
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.2, No.X (2006), pp. XXX–XXX
c© Research India Publications http://www.ijcir.info

A Configware Approach for the Implementation of
a LVQ Neural Network

Maurcio Kugler1,2 and Heitor S. Lopes2
1Dept. Computer Science & Engineering, Nagoya Institute of Technology,

Nagoya-shi, Showa-ku, Gokiso-cho, 466-8555, Japan
mauricio@kugler.com

2Bioinformatics Lab., Federal University of Technology – Paraná,
Av. 7 de setembro, 3165 80230-901 Curitiba, Brazil

hslopes@pesquisador.cnpq.br

Abstract: This paper describes a methodology for the imple-
mentation of a Learning Vector Quantization (LVQ) neural net-
work in a Field Programmable Gate Array (FPGA) device, es-
pecially suited for applications requiring fast throughoutput. A
special feature of the implementation is a combinatorial mod-
ule for distance comparison that allows the execution of this im-
portant operation for a LVQ in just one clock cycle. The con-
trol code of the LVQ is described by a finite state machine and
parametrically programmed in VHDL. The final neural net-
work was implemented with 64 dimensions, 16 subclusters and
2 classes, using an ACEX1k100 reconfigurable device. Using
this system with a clock rate of 25MHz, a full classification can
be done in 334µs, thus enabling real-time performance for many
real-world applications. Keywords: LVQ, FPGA, Hardware.

I. Introduction

In current embedded systems, it is seldom necessary to
process large amount of information in real-time, such as
in image and signal processing or in dynamical control sys-
tems. Common algorithms for processing and classification
of signals may require a reasonable computational power,
which cannot be achieved using microprocessors commonly
used in embedded systems. This is due to cost or, more fre-
quently, to some technical factor (power consumption, clock
frequency, physical dimensions, number of peripheral chips
requested, etc). An alternative for the development of em-
bedded systems that require high processing power is the
hardware implementation of software algorithms using Pro-
grammable Logic Devices (PLDs). These devices can be
programmed for a given functionality. Differently from com-
mon microprocessors that run software instructions sequen-
tially in a predefined architecture (Von Neumann, Harvard,
etc), PLDs have their internal structure defined by the de-
signer, allowing the customization of both the architecture
and the functionalities of the system for a given purpose. One
of the most outstanding features of such reconfigurable de-
vices is the possibility of designing several hardware blocks
that operate in parallel (combinatorial or sequential hard-
ware), increasing the processing power of the system. Nowa-
days, high-capacity PLDs based on non-volatile memories

are known as FPGAs (Field Programmable Gate Arrays) and
are becoming very popular due to cost and flexibility. Due to
its availability and performance, FPGAs have been used in
powerful reconfigurable systems. Therefore, systems based
on reconfigurable hardware (or simply, configware) can offer
custom-computing machines for specific applications, with
orders of magnitude faster than regular software processing
in general-purpose processors [1].
The objective of this work is to present a methodology for
the implementation of a Learning Vector Quantization (LVQ)
Neural Network (NN) using a reconfigurable device. LVQ
NNs are frequently used for pattern recognition (see, for in-
stance, [9, 10]), and are particularly interesting for hardware
implementation since they are based on the calculation of
a geometric distance among samples and reference vectors.
This feature eliminates the necessity of multipliers that oc-
cupy a large amount of resources in reconfigurable compo-
nents and request many clock cycles.

II. LVQ Neural Networks

The LVQ NN was created by Kohonen [8], and it is a
method for training neural networks for pattern classification
in which each output represents a particular class (although
several outputs can also be used for a single class). Each class
is referred by a vector of weights that, in turn, represents the
center of the clusters defining the decision hypersurfaces of
the classes. A given class can be defined by a single point or
a set of them, for a better representation of irregular decision
surfaces. For training this NN it is necessary a set of training
patterns with known classes, together with an initial distri-
bution of the reference vectors. During training, the known
class T of each input sample x is compared to the class C
represented by the cluster center w that is the nearest to the
sample. The center of the cluster w is updated according to
equation 1, where = alpha is the learning rate of the NN:
{

If T = C then wnew = wprev + α.[x− wprev]
If T 6= C then wnew = wprev − α.[x− wprev]

(1)
Training is done for all input variables several times, always
taken them in a random order. Usually, training is concluded

1

when clusters get stable, or either a previously specified num-
ber of iterations is reached. Basically, after being trained, a
LVQ NN becomes a vector comparator. Every new input will
be assigned to a class which cluster center is the most similar
to it. The similarity (or dissimilarity) measure of two generic
points x and y can be implemented as the geometric distance
between them. A general distance norm is given by equa-
tion 2, where n is the dimensionality of the space and wi a
weighting coefficient.

dp(x, y) =

{
n∑

i=1

wi.(|xi − yi|)p

} 1
p

(2)

The two most usual cases of equation 2 are the Euclidian dis-
tance (p = 2) and the Manhattan distance (p = 1), both using
wi = 1 (non-weighted). For applications that require a fast
computation of distance, the Manhattan distance is clearly
the most suitable, reducing equation 2 to:

d1(x, y) =
n∑

i=1

wi.|xi − yi| (3)

III. Clustering and Subclustering

Clustering with NNs are more usual in unsupervised learn-
ing, where a previous knowledge about the class to which
belongs every input vector is not available. In this case, clus-
tering techniques are useful for revealing similarities among
vectors, therefore creating groups for classification.
In the particular case when the class of input vectors are pre-
viously known, it is not adequate the direct application of
clustering techniques. However, sometimes it is not inter-
esting to represent each class using only one cluster center,
since this could lead to a very bad accuracy rate of the clas-
sifier. Then, a problem emerges on how to initialize every
cluster center such that the training time can be reduced with-
out losing the initial classification set. A possible solution
proposed in this paper is to separate each class into indepen-
dent spaces, therefore creating several independent cluster-
ing problems. This technique we call ”subclustering”. In
these isolated spaces, the centers of the obtained clusters are,
in fact, subclasses centers. The difference between class and
subclass should be stressed, since these concepts are impor-
tant in both training and testing of the NNs. Considering each
isolated class a new space, one can cluster the input vectors
using any usual clustering technique. In this work we used
the well-known k-means clustering algorithm that is usual
for LVQ applications [6].

IV. Architecture of a LVQ NN in FPGA

Some works [2, 3, 5] have proposed generic implementations
of NNs in hardware. They focused on generality instead of
performance, in the sense that particular characteristics of
each NN type are not taken into account. However when ex-
ploring specific features of a given NN architecture, better
results can be achieved [7]. In this work, we explore the key
point of a LVQ NN: the classification by means of a geo-
metric distance comparison. This feature allows a significant
reduction of the number of logical elements and processing
time in reconfigurable hardware implementations.

The basic block that computes a geometric distance is shown
in figure 1. Each element of the vector that represents each
cluster center (components of the reference vectors of the
NN) is sequentially applied to the subtractor input, together
with the dimensions of the unknown sample to be classified.
The module of the difference between these values is taken.
It represents the distance between the points, in the current
dimension of the space. The result is summed to the val-
ues of the accumulated distance of the other dimensions (see
equation 3), in the first register. It is important to empha-
size that all these operations are done in a single clock cycle.
The output of this register is also applied to the input of a
comparator, which has in its second input the value of the
smallest distance to the center of a given cluster up to now. If
the new distance is smaller than that previously stored, it is
loaded in the second register. This operation also takes noth-
ing more than a single clock cycle. When these operations
are repeated sequentially for all clusters, the cluster closest
to the sample can be found and, therefore, the class of the
unknown sample.
A block diagram of the system, shown in figure 2, has three
main blocks:

• rom cluster: this is a ROM (Read-Only Memory) that
is used for storing the set of centers of the clusters,
which were previously defined by means of training ses-
sions;

• fifo lvq: this is a FIFO (First-In, First-Out memory)
that is used for receiving new samples while the previ-
ous samples are being classified;

• lvq ctrl: this is the control module of the system that
implements the finite state machine (FSM) detailed in
table 1.

rom_cluster
mem

2048x16

fifo
_lvq

mem

128x16

address_rom(11:0)
RE_rom
data_rom(15:0)

clock

lvq_ctrl

busy

data_in_fifo

WE_fifo

reset
clock

(15:0) RE_fifo
data_fifo(15:0)

reset

clock

class_out(1:0)
lvq_finish

Figure. 2: Main blocks of the implemented LVQ NN.

The FSM is detailed in table 1, where CS, SD, EV, ED, NS
stand respectively for: current state, state description, event,
event description and next state. In the FSM, states S1 and
S2 correspond to the transfer of the input sample from the
FIFO to the internal RAM. States from S3 to S8 do the suc-
cessive comparisons of each dimension of the input sample
with the reference vectors, and store the reference vector with
the smallest distance to the input sample. The final result of
the classification is given in state S9. In principle, the imple-
mented LVQ NN was limited to a maximum of 100 dimen-
sions, 20 subclusters per class and 2 classes.

register
24 bits

cluster dimension

sample dimension

conditional
subtractor

17 bits

adder
24 bits

A(15:0)

B(15:0)

|A - B|(16:0) A(16:0)

B(23:0)

A+B(23:0) A(23:0)

comparator
24 bits

register
24 bits

D(23:0)
Q(23:0)

A(23:0)

B(23:0)
A < B

& cnt = 100

system clock

cnt(6:0)

dimensions counter

accumulated
diferences register

minimal distance
found register

D(23:0)
Q(23:0)

Figure. 1: Block diagram for minimal distance computation and register.
CS SD EV ED NS
S0 Initialization: T0 LV Q Start=0 S0

cnt dim=0; cnt cluster=0; dist final=7FFFh T1 LV Q Start=1 S1
S1 Enable FIFO memory reading; Signal FIFO memory as busy;

Increment cnt dim
T2 S2

S2 Write to data RAM value read from FIFO T3 cnt dim <100 S1
T4 cnt dim=100 S3

S3 Signal FIFO memory as free; cnt dim=0 T5 S4
S4 Compute addresses of data and clusters memories for further

reading, using cnt dim and cnt cluster
T6 S5

S5 Load the value read from cluster memory; keep the address
and the enable signal to ensure a correct reading

T7 S6

S6 Wait for valid data in the data RAM output T8 S7
S7 Store the partial distance computed T9 (cnt dim=100 and

(distance>the last one)
and (cnt cluster <40)

S3

T10 cnt dim <100 S4
T11 (cnt dim=100 and

cnt cluster =40)
S9

T12 (cnt dim=100 and
(distance<the last one)

S8

S8 Store the new smallest distance T13 S3
S9 Output the class of the selected cluster (class out); Signal

LV Q finish =1; Stop processing
T15 S0

Table 1: Tabular description of the FSM of the LVQ NN.

V. Hardware Implementation

The main drawback in implementing a LVQ NN in hard-
ware is the large amount of memory necessary for storing
the reference vectors. In our experiments, a 64/16/21 net-
work was implemented so as to fit in the device chosen. The
synthesis of the proposed system was done with a low-cost
ACEX1k100 device (Altera Corporation, San Jose, USA),
with a 25 MHz clock rate. This device has 49152 bits of
internal RAM and 4992 logic cells. The circuitry described
in VHDL (VERILOG Hardware Description Language) was
compiled, simulated and synthesized using Quartus II envi-
ronment from Altera.
The LVQ NN is started by the lvq start signal, when data in
the FIFO are transferred to the internal RAM. This operation
takes 5.12 µs and during this transfer, the fifo busy signal
indicates that the FIFO is blocked for writing.
In the comparison of the input vector with the first refer-
ence vector stored in the ROM there are three special coun-
ters: cnt dim (dimension counter), cnt cluster (subcluster
counter) and cnt class (class counter). These counters are
used to address memories when dimensions are compared
sequentially. It takes 170 ns for the comparison of one di-
mension. Differences of each dimension are computed in
dif temp and later accumulated in dif acc. In the com-

1In this work, the convention used is “d/s/c” for representing, respec-
tively, dimensions, subclusters per class and classes.

parison of the input vector with a center of a cluster that is
identical to it, the accumulated differences will be null, but
the temporary class indicator class tmp changes, since the
input vector is of the opposite class. Finishing the classi-
fication procedure, lvq finish signal indicates the end of
the LVQ processing and the final result is made available
when class out is activated. The LVQ total processing time
(from lvq start to lvq finish, for a 64/16/2 NN) is around
334µs, using a 25 MHz clock. As the number of points to be
compared increases, processing time also increases propor-
tionally. The number of points to be compared is represented
by the product between the number of dimensions, the num-
ber of subclusters and the number of classes.
The implementation of a 64/16/2 LVQ NN in an
ACEX1k100 device required 284 logic cells and 34816
memory bits, corresponding, respectively, to 5.7% and
70.8% of the available resources. The parametric implemen-
tation of the code allows the easy setting of the three para-
meters (dimensions, subcluster per class and classes) for a
given purpose, making it flexible and adaptable for several
applications. Increasing the number of dimensions and/or
subclusters per class also increases the use of the internal
memory of the device, but does not increases significantly
the number of logic cells used. Using 16-bit fixed-point no-
tation, the number of memory bits necessary for the imple-
mentation is given by the sum of bits used by FIFO, internal
RAM and ROM, and can be obtained using the expression:

1 10 100 1000
1

10

100

1000

2
4

8163264128256512
1024

Number of dimensions

N
u

m
b

e
r

o
f

s
u

b
c

lu
s

te
rs

Figure. 3: Limits for the configuration parameters of a LVQ
NN implemented in an ACEX1k100 FPGA device.

MT = 16.d.(2 + c.s), where: MT is the number of total bits
necessary in the device; d is the number of dimensions; c is
the number of classes and s is the number of subclusters per
class.
Figure 3 shows the limits allowed for the parameters of the
implemented LVQ NN using the ACEX1k100 device. Both
axes have dimensionless logarithmic scales that represent a
large range of possible values for the number of dimensions
(d) and number of subclusters per class (s) of a LVQ NN. Di-
agonal lines represent the number of classes, and indicate the
allowable limit for the other parameters (dimensions and sub-
clusters per class) that use around the total amount of mem-
ory bits of the specific device. In fact, a large number of
classes (say, above 128) is not usual for real-world imple-
mentations. In the same way, small values for both axes are
useless, and are shown only for illustration. Although figure
3 was constructed for a specific device, for another devices
the same approach can be used, ensuring that a given combi-
nation of d/c/s LVQ NN is feasible in that device.
The processing speed of the LVQ NN implemented in FPGA
is a function of the total number of clock cycles necessary
for the full classification of an input vector. This processing
speed also depends on the number of dimensions, the number
of subclusters per class, and the number of classes, and its
growth has the same behavior as that presented in figure 3
for the memory resources.

VI. Conclusions

In this work, we exploited a specific feature of LVQ NNs: the
classification by means of a geometric distance comparison.
Basically, this kind of NN is a vector comparator, and the use
of the Manhattan distance yielded a significant reduction of
the number of both logical elements allocated in the FPGA
and the processing time. In the same way, for another types
of NNs, a systematic analysis of their peculiarities may give
inspiration to particular implementations using FPGA poten-
tialities.
The implementation of a LVQ NN using FPGA possibly
can achieve better results regarding speed, when compared
with other conventional approaches with similar clock fre-
quency and equivalent bus size. This clear advantage comes
from the fact that in this implementation we used specific
combinatorial circuits in parallel and most operations are
done in few clock cycles. On the other hand, conven-
tional processors spend precious time for fetching instruc-

tions, pipelining, testing branch conditions and memory ad-
dressing/storing/retrieving.
The limiting factor of this implementation is the amount
of internal memory used for the reference vectors
(rom cluster). However, for larger implementations, this
problem can be easily circumvented using a device with more
memory, or using an external memory, together with a cir-
cuitry for parallelizing the task of reading the next vectors
while using the current one for classification.
This work has shown the feasibility to implement a LVQ NN
in FPGA. The performance achieved in both size and speed
encourages the application of this methodology for real-time
embedded applications that require portable computational
power. Further work will include the implementation of this
system in other commercial devices of higher performance,
and its application to pattern recognition problems, such as
those involved in real-time signal processing [9].

References

[1] Becker, J., Hartenstein, R.: Configware and morphware
going mainstream. Journal of Systems Architecture 49
(2003) 127–142

[2] Blake, J.J., Maguire, L.P., McGinnity, T.M., Roche,
B.,McDaid, L.J.: The implementation of fuzzy systems,
neural networks and fuzzy neural networks using FPGAs.
Information Sciences 112 (1998) 151–168

[3] Botros, N.M. and Abdul-Aziz, M.: Hardware implemen-
tation of an artificial neural network using field program-
mable gate arrays (FPGA’s). IEEE Transactions on Indus-
trial Electronics 41 (1994) 665–667

[4] Cox, C.E., Blanz, W.E.: Ganglion – a fast field-
programmable gate array implementation of a connec-
tionist classifier. IEEE Journal of Solid-State Circuits 27
(1992) 288–299

[5] Gorgoń, M., Wrzesiński, M.: Neural network implemen-
tation in reprogrammable FPGA devices – an example for
MLP. Lecture Notes in Artificial Intelligence 4029 (2006)
19–28

[6] Huang, Y.S., Chiang, C.C., Shieh, J.W., Grimson, E.:
Prototype optimization for nearest-neighbor classifica-
tion. Pattern Recognition 35 (2002) 1237–1245

[7] Izeboudjen, N., Farah, A., Titri, S., Boumeridja, H.: Dig-
ital implementation of artificial neural networks: from
VHDL description to FPGA implementation. Lecture
Notes in Computer Science 1507 (1999) 139–148

[8] Kohonen, T., Huang, T.S., Schroeder, M.R. (Eds.): Self-
Organizing Maps. Springer-Verlag, Heidelberg (2000)

[9] Kugler, M., Lopes, H.S.: Using a chain of LVQ neural
networks for pattern recognition of EEG signals related
to intermittent photic-stimulation. In: Proc. VII Brazilian
Symposium on Neural Networks, IEEE Computer Soci-
ety, Los Alamitos (2002) 173–177

[10] Ölmez, T., Dokur, Z.: Classification of heart sounds us-
ing an artificial neural network. Pattern Recognition Let-
ters 24 (2003) 617–629

