
Genetic Programming for Induction of Context-free Grammars

Ernesto Rodrigues 1,2 and Heitor Silvério Lopes 2
1Fundação de Estudos Sociais do Paraná, Brazil

2Universidade Tecnológica Federal do Paraná, Brazil
ernesto@fesppr.br, hslopes@pesquisador.cnpq.br

Abstract

We present an evolutionary algorithm for the
induction of context-free grammars from positive and
negative examples. The algorithm is based on genetic
programming and uses a local optimization operator
that is capable of improving the learning task.
Ordinary genetic operators were modified so as to bias
the search and a new operator was proposed. The
system was evaluated using benchmark problems and
results were compared with another recent approach.
Results show that the proposed approach is very
promising.

1. Introduction

Grammar induction, also known as grammatical
inference, is the task of learning a grammar for a
language from a set of examples. In a broad sense, a
learner has access to some sequential or structured data
and is asked to return a grammar that should, in some
way, explain such data. The inferred grammar can then
be used to classify unseen data or provide some
suitable model for this data.*

Grammar induction can be applied to diverse fields
such as pattern recognition, information retrieval,
programming language and bioinformatics, among
others [1].

Several algorithms for grammar induction have
been developed lately. They have in common that the
most complex class of languages which can be
efficiently learnt by provably converging algorithms
are the regular languages. For context free languages
some recent approaches have shown limited success
[2], because the space of possible grammars is infinite.
Therefore, learning context-free grammars is still a real
challenge for grammar induction approaches.

* This work was partially supported by a research grant to H.S.Lopes
from the Brazilian National Research Council – CNPQ.

In this paper, we propose an approach for grammar
induction based on Genetic Programming (GP) using a
local search mechanism. The use of GP in context-free
grammar induction is relatively new and only recently
promising results have appeared [3, 4].

GP is the automatic generation of computer
programs using a process analogous to biological
evolution [5]. This technique exploits the process of
natural selection, and it is based on a fitness measure to
breed a population of candidate solutions that
improves over generations. Actually, GP is not
restricted to evolve computer programs and it can be
used to evolve complex structures such as digital
circuits or neural networks [6]. GP is a robust method
that has been successfully applied to a number of areas
such as biotechnology, electrical engineering, image
processing, pattern recognition, natural language and
many others.

The next section defines the class of context-free
grammars that the proposed method attempts to learn.
Next, we describe the GP approach used in this paper.
Then, we present experiments demonstrating the
effectiveness of the algorithm on a suite of grammar
induction benchmark problems. Finally, conclusions
and future work are presented.

2. Context-Free Grammars

A context-free grammar (CFG) is defined by a
quadruple G = (N, ∑, P, S), where N is an alphabet of
nonterminal symbols, ∑ is an alphabet of terminal
symbols such that N ∩ ∑ = ∅, P is a finite set of
production rules of the form A→ α for A ∈ N and α ∈
(N ∪ ∑)* where * represents the set of symbols that
can be formed by taking any number of them, possibly
with repetitions. The S is a special nonterminal called
the start symbol. The language generated by a CFG G
is denoted L(G) [7].

The context-free language L(G) produced from
grammar G is the set of all strings consisting only of

Seventh International Conference on Intelligent Systems Design and Applications

0-7695-2976-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ISDA.2007.117

297

Seventh International Conference on Intelligent Systems Design and Applications

0-7695-2976-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ISDA.2007.117

297

terminal symbols that can be derived from the start
symbol S by application of production rules, that is,
L(G) = { x | S ⇒* x, x ∈ ∑*}.

A context-free grammar G is in Chomsky Normal
Form (CNF) if, and only if, all production rules are of
the form A → BC or A → α for A, B, C ∈ N and α ∈
∑.

To determine whether a string can be generated by
a given context-free grammar in CNF, the Cocke-
Younger-Kasami (CYK) algorithm can be used. In the
CYK algorithm, we construct a triangular table. The
horizontal axis corresponds to the positions of the
string w = a1 a2 .. an. The table entry Vrs is the set of
variables A ∈ P such that A ⇒∗ ar ar+1 ... as. We are
interested in whether the start symbol S is in the set
V1n because that is the same as saying S ⇒∗ w, i. e., w
∈ L(G).

To fill the table, we work row-by-row upwards.
Each row corresponds to one length of substrings; the
bottom row is for strings of length 1, the second-from-
bottom row for strings of length 2 and so on, until the
top row corresponds to the one substring of length n
which is w itself [8]. The pseudocode is represented as
follows:

for r = 1 to n do
 Vr1 = { A | A → ar ∈ P }

for s = 2 to n do
 for r = 1 to n–s+1 do
 V = ∅ rs
 for k = 1 to s – 1 do
 Vrs = Vrs ∪ {A | A → BC ∈ P,
 B ∈ Vrk and
 C ∈ V(r+k)(s-k) }

Figure 1 shows an example of a triangular table
obtained from the parse of string “aba” using the set
of rules P = {S → AA; S → AS; S → b; A → SA; A →
AS; A → a}.

Figure 1: An example of a CYK triangular table.

3. Genetic Programming (GP)

GP is an evolutionary technique used to search over
a huge state space of structured representations
(computer program). Each program represents a
possible solution written in some arbitrary language.
The GP algorithm can be summarized as follows [5]:
• Create at random a population of individuals

(programs);
• Perform the following three steps until a

predefined termination criterion is satisfied:
o Evaluate the fitness of each individual;
o Apply a selection method to the current

population to select individuals according to
their fitness;

o Modify selected individuals by applying
genetic operators, such as reproduction,
crossover and mutation.

The evaluation of a solution is accomplished by
using a set of training examples known as fitness cases
which, in turn, is composed by sets of input and output
data. Usually, the fitness is a measure of the deviation
between the expected output for each input and the
computed value given by GP.

There are two main selection methods used in GP:
fitness proportionate and tournament selection. In the
fitness proportionate selection, programs are selected
randomly with probability proportional to its fitness. In
the tournament selection, a fixed number of programs
are taken randomly from the population and the one
with the best fitness in this group is chosen. In this
work, we use the tournament selection.

Reproduction is a genetic operator that simply
copies a program to the next generation. Crossover, on
the other hand, combines parts of two individuals to
create two new ones. Mutation changes randomly a
small part of an individual.

Each run of the main loop of GP creates a new
generation of computer programs that substitutes the
previous one. The evolution is stopped when a
satisfactory solution is achieved or a predefined
maximum number of generations is reached.

4. GP for Grammar Induction

It is possible to represent a CFG as a list of
structured trees. Each tree represents a production with
its left-hand side as a root and the derivations as
leaves. Figure 2 shows the grammar G = (N, ∑, P, S)
with ∑ = {a, b}, N = {S, A} and P = {S → A S ; S → b;
A → SA; A → a }.

298298

The initial population can be created with random
productions, provided that all the productions are
reachable direct or indirectly starting with S.

Figure 2: An example of a CFG represented as a list
of structured trees.

During the evaluation of a given grammar, each

production used for recognizing a positive example
receives an increment in its positive score. On the
other hand, each production that accepts a negative
example receives an increment in its negative score. It
is important to say that there are two scores for each
grammar and both are used to bias the crossover and
mutation operators.

The crossover operator is applied over a pair of
grammars and works as follows. First, a production
with the maximum negative score is chosen. If there
are two or more productions with the same negative
score, the production with the minimum positive score
among them is chosen. If the second grammar has no
production with the same left-hand side of the
production chosen, crossover is rejected. Otherwise,
the productions are swapped.

The mutation operation is applied to a single
selected grammar. A production is then chosen using
the same mechanism of crossover. A new production
with the same left-hand side and with a random right-
side replaces the production chosen.

Unfortunately, using only the biased genetic
operators mentioned, the convergence of the algorithm
is not guaranteed. In our recent work [4], we
demonstrated that the use of an incremental learning
operator is needed. They used the information obtained
from a CYK triangular table to discover which
production is missing to cover the sentence.

In our experiments, we noted that it is also desirable
an operator that is capable of extending the grammar,
that is, adding new productions.

4.1. The Incremental Learning Operator

Crossover and mutation operators cannot add a new

production as required for constructing a satisfactory
solution. Also, the fitness measure, by itself, does not
indicate which productions are missing. Therefore, we
proposed a new operator named Incremental Learning

to perform a guided local search [4]. This operator is
applied before the evaluation of each grammar in the
population. It uses the CYK triangular table obtained
from the parsing of positive examples to allow the
creation of a useful new production. For each positive
example, the following steps are repeated:

• Construct the CYK triangular table

with Vrs
• If the example is not recognized:

o If V1n is not empty, clone the
root production changing the
left-hand side by S.

o If V1n is empty, add a new
production in the form S → AB
such that A matches the first
half and B matches the second
half of the CYK triangular
table. If A or B is empty, the
operator is not applied.

Once this process is completed with success,

hopefully, there will be a set of positive examples
(possible all) recognized by the grammar. Although,
there is no warranty that some negative examples will
remain being rejected by the grammar.

4.2. A New Expansion Operator

In our previous work [4], the set of productions in

the initial population affects the entire process. That is,
if some type of required production does not exists in
any grammar, the algorithm is unable to generate it,
unless if the incremental operator generates it. In some
experiments, we observed that a limited convergence
because the grammar was unable to be expanded.

Therefore, we propose a new genetic operator
named expansion. It adds a new nonterminal to the
grammar and generates a new production with this new
nonterminal as a left side. This new approach allows
grammars to grow dynamically in size. To avoid a new
useless production, a production with another non-
terminal in the left side and the new non-terminal in
the right side is generated. It is important to emphasize
that the new operator adds two productions to the
grammar.

This operator promotes diversity in the population
that is required in earlier generations.

4.3. Grammar Evaluation

In grammar induction, we need to train the system

with both positive and negative examples to avoid
overgeneralization [1]. To accomplish that, we use a

299299

confusion matrix that is a tool typically used in
supervised learning (Table 1). Each column of the
matrix represents the number of instances predicted
either positively or negatively, while each row
represents real classification of the instances.

Table 1: Confusion matrix for a two-class

classification problem.

 Predicted
Positive

Predicted
Negative

Actual
Positive

True Positive
(TP)

False Negative
(FN)

Actual
Negative

False Positive
(FP)

True Negative
(TN)

The entries in the confusion matrix have the

following meaning in the context of our study:
• TP is the number of positive instances recognized

by the grammar.
• TN is the number of negative instances rejected by

the grammar.
• FP is the number of negative instances recognized

by the grammar.
• FN is the number of positive instances rejected by

the grammar.

There are a several measures that can be obtained
from the confusion matrix. The most common is total
accuracy that is obtained from the total of correct
classified examples divided by the total number of
instances. In this paper we used two other measures:
sensitivity (Equation 1) and specificity (Equation 2).
These measures evaluate how positive and negative
examples are correctly recognized by the classifier.

TN specificity = TN + FP (1)

TP sensitivity = TP + FN (2)

The fitness is computed by the product of these

measures leading to a balanced heuristic. This fitness
measure was proposed by [9] and widely used in many
classification problems.

Before the evaluation, all grammars are verified and
corrected if needed, that is, useless and redundant
productions are removed.

5. Computational Experiments

The proposed algorithm was implemented in C++
and it was run under Linux operating system, on a

desktop computer with Pentium IV 2.4 GHz processor
with 1 GBytes of RAM. Table 2 shows the parameters
used for the GP. All parameters were determined after
preliminary experiments. To maintain a high diversity
in the population during the run, the mutation rate was
set to 30%. In a future work a sensitivity analysis will
be done with the running parameters of GP, aiming at
finding optimized parameters.

The initial population was created with a uniform
distribution of productions, ranging from 10 to 59.
This is only a start point, since before the evaluation
phase, all grammars are corrected (useless productions
are removed).

Table 2: GP Parameters

Runs 10
Population size 500
Initial population:

Minimum number of productions 10
Maximum number of productions 59

Tournament size 7
Probability of crossover 60%
Probability of mutation 30%
Probability of expansion 10%

Ten runs were done to accomplish a 10-fold

stratified cross-validation procedure [10]. Data was
divided randomly into ten parts, preserving in each
partition the same class proportionality of the full
dataset. Each part is set aside in turn and the learning
procedure was done with the remaining nine-tenths.
The evaluation is done with the part left behind. The
results presented are the average of results obtained in
the evaluations.

We need both positive and negative data for
training and testing to avoid overgeneralization [1].
Negative examples are hard to construct. Simply
generating random strings does not produce a test set
sufficiently difficult to distinguish the corrected
grammar from a similar, but wrong one. The
organizers of the Omphalos competition [2]
encountered the same problem.

Recently, Clark and colleagues [11] presented a
new grammar inference approach based on String
Kernels (SK) and compared with other known
approaches, e.g., Probabilistic Context-free Grammars
(PCFG) and Hidden Markov Models (HMM). They
applied SK to context-free and context sensitive
grammars.

We use the same datasets and compared the results
with those provided by [11]. The brackets dataset has
537 positive examples and 463 negative examples. The

300300

palindrome dataset has 510 positive examples and 490
negative examples.

We chose the brackets and palindrome languages
because they are common test cases for the evaluation
of grammatical inference methods. The brackets
language is deterministic context-free language, but the
palindrome language is nondeterministic. Both
languages are context-free.

Table 3 shows the results obtained with our
approach. The negative error rate (NER) and positive
error rate (PER) are calculated as follows (Equations 3
and 4). In the table, they are represented by N and P,
respectively. For each dataset, we report the
percentage error rate separately for positive and
negative data (the lower, the better).

FP NER = FP + TN (3)

FN PER = TP + FN (4)

Table 3: Results for brackets (B) and palindrome

(P) datasets, and comparison with other approaches

PCFG HMM SK GPGIdataset
N P N P N P N P

B 0 0 3 1 10 0 0 0
P 6 0 84 3 16 0 14 0

Our approach (represented as GPGI in Table 3)

successfully found a correct grammar for the brackets
language in all ten runs in at most four generations. In
the palindrome language, we achieved an average of
90% of total accuracy in the evaluation phase.
However, our approach was not better than PCFG,
because our algorithm tries to find an exact grammar
not a probabilistic one, as PCFG does. Further work
must be done to apply our approach to the inference of
probabilistic grammars.

The average execution time was 15 seconds per
generation for the brackets language and 6 minutes for
the palindrome language.

In Figure 3 we show the values of sensitivity
(Sens), specificity (Spec) and total accuracy obtained
from the best grammar of one of the runs of the
palindrome dataset, from generation 0 to 15 (after the
15th generation there was no significant improvement).

In this figure, during the first seven generations, the
algorithm tries to improve both sensitivity and
specificity. Between the 8th and 11th generations the
specificity and sensitivity values alternate each other.
This behavior is caused by the incremental operator
which tries to improve the coverage of positive

examples (improves sensitivity) and causes the
grammar to cover an uncovered negative one (reduces
specificity). The expansion operator may cause the
same behavior.

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sens Spec Tacc

Figure 3: The evolution of the best grammar in the
palindrome dataset

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimum Average Maximum

Figure 4: The fitness variation during a run of the
palindrome dataset

Figure 4 shows the variation of the minimum,

average and maximum fitness during the first 15
generations of a training phase of the palindrome
dataset. The slow convergence helps the evolutionary
algorithm to avoid local optima.

A frequently found problem of GP implementations
is called bloat, the uncontrolled growth of the size of
an individual in the population [12]. Figure 5 shows
the variation of the size of the grammars during the
first 15 generations of a training phase of the
palindrome dataset. The curves indicate that the
expansion operator is useful during the first 8
generations. Comparing this figure with figures 3 and
4, we observe that the expansion operator creates
useful productions in the early generations, thus
providing genetic diversity. After the 8th generation,
the size of the grammars grows slightly because,
before the evaluation, all useless production are
removed. Overall, the bloat effect was not detected.

301301

6. Conclusions

We proposed a GP approach for context-free

grammar induction. In this approach, an individual is a
list of structured trees representing their productions
with their left-hand side as the root and the derivations
as leaves. The regular genetic operators were biased by
the positive and negative scores of each production.
These scores are obtained from the evaluation phase.

Figure 5: Variation of the size of grammars during

a run of the palindrome dataset

We used a local search operator, named Incremental

Learning [4], capable of adjusting each grammar
according to the positive examples. We also presented
a new operator, named expansion, which adds a new
production to the grammar allowing the grammars to
grow in size. This operator promotes diversity in the
population that is required in the earlier generations.

Results obtained by the proposed GP using the
Brackets and Palindrome languages set were better
than those obtained by recently published algorithms,
namely Hidden Markov Models (HMM) and String
Kernels (SK) [11]. This shows how promising is the
proposed GP approach.

However, a drawback of the approach is that the
solution found is not necessarily the smallest one.
Depending on the run, the grammar inferred varies in
size and, sometimes, it can be difficult to understand.
Further work will focus on devising a mechanism able
to favor shorter partial solutions.

7. References

[1] C. de la Higuera, “A bibliographical study of
grammatical inference,” Pattern Recognition, vol. 38, no. 9,
pp. 1332–1348, 2005.

[2] B. Starckie, F. Costie and M. van Zaanen, “The
Omphalos context-free grammar learning competition,” In

Proceedings of the International Colloquium on
Grammatical Inference, 2004, Athens, Greece, pp. 16–27.

[3] F. Javed, B. Bryant, M. Crepinsek, M. Mernik and A.
Sprague, “Context-free grammar induction using genetic
programming,” Proceedings of the 42nd Annual ACM
Southeast Conference '04, Huntsville, AL, 2004, pp. 404-
405.

[4] E. Rodrigues and H.S. Lopes, “Genetic programming
with incremental learning for grammatical inference”, In
Proceedings of the 6th International Conference on Hybrid
Intelligent Systems (HIS'06), IEEE Press, Auckland, 2006,
pp. 47–50.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimum Best Maximum

[5] Koza, J.R., Genetic Programming: On the Programming
of Computers by Natural Selection, MIT Press, Cambridge,
MA, 1992.

[6] Banzhaf, W., Nordin, P., Keller, R.E. Francone, F.D.
Genetic Programming : An Introduction, 3rd ed, Morgan
Kaufmann, San Francisco, CA, 2001.

[7] Hopcroft, J. E., Motwani, R. and Ullman, J. D.,
Introduction to Automata Theory, Languages, and
Computation, 2nd Ed., Addison-Wesley, Reading, MA, 2001.

[8] D. H. Younger, “Recognition and parsing of context-free
languages in time n3,” Information and Control, vol. 10, no.
2, 1967, pp. 189–208.

[9] H. S. Lopes, M. S. Coutinho and W. C. Lima, “An
evolutionary approach to simulate cognitive feedback
learning in medical domain,” In Genetic Algorithms and
Fuzzy Logic Systems: Soft Computing Perspectives.
Singapore: World Scientific, 1998, pp. 193-207.

[10] Witten, I. H. and Frank, E. Data Mining, Morgan
Kaufmann, San Francisco, CA, 2000.

[11] A. Clark, C. C. Florêncio and C. Watkins, “Languages
as hyperplanes: grammatical inference with string kernels,”
In Proceedings of European Conference on Machine
Learning, LNAI v. 4212, Springer-Verlag, Berlin, 2006, pp.
90–101.

[12] P. Monsieurs and E. Flerackers, “Reducing bloat in
genetic programming,” In Proceedings of the International
Conference, 7th Fuzzy Days on Computational Intelligence,
Theory and Application, LNCS v. 2206, Springer-Verlag,
2001, pp. 471–478.

302302

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

