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Abstract
have been proposed. This work presents a methodology for the application of differential evolution (DE) to the problem

Protein folding is a relevant computational problem in Bioinformatics, for which many heuristic algorithms

of protein folding, using the bi-dimensional hydrophobic-polar model. DE is a relatively recent evolutionary algorithm,
and has been used successfully in several engineering optimization problems, usually with continuous variables. We
introduce the concept of genotype-phenotype mapping in DE in order to provide a mapping between the real-valued
vector and an actual folding. The methodology is detailed and several experiments with benchmarks are done. We
compared the results with other similar implementations. The proposed DE has shown to be competitive, statistically
consistent and very promising.
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demonstrated that some behavioral properties of real-
world proteins could be inferred by using this simple
model. In this model, the amino acids of a protein
are considered either hydrophobic (aversion to water)

1 Introduction

Proteins are composed by amino acids chains where
there is all the information necessary for generating a

unique tri-dimensional structure. The exact way pro-
teins fold just after being synthesized in the ribosome
is unknown. As consequence, many computational ap-
proaches of different levels of complexity have been
proposed to simulate the folding of proteins. However,
to date, even simple models are still computationally
expensive. Recently, several methods have been pro-
posed in the quest of solving the protein folding prob-
lem (PFP), such as Monte Carlo simulation[!], genetic
algorithms!?! and ant colony optimization!3]. Despite
being an important issue in bioinformatics, there is
still no efficient method for solving the PFP.

The objective of this work is to evaluate the appli-
cability of the Differential Evolution algorithm to the
PFP using the 2D-HP model, and to compare its per-
formance with other similar algorithms recently pub-

lished.

2 2D-HP Model

Amongst the several discrete models used to simu-
late how a protein folds, the hydrophobic-polar (HP)
is, possibly, the most simple and most widely studied
model. The HP model was proposed by Dill¥l, who

or polar (affinity to water, the same as hydrophilic).
Despite the simplicity of this lattice model, exact al-
gorithms to solve the problem were proved to be NP-
hard[®!.

Fig.1 shows the 2D-HP model for a hypothetical

A

Fig.1. Example of H-H contacts in the 2D-HP model.
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18 amino acids-long protein, folded in such a way that
6 non-local H-H contacts occur. In this figure, black
and white dots are, respectively, hydrophobic and po-
lar amino acids. The square dot is the first element of
the chain, and H-H contacts are represented by dotted
lines.

The free energy function of a conformation, sug-
gested by [6], is represented in (1):

E=Y ernAri—1)) (1)

1<j

where: A(r; —r;) = 1 if amino acids r; and r; are
not consecutive in the chain, and A(r; —r;) = 0, oth-
erwise. Depending on the type of contacts between
amino acids r; and r;, the energy e, will be eyn,
epp or epp, corresponding to H-H, H-P and P-P con-
tacts, respectively. According to [6] this model satisfies
the following physical limitations:

1) Compact conformations have a smaller energy
value than any other non-compact conformation.

2) Hydrophobic amino acids will be buried inside
the conformation, as most as possible. This idea is
expressed by the relationship epp > egp > epp, that
decreases the energy of conformations in which the Hs
are hidden inside.

3) Different types of amino acids tend to get apart.
This is expressed by the relationship: 2egp > epp >
€HH -

3 Methodology

3.1 Differential Evolution

Differential Evolution (DE) is an evolutionary com-
putation method invented by Storn and Pricel” for
numerical optimization. The central idea of this al-
gorithm is the use of difference vectors for generating
perturbations in a population of vectors. This algo-
rithm is conceptually simple and, at most times, con-
verges fast to a good solution. Besides, DE is robust
and has few parameters do be tuned. Consequently,
it has drawn attention of researchers who have stud-
ied its utility for complex optimization problems(®9!.
Fig.2 shows graphically how the vector operations take
place in a 2-dimensional space, at a given generation.
A detailed description of DE can be found in [10].

3.2 Vector Encoding

In DE, the variables of the problem are encoded in
a vector and, usually, the meaning of its elements to
the real-world is straightforward. Consequently, the
concept of genotype, as in genetic algorithms, is not
applicable in the original DE. However, for the specific
problem dealt in this work, the adaptation devised to

Minimum
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Fig.2. Representation of a candidate vector, obtained by means

of vector operations.

represent possible solutions to the PFP in a real-valued
vector requested the establishment of a genotype-
phenotype mapping. Individuals in DE are real-valued
vectors which, in turn, are decoded into a specific fold
of an amino acid chain in a square lattice. The reason
for this approach was to use the original DE algorithm,
without significant changes.

Basically, there are three ways of representing an
amino acid chain in a lattice using the HP model:
Cartesian coordinates, internal coordinates and ge-
ometrical distances. The proposed implementation
with DE uses relative internal coordinates. This coor-
dinates system implicitly assures that the connectivi-
ty of the amino acids chains will be preserved when a
given conformation is drawn in the lattice. This prop-
erty avoids loosing time checking the validity of a given
conformation.

Using the relative internal coordinates system in a
bi-dimensional space, there are three possible move-
(F)orward, (R)ight and (L)eft. Therefore,
the phenotypical representation of a solution is de-
fined over the alphabet of movements {F,R,L}. A
given folding of N amino acids, represented by an N-
dimensional vector, is defined by a string with N — 1
The genotypical representation is the
usual real-valued vector of a regular DE. Considering
x;; the j-th element of vector X;, P the string rep-
resenting the sequence of movements of the folding,
and o < 8 < & < ~ arbitrary constants in R, the
genotype-phenotype mapping is defined as follows:

ments:

movements.

Ifa <z < Bthen P =1L,
Ifﬂ<:cij<5then PjZF, (2)
If 6 < ;5 <~y then P; =R.

Notice that the proposed mapping allows to pri-

vilege some movements by enlarging the correspond-
ing range in which it is defined (or narrowing the other



906

ranges). This strategy can be useful during evolution
considering the characteristics of a specific folding.
Furthermore, this mapping allows several genotypes
to represent a single phenotype.

The proposed encoding is also valid for a 3D model,
where there are two additional movements, relative to
the 2D model: (U)p and (D)own. The same strategy
for genotype-phenotype encoding defined before could
be used, but with additional constants to define the
range of the (U)p and (D)own movements.

3.3 Constraint Handling

When applying DE to a constrained problem, such
as the PFP, unfeasible solutions may appear during
evolution. There are three basic strategies for deal-
ing with an unfeasible solution: discard it, fix it, or
accept it with a penalty proportional to the extent of
violations of the constraints.
especially interesting when there is some chance of the
violations being fixed by themselves along the evolu-
tion. For simplicity, we adopted the first alternative:
when an individual represents an invalid folding (that
is, there is more than one amino acid in a given po-
sition in the lattice), it is simply discarded. Further
work will evaluate the other strategies.

The last alternative is

3.4 Initial Population

The simplest way to generate the initial popula-
tion without invalid individuals at phenotypical level
is creating “stretched” individuals, that is, the string
is composed only of F’s. Although the initial popula-
tion is exactly the same at the phenotypical level, all
their elements are quite different at genotypical level,
thanks to the genotype-phenotype mapping defined
before. This procedure guarantees an initial popula-
tion with reasonable diversity of valid individuals, a
necessary condition for evolving good solutions.

3.5 Decoding and Fitness Function

Before evaluating an individual, the real-valued vec-
tor is decoded into a string based on the alphabet
{F, R, L}. In the example of Fig.1 for chain “PHHPH-
PHPPHPHPPHPPH”, the corresponding string of rel-
ative movements is “LRLLFLRLLRLRLLRLL”. Next,
this folding is evaluated by counting the number of
non-local H-H contacts, as defined in Section 2. This
fitness is based on the assumption that the non-local
H-H contacts are the main force driving the folding of
a protein. Therefore, the fitness function is aimed at
maximizing of the number of non-local H-H contacts.
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3.6 Strategies

Storn and Pricel1%! developed a set of strategies that
allow a large number of options, depending on the na-
ture of the problem. Such strategies are classified as
follows.

1) Vector to be disturbed: it can be a randomly
chosen vector of the population (rand) or the vector
with the best fitness value (best). Vectors randomly
chosen lead to a richer diversity, whereas using the
other option, the convergence will be faster.

2) Number of weighted differences: for a small pop-
ulation the weighted difference of only two vectors is
more usual. For larger populations authors!'® have
shown that four vectors are more effective regarding
convergence.

3) Crossover type: it can be binomial (bin), when
all the elements of the vector have the same probabi-
lity CR; and exponential (ezp), when crossover is done
whenever a randomly chosen value is less or equal to
CR.

The choice of the strategy is done by trial-and-
error, since there is still no well-established procedure
for choosing the best strategy for a given problem.

An interesting approach for keeping the diversity
of the population along the search, but at the same
time facilitating convergence, is alternating strategies,
as follows. Use the strategy Best2Ezp[t? while some
improvement is observed in the best fitness for the last
N generations. This strategy aims at a fast conver-
gence. Next, when the number of generations without
improvement in the best fitness is equal to or larger
than N, change to strategy Rand2Fzxp, and keep it for
up to M generations without improvement. This last
strategy aims at improving diversity. Case the best fit-
ness is improved or if M generations without improve-
ment were done, turn back to the Best2FEzp strategy,
clear counters N and M, and repeat the cycle.

4 Experiments and Results

For testing the DE algorithm, we used a bench-
mark of 9 synthetic amino acids chains found in the

2:3,1112] ranging from 20 to 85 amino acids.

literature!
Table 1 shows the instances used, including the num-
ber of amino acids, the amino acids chain translated
to the HP model, and the maximum known number of
non-local H-H contacts.

Due to the stochastic nature of DE, for each test
instance, 100 runs were done, using different random
seeds. Results reported are the average values over
these 100 runs.

For all experiments, the following parameters were
used:

population size = number of amino acids x 15;
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crossover probability CR = 80%;

weighting factor F' = 0.85.

Also, we used the alternating strategies Best2Ezp
and Rand2FEzp, as explained before, with N = 100
and M = 70. The constants that define the ranges for
mapping the genotype to the phenotype were: o = —3,
B =-—1,6 = +1, v = +3. The software was developed
in C programming language and all experiments were
run in a PC with Athlon X2 64 bits processor with 1
Gbytes RAM.

Table 1. Benchmarks Used in the Experiments

n HP Chain FE
20 HPHP?H?2PHP?HPH?P2HPH 9
24 H2P2HP2HP2HP2HP2HP2HP2H? 9
25 P2HP?2H?2P*H?P*H?P*H? 8
36 P3H2P2H2P5HTP2H2P4*H2P2HP? 14
48 P2HP2H2P2H2P5H10p6S 2 p2
H2P2HP2H5 23
50 H2PHPHPHPH*PHP3 HP3 HP*
HP3HP3HPH*PHPHPHPH? 21
60 P2H3PH8P3HOPHP3H12p4
HSPH?PHP 36
64 H2pPHPHP?H?P2H?P2HP2H?P?
H2P2HP?H2P2H2P2HPHPH"? 42
85 HPHPHS p4H12p6 12 p3 12 p3
H2pP3HP2H2P2H2P2HPH 52

Table 2. Comparison of Results Using Different Approaches

n E [1 [3] 2] DE

max avg max avg
20 9 9 9 9(74) 8.74 9(100) 9.00
24 9 9 9 9(100) 9.00
25 8 8 8 8(100) 8.00
36 14 14 14 14(6) 12.44  14(96) 13.96
48 23 23 23 23(2) 20.06  23(100) 23.00
50 21 21 21 21(100) 21.00
60 36 36 36 35(79) 34.79
64 42 42 42  40(1) 33.58  42(88) 41.87
85 53 52 53  51(2) 45.74  52(50) 51.38

Table 2 presents the results obtained by our ap-
proach and the comparison with others. In this ta-
ble, the first column shows the number of amino acids
of the instance. The second column shows the max-
imum number of non-local H-H contacts known to
date. The next two columns are the best results found
by PERM, a Monte-Carlo-based algorithm(!!, and by
an Ant Colony Optimization algorithm!®!, respectively.
The fifth and sixth columns are the results obtained by
using a genetic algorithm with enhanced operators(?!:
first the maximum number of non-local H-H contacts
found by the algorithm and, within parenthesis, the
number of times this maximum was found in 100 in-
dependent runs, and, next, the number of non-local
H-H contacts averaged over 100 runs. The last two

columns show the results obtained by the proposed
DE algorithm described in this paper. The meaning
of these columns are the same as the fifth and sixth
columns.

For sequences up 50 amino acids long, our proposed
algorithm took few seconds per run. Sequences with
60 and 64 amino acids took an average of 108 and
1206 seconds per run. For the largest sequence, our
algorithm needed around 10000 seconds each run.

5 Discussion and Conclusions

For chains up to 50 amino acids, all algorithms
have found the maximum number of non-local H-H
contacts. However, our DE approach was much more
consistent than the GA algorithm, since it achieved
the maximum in almost all runs of all chains. Only
for the 36 amino acids-long chain, DE failed to find
the maximum in 4 out of 100 runs. There are no in-
formation for PERM and ACO to compare with our
approach, regarding this issue. For the chain with 64
amino acids, all algorithms achieved the maximum,
but DE performed much better than the GA, regard-
ing any evaluation parameter. For chains with 60 and
85 amino acids, our DE approach did not achieve the
maximum, when compared with the ACO, but PERM
did not too for the 85 amino acids chain. However,
it is remarkable the consistency of the proposed algo-
rithm when observing not only the average, but also,
the number of times the maximum was found for all
instances. This fact is very important for a stochastic
algorithm, and suggests that DE has a better repeata-
bility than the GA.

We have proposed a methodology for using the dif-
ferential evolution algorithm for the protein folding
problem with the 2D-HP model. The DE algorithm
was kept as originally described by [7], and we intro-
duced the concept of genotypical-phenotypical map-
ping. Thanks to this mapping, the DE algorithm, orig-
inally devised for real-valued vectors, could be used for
evolving solutions to the PFP. Considering that the se-
lection method used is based only in the fitness func-
tion (which is based on the phenotypical representa-
tion), it is possible that promising individuals (seen at
the genotypical level) could be discarded along genera-
tions. Other implications of the proposed genotypical-
phenotypical mapping are still under study and will
be focused in future work.

It is important to note that no serious attempt was
done to optimize parameters of the algorithm, neither
to adjust the range of constants defined in (2). As a
consequence, it is fair to expect that even better results
(than those shown in Table 2) could be achieved, or,
at least, similar results could be achieved with smaller
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computational effort. Besides, we re-emphasize that
we used the basic DE, while the other results cited
were obtained with much more elaborated and im-
proved versions of the algorithms (PERM, ACO and
GA). To avoid parameter adjustments without prior
knowledge of the behavior of the algorithm for this
specific problem or specific instances, future work will
focus on a self-adaptive DE, allowing the own algo-
rithm to adjust the values of its parameters during
evolution!'3!.

As the length of the amino acids chain increases,
the problem gets harder. In fact, the lattice model
and the energy function (see (2)), based only on the
number of non-local H-H contacts, leads to a strongly
multimodal fitness landscape with many equal-sized
plateaus. This fact, by itself, makes the problem even
harder for any stochastic heuristic method. Even so,
the DE approach seems to be very promising.

Protein folding using the 2D-HP model is an im-
portant, and still opened problem, in bioinformat-
ics, since the efficiency of methods is bounded by the
length of sequences. We believe that the proposed al-
gorithm is an innovative and useful contribution to
this area of research, because it is competitive, con-
sistent and promising. Future work will focus on self-
adapting DE parameters and using this approach for
dealing with more complex models of protein folding,
such as encoding the internal torsion angles.
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