
November 29, 2007 10:6 WSPC/123-JCSC 00388

Journal of Circuits, Systems, and Computers
Vol. 16, No. 4 (2007) 527–540
c© World Scientific Publishing Company

A CONFIGWARE APPROACH FOR HIGH-SPEED PARALLEL
ANALYSIS OF GENOMIC DATA

HEITOR S. LOPES∗, CARLOS R. ERIG LIMA†
and NORTON J. MURATA

Bioinformatics Laboratory/CPGEI,
Federal University of Technology – Paraná,

Av. 7 de setembro 3165, 80230-901 Curitiba (PR), Brazil
∗hslopes@pesquisador.cnpq.br

†erig@utfpr.edu.br

Revised 9 April 2007

Many problems in bioinformatics represent great computational challenges due to the
huge amount of biological data to be analyzed. Reconfigurable systems can offer custom-
computing machines, with orders of magnitude faster than regular software, running in
general-purpose processors. We present a methodology for using a configware system in
an interesting problem of molecular biology: the splice junction detection in eukaryote
genes. Decision trees were developed using a benchmark of DNA sequences. They were
converted into logical equations, simplified, and submitted to a Boolean minimization.
The resulting circuit was implemented in reconfigurable parallel hardware and evaluated
with a five-fold cross-validation procedure, run in a second level of parallelism. The
average accuracy achieved was 90.41% and it takes 18 ns to process each data record
with 60 nucleotides.

Keywords: FPGA; DNA; pattern recognition; decision tree.

1. Introduction

Thanks to the several genome-sequencing projects in the world, a huge amount of
biological data has been accumulated. Several problems in bioinformatics are related
to the analysis of such data. However, to deal with such “information explosion”,
efficient computational resources are necessary, not only to store data, but also, to
process and analyze them.1,2

Recent advances in computational techniques have allowed the analysis of
genomic data more efficiently, but at the expense of hard computational demand.
Field programmable gate arrays (FPGAs) chips have become popular in recent
years. Due to its availability and performance, they have been used in powerful
reconfigurable systems. Systems based on reconfigurable hardware (or simply, con-
figware) can offer custom-computing machines for specific applications, with orders
of magnitude faster than regular software running in general-purpose processors.3,4

527

November 29, 2007 10:6 WSPC/123-JCSC 00388

528 H. S. Lopes, C. R. Erig Lima & N. J. Murata

Usually, biological sequence analysis involves a large amount of data (for
instance, the whole human genome has more than three billion nucleotides), and so,
efficient computational resources are necessary to accelerate its analysis, preferably,
exploring parallelism.5,6 Hence, the main motivation of this work is to explore the
flexibility and performance of reconfigurable computing to a hard computational
problem posed by the analysis of DNA sequences.

More specifically, this work aims at developing a methodology for the application
of a configware system (see next section) in a specific problem of molecular biology:
the splice junction detection in eukaryote genes.7,8 Using a data-mining approach,
we created a data classifier based on a decision tree, which was further transformed
into a logic circuit and implemented in a reconfigurable device. This system is
capable of analyzing large amounts of DNA data and identifying splice junctions
with a very high throughoutput, thanks to multiple levels of parallelism.

1.1. Reconfigurable computation

Hardware reconfigurable systems are associated with the emergence of pro-
grammable logic devices (PLDs) in the 1990s, breaking the balance point between
flexibility and performance. They can achieve high performance with low imple-
mentation cost. Also, they override the bottleneck of Von Neumann’s machines
implemented with ordinary microprocessors, allowing massive low-level parallelism.
Reconfigurable hardware is programmable by reconfiguration of its structure — a
midterm between hardware and software approaches. An algorithm structurally pro-
grammed in reconfigurable hardware is also known as configware.3 Reconfigurable
computation allies the performance of hardware-based solutions and the flexibility
of software-based solutions, allowing the exploration of the inherent parallelism of
some computational tasks.

The synthesis of logical circuits in PLDs is done using computer-aided design
systems, allowing the simultaneous use of different project interfaces. Examples
of interfaces languages used are graphical (using schematics), VHSIC hardware
description language (VHDL), and Altera hardware description language (AHDL).
VHDL has become the standard language for hardware description.9 Currently,
there are several commercial computer-aided design platforms for developing recon-
figurable hardware systems. In general, they provide an integrated development
environment, allowing project, simulation, test, and documentation of digital
circuits.

The objective of the reconfigurable hardware concept is to enable an easy
and quick adaptation of a project to the continued technological evolution, aim-
ing improved portability and interchange ability of the final system. By means of
dividing the structure into small functional blocks, with very specific dedicated
interfaces, the modularization of the project becomes efficient. As a consequence,
the management and integration of multidisciplinary design team is facilitated, as
well as the adaptation of a particular block to keep pace with the evolution of the

November 29, 2007 10:6 WSPC/123-JCSC 00388

A Configware Approach for Genomic Analysis 529

technology. Some advantages of using reconfigurable hardware are10:

• Real parallelism, without following Von Newmann’s model;
• Modular and hierarchical development of a project;
• Project cycle timing reductions, allowing top–down and bottom–up project

methodologies;
• Availability of several development interfaces and environments;
• Availability of ready-to-use tested functions (IP-core), reducing the project cycle

for high-complexity functions.

An additional motivation for the use of reconfigurable hardware in the implementa-
tion of algorithms is the wide availability of high-performance devices in the market.
For instance, some of the most recent FPGAs present characteristics such as above
700 I/O pins, controlled impedance and dedicated lines for the operation in differ-
ential mode, special internal modules (multipliers, pulse width modulation (PWM),
dedicated registers for high-performance operations), and high-speed RAM storage
capacity (up to 2Mbits). Currently, commercial devices with up to five million of
logical cells can be found, allowing the implementation of one or more full processors
with memory and peripherals in a single chip.

1.2. Decision trees for data classification

A decision tree is regarded as a predictive model capable of mapping the observa-
tion of the attributes of an input pattern to conclude about it. A decision tree is
represented by a graph, or more exactly, a tree in which each internal node corre-
sponds to the test of the value of a given attribute (categorical or numeric); vertices
represent the values of a given attribute; and leaf nodes are the predicted class of
the mapping. Hence, the path from the root to a given leaf is a conjunctive rule
that classifies an input pattern into a predefined class.

Decision trees are widely used in data mining because they have some advantages
over other classification methods, such as:

• They are simple and easily understood.
• They represent low computational cost even for the analysis of large data sets.
• Usually, input data need little or no preprocessing.
• Both numeric and categorical type of attributes can be easily handled.
• An explanation rule is easily drawn for a given input pattern once classified.

Each node can test one (univariate) or more attributes (multivariate). The test
of a node can have two or more outcomes. For the first case, the tree is known as
binary tree. The overall number of classes can also be two or more. A particular
type of decision tree is the univariate Boolean decision tree which can be described
by a set of disjunctive normal form (DNF) rules.

A decision tree can be trained by splitting the training set into subsets based
on an attribute value test. A recursive procedure is applied to each derived subset,

November 29, 2007 10:6 WSPC/123-JCSC 00388

530 H. S. Lopes, C. R. Erig Lima & N. J. Murata

and it is completed when splitting is either nonfeasible, or a singular classification
can be applied to each element of the derived subset.11

The induction of a decision tree is based on supervised learning. Therefore,
like other data classification methods, if the training set is not sufficiently large,
there will be overfitting and the generalization performance will be poor. One of
the most used technique for validating the performance of a classifier (not only
decision trees) is by using cross-validation. In this technique, first, the training set
is divided into k mutually exclusive subsets of equal size. Then, for each subset i,
training is performed by using the union of all remaining subsets. The performance
is then evaluated, usually by computing the error rate. The same procedure is
repeated for each subset and the overall performance is the average of the individual
performances on the subsets.12

1.3. Detecting splice junctions in eukaryotes

In the DNA of eukaryotes (organisms having a membrane surrounding the nucleus
of their cells), there are many pieces of sequences that are not expressed in an
amino acid chain of a protein. The DNA sequences whose complements are not
present in the final messenger-RNA product are called introns (“int” for intervening
sequences), and those retained and expressed are called exons (“ex” for expressed
sequences). Introns are removed as a result of an excision and rejoining process
referred to as splicing, taken place inside of the cell.7 The exact boundary between
an intron and an exon (and vice-versa) is called a splice junction or splicing site.

Biological knowledge allows establishing some rules to determine intron–
exon (IE) and exon–intron (EI) boundaries.8 Basically, these rules specify some
nucleotide sequences that can be expected in both sides of a boundary. That is,
somewhere at the end of an intron and at the beginning of an exon (for IE) and
somewhere at the end of an exon and at the beginning of an intron (for EI).8

However, as a consequence of the large biological variability of living beings, these
rules are not exact and relevant errors can occur. Therefore, many algorithms and
methods have been proposed for finding splice junctions, mainly in the context of
machine-learning.11,13 Some of them have succeed to achieve reasonable accuracies
for this problem, but at the expense of high computational cost. We will show in this
work that a high accuracy is possible, attainable with an equally high processing
speed, by implementing a trained parallel classifier into a configware system.

For simplicity, the problem can be divided in two independent subproblems:
given a DNA sequence, recognize exon/intron boundaries (EI sites or “donors”),
and recognize intron/exon boundaries (IE sites or “acceptors”).

2. Some Related Work

In the recent literature, reconfigurable computation is a methodology that has been
sparsely explored in molecular biology applications.2 In most cases, it is used for
achieving high-performance computing, not attainable by regular computers.

November 29, 2007 10:6 WSPC/123-JCSC 00388

A Configware Approach for Genomic Analysis 531

The similarity between two protein/DNA sequences by means of a dynamic
programming algorithm is explored in Ref. 14. This work describes the implemen-
tation of the Needleman–Wunsh algorithm on a giant bio-inspired computational
tissue made of 3200 FPGAs, denominated BioWall. This approach presents two
main drawbacks: the practical reproduction of the described prototype is impossi-
ble and no performance or comparison results are present in the paper. The work of
Luethy and Hoover2 describes several complementary computing strategies avail-
able to perform biological sequence analysis, including hardware acceleration based
on FPGA. Although no comparative analysis is presented in this work, it can be
useful for describing other techniques for sequence analysis computing.

Oliver et al.15 presented a new approach to compute multiple sequence align-
ments using a FPGA-based accelerator board for a desktop computer. Its speedup
was around 12 times faster when compared to a software-only version. Yamaguchi
et al.16 present a hardware acceleration approach to compute the Smith–Waterman
algorithm comparison between query sequences and database sequences. In this
paper, the dynamic programming algorithm is also computed in parallel using
FPGAs. In addition, Marongiu et al.6 present a parallel hardware generator for the
design and prototyping of dedicated systems to the analysis of biological sequences.
More recently, Armstrong et al.17 relate the preliminary steps toward using a recon-
figurable system for protein folding using a simple lattice model.

3. Methodology

3.1. Database

The database used in this work is available at the UCI Machine Learning
Repository18 and was build by Towell,19 and later used in other works.11,13 The
database was first used in Towell’s PhD. thesis to evaluate hybrid machine-learning
algorithms (based on neural networks) that uses examples to inductively refine
preexisting knowledge.

The database is composed by 3190 instances, each of them with a 60 nucleotide-
long sequence. Nucleotides are either Adenine, Cytosine, Guanine, or Thymine, and
represented by letters A, C, G, or T, respectively. All genomic data were extracted
from GenBank,20 using genes of primates. Each sequence was previously classified
into one of the three classes: IE, EI, or Neither, corresponding to an IE boundary,
an EI boundary, or neither of them, respectively.

In his work, Towell used a 10-fold cross-validation methodology12 on 1000 exam-
ples randomly selected from the complete data set, and obtained classification
error rates in the ranges 5.74–16.32% and 7.55–17.41%, for EI and IE classes,
respectively.19 Using the rules derived from biological knowledge,8 only a poor clas-
sification rate can be achieved (95.8% of class Neither, 40% of class IE, and only
3% of class EI). Therefore, many machine-learning algorithms were proposed to
solve this problem. A comprehensive comparison of the performance of 23 different
classification methods using this database can be found in Ref. 11.

November 29, 2007 10:6 WSPC/123-JCSC 00388

532 H. S. Lopes, C. R. Erig Lima & N. J. Murata

U
3
0

. . . U
1

D
1

. . . D
3
0

CCAGCTGCATCACAGGAGGCCAGCGAGCAG GTCTGTTCCAAGGGCCTTCGAGCCAGTCTG EI
TTCAGCGGCCTCAGCCTGCCTGTCTCCCAG GTCTCTGTCCTTCCACCATGGCCCTGTGGA IE
CAAAAGAACAAAGCTGGAGGCATCACGCTA CCTGACTTCAAACTATACTACAAGGCTACA N

C
l
a
s
s

Fig. 1. Three examples of records from the splice-junction database.

Originally, the database had 768 instances for IE, 767 for EI, and 1655 for
Neither. When the exact nucleotide is not known, other codes are used to represent
this ambiguity. The amount of these codes is not significant in the data set used,
representing only 0.027% of the total nucleotides. Therefore, a total of 15 instances
were excluded from the original database due to the presence of nonstandard codes.

Using a database terminology, each of the 3175 records has 61 attributes: the
first 60 are prediction attributes (nucleotides), and the last, the goal attribute
(class). Prediction attributes are named as U30, U29, . . . , U2, U1, D1, D2, . . . , D30,
where U and D mean, respectively, up and downstream nucleotides relative to the
central (splicing) point. That is, in the records of this database, the exact boundary
between intron–exon or exon–intron, when existing, is found between the 30th and
31st nucleotide of the sequence. Figure 1 shows three examples drawn from the
database, one for each class.

3.2. Decision tree and classification rules

Using the database mentioned above, a classifier was constructed. Since this is
a partitioning problem, it was suggested that a decision-tree would be suitable.11

Therefore, we built a decision tree using the well-known C4.521 induction algorithm,
available in the software Weka,12 version 3.4. A standard five-fold cross-validation
procedure was done: the database was divided into five mutually exclusive parti-
tions, preserving class proportionality. A classifier was created using four of these
partitions and tested with the remaining. Results are computed as the average of
the five possible combinations of training/testing partitions. In the current liter-
ature, there is no clear consensus about the number of folds for cross-validation
procedures. For software-based implementations, 10-fold cross-validations are more
frequently used, although it is computationally expensive when compared with a
five-fold computation. In this work, we prefer the five-fold alternative to save limited
resources of the FPGA, since every evaluation is done in parallel. Saving memory
and logic resources of the physical device is important to enable further levels of
parallelization, as explained later.

The average size of the obtained decision trees were 8-nodes depth and 164 leaf
nodes. Figure 2 shows a partial branch of a tree. The top node tests U1 position, the
remaining nodes shown are for the following positions to be tested, until reaching
the leaf nodes. Leaf nodes of the tree correspond to the predicted class when all

November 29, 2007 10:6 WSPC/123-JCSC 00388

A Configware Approach for Genomic Analysis 533

U1

A
C G

T

U2

A
C G

T

D2

A
C G

T

D1

A
C G

T

D5

A
C G

T

D3

A
C G

T

IE

..
.

..
.

..
. ..

.

..
.

..
. ..

.

..
.

..
.

..
.

..
. ..

.

..
.

..
.

..
.

..
.

EI IE

if U1=G and U2=A and D2=T
and D1=G and D5=T and D3=T

then class=IE

if U1=G and U2=A and D2=T
and D1=G and D5=T and D3=C

then class=IE

if U1=G and U2=A and D2=T
and D1=G and D5=T and D3=A

then class=EI

Rule 1:

Rule 2:

Rule 3:

Fig. 2. Partial branches of a decision tree obtained with the C4.5 algorithm.

conditions of the inner nodes are met, that is, the conjunction of the antecedents
of the rule. For instance, the three leaf nodes of Fig. 2 are represented by the
conjunctive rules on the right-hand side of the figure.

Decision trees encompass some redundancy, given the number of leaf nodes in
comparison with the number of classes (IE, EI, and Neither). This redundancy
suggests the possibility of simplifying the tree using some technique to minimize
the set of logical expressions obtained. This issue will be explored in the next
section.

By default, the C4.5 algorithm does not prune the generated tree. Consequently,
a full tree is presented to the user for the sake of completeness. The inspection of the
induced decision trees leads to a straightforward simplification, simply by excluding
all branches that do not classify any instance. A deeper analysis of the pruned trees
also revealed that not all 60 attributes (nucleotide positions up and downstream)
are relevant for this classification task. In fact, 16.6 attributes, in average, were
present in the five trees created during the cross-validation procedure.

November 29, 2007 10:6 WSPC/123-JCSC 00388

534 H. S. Lopes, C. R. Erig Lima & N. J. Murata

3.3. Boolean minimization

After obtaining a pruned tree, the next step is to convert attributes to a binary
code and build a truth table, relating output to inputs. Then, we apply a Boolean
minimization method in order to find the most economical logic network capable of
describing the input/output relationships. Considering that, a network of logic gates
will be implemented in the FPGA, this procedure aims at finding the network with
minimal number of gates. In our specific case, we will obtain simple Boolean rules
for two (independent) classes, EI and IE. Class Neither is the default class when
an instance is not classified as EI or IE. Since there are four different nucleotides
(A, C, G, and T), two binary digits are necessary to represent them. In the same
way, there are three classes, and, again, two binary digits are used. For the inputs,
the following convention was used: A = 00, C = 01, G = 10, and T = 11, and for
the outputs, EI = 01, IE = 10, and Neither = 00. Output code 11 is undefined.
Table 1 shows three examples of the encoding procedure: the value of the relevant
attributes (nucleotides up and downstream and class) and the corresponding binary
encoding. The examples correspond to the conjunctive rules of the branches down
to the leaf nodes in Fig. 2. Notice that, in this table, “don’t-care” positions (X)
were not considered.

For the minimization, we used Boolean minimizer.22 This software is based on
the “Espresso” algorithm,23 and optimizes Boolean expressions by determining the
minimal representation of functions with multiple inputs and binary output. This
approach is similar to the well-known Quine–McCluskey algorithm. An important
characteristic of Espresso is that it is a fast technique for the detection and elimina-
tion of prime implicants, as well as for the generation of a reduced form of the prime
implicant table. This algorithm uses a branch-and-bound technique for solving the
minimum cover problem arising from the Boolean minimization.

After the Boolean minimization of the truth-table, two logical expressions are
obtained: first one for EI and the other for IE, both in DNF. The process is repeated
for each tree generated in the cross-validation procedure, previously mentioned.

3.4. Hardware implementation

The physical synthesis of the logic circuits was implemented in a reconfigurable
device from Altera,24 more precisely, a Stratix-II EP2S60, using VHDL in the

Table 1. Three examples of encoded Boolean expressions derived from the deci-
sion trees.

. . . U5 U4 U3 U2 U1 D1 D2 D3 D4 D5 . . . Class

X X X A A G G T T X T X IE

— — — 00 00 10 10 11 11 — 11 — 10

X X X A A G G T C X T X IE
— — — 00 00 10 10 11 01 — 11 — 10

X X X A A G G T A X T X EI
— — — 00 00 10 10 11 00 — 11 — 01

November 29, 2007 10:6 WSPC/123-JCSC 00388

A Configware Approach for Genomic Analysis 535

Fig. 3. Simplified block diagram of the configware system.

Altera’s development platform Quartus II. The implementation occupied less than
1% of the logic cells and 21% of the memory of the physical device. The system
was run with a 55.55MHz clock.

3.4.1. Block diagram

A block diagram of the implemented configware is shown in Fig. 3, and described
below. In this block diagram, it is possible to emphasize two basic structures in the
implemented architecture: the controller, implemented with a synchronous state
machine, and the data path, responsible for input, processing (DNA’s blocks), and
output of data.

• USB interface: this USB 1.0 interface, external to the FPGA, was implemented to
receive/send data from/to a PC. A user-friendly software for data manipulation
was developed in the PC using Visual Basic to access this interface;

• Input memory: this 8 bits-wide random access memory (RAM) is used for tempo-
rary storage of the set of instances received from the PC, and has 4096 positions;

• Input bus converter: this block groups 15 successive bytes from the input memory
in such a way to form a 120 bits-wide bus to the DNA block;

• DNA: this is the main block of the system, where the logical expressions obtained
in the previous steps were implemented as logical circuits (details below). Two
dedicated 20 bits-wide memories store the results of IE and EI detections. There
are five pairs of DNAs, identified as DNA0, DNA1, . . . , DNA4, representing the
five classifiers for EI and IE, according to the five-fold cross-validation proce-
dure, mentioned before. Notice that, in contrast to traditional (software-based)

November 29, 2007 10:6 WSPC/123-JCSC 00388

536 H. S. Lopes, C. R. Erig Lima & N. J. Murata

computation, the cross-validation is done in a parallel way. This is our high level
of parallelism.

— IE/EI logic: The input of each IE or EI logic is 120 bits, corresponding to 60
nucleotides, and the output is 1 bit representing the presence/absense of a
splicing junction in the record under analysis. This is the low level of paral-
lelism, since a whole record is processed at once, thanks to the combinatorial
circuit. In a conventional Von Neumann architecture, each term of the logi-
cal equation of the decision tree would be processed sequentially. The logical
expressions obtained after the Boolean minimization were materialized into
combinational logic circuits. Figure 4 shows the combinatorial logic circuit
corresponding to the three leaf nodes of Fig. 2, encoded as described in the
previous section. In this example, the circuit is already simplified and has two
outputs corresponding to the IE and IE classes. The unused inputs are not
shown for the sake of clarity. Recall that this figure shows only a small part
of the combinatorial circuits that implement the whole decision tree;

— IE/EI memory: The output bit of an IE/EI logic triggers a corresponding
output memory. These distributed memories, two for each DNA block, store
the number of the input record in which an EI/IE boundary was found. Each
output memory is 20 bits-wide and has 1024 positions. Therefore, each DNA
block can process up to 1M records (that is, 60M nucleotides) having up to
1K splice junctions of each type identified.

• Output bus converter: it transforms the information stored in the IE/EI memories
from a 20-bits bus to a 8-bits output bus, doing three successive reads. In Fig. 3,
five 8-bits buses are shown, one for each DNA block. A bus multiplexer allows
each DNA block to be accessed by the USB interface and send data to the PC;

• State machine: this is the control module of the system and implements the finite
state machine detailed in the next section.

Fig. 4. Part of the combinatorial circuit implemented in the FPGA, corresponding to the leaf
nodes of Fig. 2.

November 29, 2007 10:6 WSPC/123-JCSC 00388

A Configware Approach for Genomic Analysis 537

3.4.2. Finite state machine

Processing takes place in three phases, under the control of a finite state machine:
data are sent from PC to the internal input memory (via USB), data are processed
(60 nucleotides per clock cycle), and output memories are read to the PC. The
finite state machine that controls the system is detailed in Fig. 5 and Table 2. In
this machine, state S1 corresponds to the data transfer from the PC to the input
memory block. In state S2, successive input memory reads are done to compose
the 120 bits-wide bus to feed each DNA block. The DNA processing through the
combinatorial circuit occurs in state S3 (the fastest state). Finally, in state S4 the
conversion, selection, and transfer of the results are done.

Fig. 5. Diagram of the finite state machine.

Table 2. States and transitions of the finite state machine.

State State description Event Event description Next state

S0 Initialize counters T0 Start = 0 S0
T1 Start transition to 1 S1

S1 Input memory write T2 Crt0 < 15 S1
(15 bytes are written) T3 Crt0 = 15 S2

S2 Input bus conversion T4 Crt0 > 0 S2
T5 Crt0 = 0 S3

S3 DNA analysis T6 DNA valid = 1 S4

S4 IE/EI read T7 Crt1 < 3 S4
(3 bytes are read) T8 Crtl = 3 S0

November 29, 2007 10:6 WSPC/123-JCSC 00388

538 H. S. Lopes, C. R. Erig Lima & N. J. Murata

4. Results and Conclusions

We proposed a methodology for solving an interesting problem in molecular biology:
detecting the splice junction of eukaryote genes. We used a decision tree induced
by a machine-learning algorithm with cross-validation. The decision tree was sim-
plified and turned into logical equations. Then, they were submitted to a Boolean
minimization procedure, yielding two logical expressions for detecting EI and IE
boundaries in a 60-nucleotides-wide window. These logical expressions were imple-
mented as combinational circuits in a reconfigurable device.

We have explored parallelism in two levels: at the decision tree (a whole input
register is processed at once) and at the cross-validation (all five instances of the
classifier are processed in parallel). In a future work, we will explore further the
massive parallelization capabilities of the configware, aiming at achieving a much
higher throughoutput.

As a result of the five-fold cross-validation procedure, the average classifica-
tion accuracy achieved was 90.41%. A direct comparison of this result with other
approaches in the literature (for the same data set) is not possible due to different
methodologies and partitions for training/testing and cross-validation. However,
this result is either better or similar to the accuracy rates of other methods,11,13,19

thus, demonstrating the adequacy of a classifier using decision tree. It should be
noted that, to date, no method has achieved 100% of accuracy yet. Possibly, this
is not due to the limitation of the methods employed, but due to the inherent
imprecision of the data set.

The most important result of the work is regarding the processing speed. The
time necessary to process a single record of 60 nucleotides was 18 ns, and for a
single partition (with an average of 638×60 nucleotides), 11.484µs. Recall that this
processing time is for a single PE, not the set of five in parallel. Considering that all
the five PEs run in parallel, the whole data set is processed in the same 11.484µs.
Using the same rules derived from the decision tree, we implemented a program in
C++ programming language to compare processing speed. This program was run
in a desktop computer with Pentium IV processor running at 3.2GHz and with
512MBytes of RAM, under Microsoft Windows XP. The program was run several
times using the whole data set, and the average processing time was 24ms. The
speed-up achieved by the configware approach, relative to the software approach,
was around 2000 times. However, this comparison must be carefully interpreted and
cannot be generalized. For instance, the running clock of the desktop computer is
57 times faster than the configware clock. If it was possible to run our system in the
same clock rate, the final speed-up would be extremely high. Also, the architecture
of both systems are radically different, not only how data are input and output but,
mainly, how data are processed.

Therefore, the high processing speed enables the configware system to achieve a
performance clearly unattainable by common software-based systems, running on
regular Von Neumman’s machines. For instance, if we suppose that the memory
resources were not limited and we had to analyze the complete human genome

November 29, 2007 10:6 WSPC/123-JCSC 00388

A Configware Approach for Genomic Analysis 539

(3 × 109 nucleotides) using the same 60 nucleotides-wide window, the proposed
system would take around 0.9 s, with a single pair of PEs (i.e., one for EI and other
for IE).

The current drawbacks of the system are the limited communication speed,
due to the use of an USB 1.0 interface (limited to maximum data transfer rate of
12Mbits/s), and the limited internal memory (up to 2.5Mbits). For the analysis of
larger amounts of data, this speed and memory limitations can represent important
bottlenecks. Future implementation will use an USB 2.0 interface, with a maximum
transfer rate of 480Mbits/s, improving significantly the communication rate, and
FPGA devices with higher capacity.

It is a matter of fact that many problems found in bioinformatics represent
great computational challenges. Even if we succeed to reduce the complexity of
underlying computational analytical models by introducing restrictions and sim-
plifications, frequently, some problems demand an unacceptable processing time or
too expensive computational resources. Using configware-based approaches, the one
proposed here, it is possible to circumvent several deficiencies found in conventional
processing systems for hard computational tasks.

The main goal of this work is the construction of independent blocks that can
be joined together in different topologies to solve bioinformatics problems. Recon-
figurable systems constitute a powerful methodology that can present practical,
efficient, and fast solutions for problems that are usually dealt with software
approaches, such as gene detection, protein folding, sequence alignment, and others.
We believe that the promising aspects of this technology are flexibility, performance,
and real parallelism.

Future work will focus on the evaluation of different topologies for massive
parallelism and the implementation of the training of the classifier in configware.

Acknowledgment

This work was partially supported by the Brazilian National Research Council —
CNPQ, under grants 501900/2004-7, 506479/2004-8, and 305720/2004-0.

References

1. M. Kanehisa and P. Bork, Bioinformatics in the post-sequence era, Nat. Genet.
22(suppl.) (2003) 305–310.

2. R. Luethy and C. Hoover, Hardware and software systems for accelerating common
bioinformatics sequence analysis algorithms, DDT: Biosilico 2 (2004) 12–17.

3. J. Becker and R. Hartenstein, Configware and morphware going mainstream, J. Syst.
Architec. 49 (2003) 127–142.

4. S. Hauck, The roles of FPGA’s in reprogrammable systems, P. IEEE 86 (1998) 615–
636.

5. H. S. Lopes and G. L. Moritz, A distributed approach for multiple sequence alignment
using a parallel virtual machine, Proc. 27th Ann. Int. Conf. IEEE EMBS (2005),
pp. 2843–2846.

November 29, 2007 10:6 WSPC/123-JCSC 00388

540 H. S. Lopes, C. R. Erig Lima & N. J. Murata

6. A. Marongiu, P. Palazzari and V. Rosato, Designing hardware for protein sequence
analysis, Bioinformatics 19 (2003) 1739–1740.

7. A. L. Lehninger, D. L. Nelson and M. M. Cox, Principles of Biochemistry, 2nd edn.
(Worth Publishers, New York, 1998), pp. 134–137.

8. J. D. Watson, H. H. Hopkins, J. W. Roberts, J. A. Steitz and A. M. Weiner, The
Molecular Biology of the Gene (Benjamin-Cummings, Menlo-Park, 1987).

9. The Institute of Electrical and Electronics Engineers, 1076 IEEE Standard VHDL
Language Reference Manual (IEEE Press, New York, 2002).

10. S. A. Ito and L. Carro, A comparison of microcontrollers targeted to FPGA-based
embedded applications, Proc. IEEE 13th Symp. Integrated Circuits and Systems
Design (2000), pp. 397–402.

11. D. Michie, D. J. Spiegehalter and C. C. Taylor, Machine Learning, Neural and Sta-
tistical Classification (Ellis Horwood, Chichester, 1994).

12. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations (Morgan Kaufmann, San Francisco, 2000).

13. M. O. Noordewier, G. G. Towell and J. W. Shavlik, Training knowledge-based neural
networks to recognize genes in DNA sequences, Advances in Neural Information Pro-
cessing Systems, Vol. 3, eds. R. Lippmann et al. (Morgan Kaufmann, San Francisco,
1991).

14. M. Canella, F. Miglioli, A. Bogliolo, E. Petraglio and E. Sanchez, Performing DNA
comparison on a bio-inspired tissue of FPGAs, Proc. IEEE Int. Parallel and Dis-
tributed Processing Symp. (2003), pp. 193–199.

15. T. Oliver, B. Schmidt, D. Natghan, R. Clemens and D. Maskell, Using reconfigurable
hardware to accelerate multiple sequence alignment with ClustalW, Bioinformatics
21 (2005) 3431–3432.

16. Y. Yamaguchi, T. Maruyama and A. Konagaya, High speed homology search with
FPGAs, Proc. Pacific Symp. Biocomputing (2002), pp. 271–282.

17. N. B. Armstrong, Jr., H. S. Lopes and C. R. E. Lima, Preliminary steps towards pro-
tein folding prediction using reconfigurable computing, Proc. IEEE Int. Conf. Recon-
figurable Computing and FPGA’s, San Luis de Potosi, Mexico (IEEE Computer Press,
Piscataway, 2006), pp. 92–98.

18. S. Hettich, C. L. Blake and C. J. Merz, UCI repository of machine learning
databases, University of California at Irvine (1998), http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

19. G. G. Towell, Symbolic knowledge and neural networks: Insertion, refinement and
extraction, PhD. thesis, Department of Computer Science, University of Wisconsin-
Madison (1991).

20. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell and D. L. Wheeler, Gen-
Bank, Nucleic Acids Res. 34 (2006) D16–D20.

21. J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San Fran-
cisco, 1993).

22. Boolean minimizer, http://www.gmdsoft.de/mitsch/software/boolmin/.
23. R. Rudell and A. Sangiovanni-Vincentelli, Exact minimization of multiple-valued func-

tions for PLA, Proc. Int. Conf. Computer-Aided Design (1986), pp. 352–355.
24. Altera Corporation, http://www.altera.com/.

