−2)(n−2)!

for unrooted trees

(2n−5)!
2(n−3)(n−3)!

for rooted trees
(1)

Although there is still no consensus, the current
methods for the reconstruction of phylogenetic trees
can be roughly grouped into two families: feature-
based methods and distance-based methods [9].

Feature-based methods comprise both parsimony
and probabilistic methods. Parsimony methods are
based on the principle that correct phylogenetic trees
are those that encompasses the smallest number of
evolutionary changes among species. These methods
are computationally expensive and sensitive to mis-
alignment errors. Probabilistic methods, such as the
Maximum Likelihood proposed by Felsenstein [5], are
known to be the most robust to input errors and to
produce better results. However, they have serious
limitations. Since they work directly with pre-aligned
sequences, the multiple-sequence alignment algorithm
used can introduce errors and, besides, it is also compu-
tationally expensive for a large number of sequences.

On the other hand, distance-based methods are based
on the principle of similarity. Examples of these meth-
ods are UPGMA (Unweighted Pair Group Method
using arithmetic Averages) [19] and Neighbor Join-
ing [17], which use a matrix representing the evolution-
ary distances between pairs of species. These meth-
ods have the advantage of not requiring much compu-
tational effort. However, they are very sensitive to the
computed distances and, for large distance values in the
matrix (that is, distant species), significant errors are
introduced.

1.2. Ant Colony Optimization

Ant Colony Optimization (ACO) is a meta-heuristic
proposed by Colorni et al. [2]. ACO is based on the fact
that social insects (such as ants, bees and termites) that

live in colonies performspecific tasks according to their
role in the colony. The self-organization that emerges
from the behavior of simple agents (insects) leads the
colony, as a whole, to thrive. One of the main tasks that
ants need to do is searching for food. Real ants, when
searching for food, can find out such resources without
visual feedback. Besides, they can adapt themselves
to changes in the environment by optimizing the path
between the nest and the food source. This fact is the
result of stigmergy, that is, a positive feedback, given
by the continuous deposit on the path of a chemical
substance known as pheromone.

There are many differences between real ants and ar-
tificial ants. For instance, artificial ants have memory,
they are completely blind and time is discrete [15]. On
the other hand, an artificial Ant System allows the sim-
ulation of the behavior of real-world ant colonies, such
as: artificial ants have preference for trails with large
amount of pheromone; shorter paths have a stronger
increment in pheromone; there is an indirect communi-
cation system between ants (the pheromone trail) that
leads them to find the shortest path between the nest
and a food source.

1.3. Related work

ACO is a powerful heuristic method that has been
applied to many different hard problems, such as com-
binatorial optimization, data mining and telecommuni-
cations routing, among others, but, in the area of Bioin-
formatics, very few applications have appeared to date.

Korotensky and Gonnet [10] present an alternative
method named circular sum, for obtaining the sequence
of branches that will give the smallest tree. This method
models the problem as a circular Traveling Salesman
Problem (cTSP), that is, for a complete tour, the dis-
tance from the last city and the first one is added to the
tour distance. The tour corresponds to the sequence of
species, and the tour distance is the smallest score for
this sequence. To construct the tree, a simple idea is
used: the correct tree will have the same score found by
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means of the cTSP. A second algorithm is done to con-
struct trees and compare their scores with the one found
by cTSP. This search method is somewhat similar to the
maximum parsimony, and, thus, it is computationally
expensive for a large number of species.

Kumnorkaew et al. [11] present a new strategy for
constructing trees using an ACO algorithm adapted to
a Steiner tree problem. In the algorithm, a preprocess-
ing step defines a number of intermediary nodes (an-
cestral species), by means of the intersection of the in-
put species. From this point on, input species are con-
sidered source nodes and the intermediary nodes are
considered mandatory passing points. Those authors
report that equivalent trees were obtained to those con-
structed using the Neighbor-joining method. However,
it is necessary a strong preprocessing to define proper
intermediary points that can be underused.

2. Methodology

2.1. Input data and evolutionary distance

There are several ways to represent input data for
phylogenetic tree construction algorithms. Distance-
based methods use a squaren × n matrix, where cell
(i, j) is the evolutionary distance between speciesi and
j (see example in Fig. 2). Parsimony methods can use
two approaches. The first representation is a list of char-
acteristics (attributes) and the corresponding binary in-
formation of such characteristics for each species. The
second way is based on the multiple alignments of ge-
nomic sequences. Finally, probabilistic methods, such
as Maximum Likelihood, use as input a sequence of
pre-aligned genomic sequences and a model tree.

Considering that distance-based methods tend to be
faster than the others, and the distance matrix is similar
to a fully-connectedgraph, this representation was used
in this work, as shown in Fig. 2. In this graph, nodes
represent the species and edges represent the evolu-
tionary distances between them. This fully-connected
graph recalls the simplest instance of the symmetric
traveling-salesman problem (TSP). Although simple,
this is a hard combinatorial problem. Dorigo and col-
leagues [2,3] were the first to successfully apply ACO
to such problem and this work follows the same prin-
ciples.

The main drawback of the distance matrix is the
need of a metric to compute the evolutionary distance
between species. The simplest way to do so is the
direct evaluation of corresponding nucleotides of pre-

aligned genomic data, using a substitution matrix to
compute the sum of base mutations. This method re-
quests the previous alignment of the genomic sequences
of species. In the case of quite distant species (or for
sequences of different length), the computed distance
between species using this method is not reliable. Con-
sequently, a key point of the proposed methodology in
this work is the computation of the distance matrix.

Distances between species can be computed using
DNA/RNA evolution models, protein evolution mod-
els, Brownian motion-based methods or gene frequen-
cies [6]. Recently, Li et al. [13] have proposed an in-
teresting method based on the fact that coding regions
of the DNA of close species have strong correlation.
Hence, given two DNA sequences (x andy), the dis-
tance between them can be calculated using Eq. (2):

d(x, y) = 1 − K(x) − K(x|y)
K(xy)

(2)

whereK(x|y) is the conditional Kolmogorovcomplex-
ity of x given y; K(x) is defined asK(x|ε), where
ε is a null sequence andK(xy) is the Kolmogorov
complexity for the concatenation ofx andy.

2.2. The basic ACO-based model

As mentioned before, thanks to the convenient rep-
resentation of a phylogenetic tree as a fully connected
graph (based on a distance matrix), the problem is trans-
formed into a TSP. An ACO is then modeled to find a
suitable solution for this problem.

In the beginning, ants start in a randomly selected
node of the graph. Then, they travel across the struc-
tured graph and, at each node, a transition function
(Eq. (3)) will determine its direction. This equation
represents the probability that thek-th ant, standing at
nodei, goes to nodej in its next step [3].

Pk(i, j) =
[τ(i, j)]α . [d(i, j)]−β

∑
u∈Jk

i

{
[τ(i, j)]α . [d(i, j)]−β

} (3)

In Eq. (3), Pk(i, j) is the probability of transition
between nodesi andj; τ(i, j) is the pheromone trail
between nodesi andj; d(i, j) is the evolutionary dis-
tance between nodesi and j; J k

i is the set of nodes
connected to nodei and already visited by thek-th ant;
α andβ are arbitrary constants. Two terms can be iden-
tified in Eq. (3): one that is based on the evolutionary
distance between speciesi and j, and another based
on the accumulated experience, corresponding to the
pheromone trail. This trail is represented by a matrix
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Fig. 2. Example of distance matrix for four hypothetic species (left). Fully connected graph corresponding to the distance matrix (right).

(like that one for the distance between species), whose
values are dynamically changed by the algorithm, and
determined according to the paths chosen by the ants.
Therefore,τ(i, j) represents the attractiveness of node
j, when the ant is at nodei.

In the conventional ACO, moves take place between
two nodes, and for each step, Eq. (3) is computed. In
this work we create an intermediary noden between
the current node and that chosen for move. This node
will represent the ancestral species of the other two,
and it will not be added to the list of species of the
tree. The objective of this node is to adjust the dis-
tances between the two species (nodes from and to) and
the remaining nodes of the graph. More clearly, dis-
tance values between speciesi andj and the remaining
species will be recalculated, considering that species
i andj were linked by a common ancestor. The new
distances between species are recomputed by means of
Eq. (4), explained below. The step of joining two nodes
with an ancestor species can be done in a preprocessing
step. In this case, every ancestor needs to be calculated
previously and the distance matrix will increase with
ancestor species. Therefore, this preprocessing step
and the recalculation of the distance matrix increase the
processing time.

dnu(i, j) =




d(i, u) + [d(i, u) − d(j, u)].δ
if d(j, u) > d(i, u)

d(j, u) + [d(j, u) − d(i, u)].δ
if d(i, u) > d(j, u)

(4)

In Eq. (4),i andj are two species that are already
grouped;n is the ancestral species ofi and j, that
is, an intermediary node between them;u is the node
that represents a species that will be grouped in the
current step of the algorithm;dnu(i, j) is the distance
between the intermediary noden and nodeu; d(i, u)
is the original distance between nodesi andu; d(j, u)
is the original distance between nodesj and u; and
δ is a user-defined parameter related to the closeness
between a given species and its ancestral.

Figure 3 shows an example of the construction of
the intermediary node. In Fig. 3(a), the noden is the

common ancestral of nodes 1 and 2, andδ = 0.5, since
the distances fromn to the other nodes are the same.
In Fig. 3(b), the same graph is represented forδ < 0.5,
when noden is closer to the source node. In Fig. 3(c),
δ > 0.5and, thus, noden is closer to the target node.

The previous procedure is repeated until all nodes
belong to the list of already visited nodes, and then, a
path is constructed. The score of this path is given by
the sum of the transition probabilities of the adjacent
nodes of the path. A cycle of the ACO algorithm is
completed when all ants have traversed the graph. At
the end of each cycle the pheromone matrix is updated,
as explained below.

2.3. Pheromone updating

Paths constructed by the ants are used for updating
the pheromone trail. The increment of the pheromone
trail is done in all nodes belonging to at least one path,
created in an execution cycle. This is an elegant way
to avoid fast convergence to a local maximum in the
search space. The pheromone trail matrix is updated
according to Eq. (5):

τ(i, j) = ρ · τ(i, j) + (1 − ρ) · ∆τ(i, j) (5)

whereρ is the pheromone evaporation rate, which re-
duces the persistence of the environment to the ants.
In this work, the pheromone increment rate,∆τ(i, j),
was devised to allow an increment proportional to all
the obtained paths, given by the division of the current
path by the best path found up to the current cycle, as
shown in Eq. (6):

∆τ(i, j) =
{

Sc(t) · (Sbest)
−1 if i, j ∈ c(t)

0 otherwise
(6)

wherec(t) is the path constructed by an ant, up to time
t; Sc(t) is the score of pathc(t) andSbest is the score
of the best path found up to the current cycle.

For a given path,Sc(t) is the quality measure of the
solution. This parameter is based on the sum of the
transition probabilities of the nodes chosen by the ant
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Fig. 3. Example of the construction of the path when an intermediary node is inserted in the original graph: (a) original graph with the inserted
node n; (b) node n closer to the origin node; (c) node n closer to the target node.

during the path, and is defined by Eq. (7):

Sc(t) =
n∑

i=0

n∑
j=0

{
P (i, j)
0

if i, j ∈ c(t)
otherwise

(7)

By using this procedure, ants traverse the graph and,
at the end of the execution of a predefined number of
cycles, it is possible to reconstruct the tree using the
best path found.

2.4. Reconstruction of the phylogenetic tree

After the execution of the ACO algorithm,as detailed
above, we obtain a linear sequence of species (the best
path in the graph) and a measure of closeness between
them using the pheromone matrix.

The construction of the phylogenetic tree is the next
step and starts by finding, for each pair (i, j) of species
of the best path, which one has the largest value in
the pheromone matrix. This pair is grouped together,
then forming a common ancestral species for the pair
(i, j). This procedure is repeated until all species have
been grouped. The central idea in this procedure is
the fact that close species in the graph will be visited
by ants more frequently and, consequently, the path
between them will accumulate more pheromone. Fig-
ure 4 shows a detailed pseudocode of the algorithm for
the reconstruction of phylogenetic trees, based on the
pheromone matrixM .

3. Computational experiments and results

3.1. Data sets

To evaluate the methodology proposed in this work
we used two data sets. The first is a set mitochon-
drial DNA sequences (mtDNA) from 20 species of
mammalians, previously used in another studies (see,
for instance, Cao et al. [1]). The test using this data
set aimed at evaluating the accuracy of the proposed
method, when compared with a consensus tree. Also,
we used this data set to find the best set of values for
the control parameters of the ACO.

The second data set used was especially constructed
for this work. This data set was composed by the com-
plete mitochondrial genomes (mtDNA) of 470 species
found in the NCBI site2 (excluding plasmids). The test
using this data set aimed at evaluating the scalability
of the proposed ACO algorithm, by observing how the
performance of the system behaves as the number of
species increases.

2http://www.ncbi.nih.gov.
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Fig. 4. Pseudocode for the reconstruction of a phylogenetic tree, based on a pheromone matrix M.

Fig. 5. Comparison between the tree obtained by the proposed method (a) and the consensus tree presented by Cao et al. [1] (b).

3.2. Sensitivity of the control parameters

Using the first data set, a number of preliminary ex-
periments was done with different values of the control
parameters of the ACO. These experiments were con-
ducted so as to observe the performance of the system
as function of the values of the control parameters.

Parameterα controls the exploration of the search
space by means of weighting the importance of the
pheromone trail in the decision of an ant when it arrives
to a branch. Parameterβ defines the relative impor-
tance of the distance between species in the transitions
between nodes. We tested the algorithm with combi-
nations ofα andβ between 1 and 5. Empirically, we
discovered that the algorithm is more sensitive to high
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values ofα, leading to a fast convergence to a local
maximum. We also observed that, for better perfor-
mance,β must be higher thanα. However, values too
high lead the algorithm to converge to a degenerated
tree that groups all species sequentially.

The pheromone trail evaporation is controlled by the
parameterρ, which is influenced by the number of ants
(k) and the number of cycles (c). These parameters are
directly related to the stigmergy that drives the behav-
ior of ants to find a solution for the problem. We tested
ρ between 0.1 and 0.9, in steps of 0.1. Experimentally,
we observed that the higher the value ofρ, the smaller
the topological distances obtained (with the other pa-
rameters fixed), and values lower than 0.2 make the
algorithm to find trees with undesired large distances
between branches. It is supposed that this is a conse-
quence of the convergence to a local maximum, right in
the beginning of the run. For these experiments,k was
varied between 50 and 500, in steps of 50; andc was
varied between 5 and 50, in steps of 5. Notice that the
productc.k reflects the amount of computational effort
of the algorithm in a given run.

The evolutionary distance between an ancestral and
two descendent species is controlled by parameterδ.
This parameter was varied between 0.3 and 0.7, in steps
of 0.1. The best tree found was obtained usingδ = 0.5,
meaning that the distance between the ancestral species
and the two descendants is the same for both branches.

For all experiments, we used a reference tree (con-
sensus tree) presented by Cao et al. [1], as the opti-
mal solution. The comparison between a given tree,
obtained with a specific set of parameters, and the
consensus tree, was done using the Robinson-Foulds
method [16]. Although a number of methods for mea-
suring the distance between trees has been proposed [6],
the Robinson-Foulds method seems to be one of the
most popular. The set of control parameters of our al-
gorithm that obtained the smallest distance to the con-
sensus tree was considered the default. These values
are: α = 1, β = 2, ρ = 0.9, δ = 0.5, k = 500 and
c = 50.

3.3. Comparison with other methods

To evaluate the results of our approach, we computed
the topological distance between the tree generated by
our ACO and other methods, namely, Hypercleaning
and Fitch [7]. To do so, we used PHYLIP,3 a widely

3This software is freely available in the Internet in the site:
http://evolution.gs.washington.edu/phylip.html.

Table 1
Topological distances, using the Robinson-
Foulds method, for the four approaches rel-
ative to the consensus tree

Method Topological distance

ACO 5
Fitch 15
Neighbor-Joining 17
Hypercleaning 4

used package for phylogeny. This computation was
done for the first data set, to compare with the consensus
tree [1]. Another approach found in the literature [13]
used the Neighbor-joining method. Therefore, Table 1
shows the topological distances, calculated using the
Robinson-Foulds method [16], for all four approaches
(ACO, Fitch, Hypercleaning and Neighbor-joining) re-
garding to the reference tree.

Our proposed ACO obtained a topology as good as
the most robust, although expensive, method (Hyper-
cleaning), and better then the one found by the well-
known Fitch method. In Fig. 5 it is shown the compar-
ison of the best tree obtained by our ACO method and
the reference tree. There are two small differences be-
tween these trees: the order of ancestrals for Platypus,
Opossum and Wallaroo, and the branch where Gorilla
is located.

3.4. Processing time

The second data set is much larger than the previous
one, and it was used to evaluate the processing time of
the proposed method as the number of sequences in-
crease. Since this is the first use of this data set, there is
no other published work to compare performance with
our proposed approach. However, a simple compari-
son can be done with other methods based on distance
matrix.

For this test, we used a desktop PC based on a
Celeron 1.1 GHz processor, with 512 MB of RAM.
Figure 6 presents the processing time as a function of
the number of species to be grouped in a phylogenetic
tree by the algorithm. The parameters used in this
experiment were those previously defined as default.
The same test was repeated using Fitch and Neighbor-
joining methods, but for a smaller number of sequences
than those of Fig. 6. The growth of the processing
time for the three algorithms is shown in Fig. 7. From
these two figures, is clear to see that for both, Fitch and
Neighbor-joining methods, the processing time tends
to grow exponentially, whereas our proposed method
tends to grow polynomially. Indeed, a second-order
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Fig. 6. Processing time of the proposed method as a function of the number of sequences to be grouped in a phylogenetic tree.

Fig. 7. Comparison of the processing time for the proposed ACO, Fitch and Neighbor-joining methods.

polynomial fitted the data of our approach in Fig. 6,
with R2 = 0.9997. Extrapolating the curves of Fig. 7
for a larger number of species, say 1000, our ACO-
based approach will need something around 850 sec-
onds of processing time, while the other methods will
need more than 54000 seconds.

4. Discussion and conclusions

This work presented a new method for the con-
struction of phylogenetic trees using an Ant Colony
Optimization-based approach. We tested our approach
with two data sets. For the first data set, the obtained
phylogenetic tree was closer to the consensus tree,
compared with the trees generated by other established
distance-based methods, except Hypercleaning. Hy-
percleaning obtained a slightly better result than ours.
However, it should be noted that Hypercleaning is not a
method for phylogenetic tree construction like the other

mentioned here. In fact, it is an interactive method
that refines trees obtained by any other method, such
as Neighbor-joining. Although this strategy works fine
for a small number of sequences, it cannot be used for a
large number of sequences, due its computational cost.

We examined the sensitivity of the algorithm to
changes in their control parameters using the first data
set. We observed that the performance of the algorithm
is strongly influenced by the value of those parameters.
Although we have done many tests so as to propose de-
fault values for the control parameters, future work will
focus on exhaustive tests, hoping to find optimal values
using a broader range of input data. Therefore, it is fair
to expect even better performances if an optimized set
of parameters can be found.

Using the second data set, the proposed method was
also compared with other techniques regarding the pro-
cessing time. This is an important point of this work
since scalability is an important issue in Bioinformat-
ics. Fitch and Neighbor-joining are efficient and fast
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methods for a small number of sequences, as shown in
Fig. 7. However, when a large number of sequences
must be analyzed, their processing time may grow pro-
hibitively. Besides, the analysis of Fig. 6 suggests
that the embedded complexity of our method tends to
be polynomial rather than exponential, at least for the
range of sequences tested. Therefore, the proposed
method can be an effective alternative for large-scale
phylogenyanalysis. Overall, results are very promising
and encourage further developments.

Besides more tests with other data sets, future work
will include the investigation of self-adaptive parame-
ters for the ACO, an emerging technique in evolution-
ary algorithms [14], and an improved methodology to
deal with aligned and non-aligned sequences.
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Murata, N. Okada, S. P̈aäbo and M. Hasegawa, Conflict among
individual mitochondrial proteins in resolving the phylogeny
of eutherian orders,Journal of Molecular Evolution47 (1998)
307-322.

[2] A. Colorni, M. Dorigo and V. Maniezzo,Distributed opti-
mization by ant colonies,in: Proc. of ECAL’91 European
Conference on Artificial Life, 1991, 134–142.

[3] M. Dorigo and L.M. Gambardella, Ant colonies for the trav-
eling salesman problem,Biosystems43(2) (1997), 73–81.

[4] M. Dorigo, E. Bonabeau and G. Theraulaz,Swarm Intelli-
gence: from Natural to Artificial Systems,Oxford University
Press, 1999.

[5] J. Felsenstein, Maximum likelihood estimation of evolutionary
trees from continuous characters,American Journal of Human
Genetics25 (1973), 471–492.

[6] J. Felsenstein,Inferring Phylogenies,Sinauer Associates,
2004.

[7] W. Fitch and E. Margoliash, The construction of phylogenetic
trees,Science155 (1967), 279–284.

[8] G.H. Gonnet, New algorithms for the computation of evo-
lutionary phylogenetic trees, in:Computational Methods in
Genome Research,S. Suhai, ed., Plenum Press, 1994, pp. 153–
161.

[9] J. Kim, Large-scale phylogenies and measuring the perfor-
mance of phylogenetic estimators,Systems Biology47 (1998),
43–60.

[10] C. Korostensky and G.H. Gonnet, Using traveling salesman
problem algorithms for evolutionary tree construction,Bioin-
formatics16 (2000), 619–627.

[11] M. Kumnorkaew, K. Ku and P. Ruenglertpanyakul,Applica-
tion of ant colony optimization to evolutionary tree construc-
tion, in: Proc. of 15th Annual Meeting of the Thai Society for
Biotechnology, 2004.

[12] A.R. Lemmon and M.C. Milinkovitch, The metapopulation
genetic algorithm: an efficient solution for the problem of large
phylogeny estimation,Proceedings of the National Academy
of Sciences99 (2002), 10516–10521.

[13] M. Li, J.H. Badger, X. Chen, S. Kwong, P. Kearney and H.
Zhang, An information based sequence distance and its appli-
cation to whole mitochondrial genome phylogeny,Bioinfor-
matics17(2) (2001), 149–154.

[14] M.H. Maruo, H.S. Lopes and M.R.B.S. Delgado, Self-
adapting evolutionary parameters: encoding aspects for com-
binatorial optimization problems, in:Evolutionary Computa-
tion for Combinatorial Problems,G.R. Raidl and J. Gottlieb,
eds, LNCS 3448, 2005, pp. 154–165.

[15] R.S. Parpinelli, H.S. Lopes and A.A. Freitas, Data mining with
an ant colony optimization algorithm,IEEE Transactions on
Evolutionary Computation6 (2002), 321–332.

[16] D.F. Robinson and L.R. Foulds, Comparison of phylogenetic
trees,Mathematical Biosciences53 (1981), 131–147.

[17] N. Saitou and M. Nei, The neighbor-joining method: a new
method for reconstructing phylogenetic trees,Molecular Bi-
ology and Evolution4 (1987), 406–425.

[18] L. Salter and D.K. Pearl, Stochastic search strategy for esti-
mation of maximum likelihood phylogenetic trees,Systematic
Biology50 (2001), 7–17.

[19] R.R. Sokal and C.D. Michener, A statistical method for evalu-
ating systematic relationships,University of Kansas Scientific
Bulletin 28 (1958), 1409–1438.


