
                                                                                        
 

  
Abstract—A FIR Filter design method and its respective tool 

using genetic algorithms were developed. The main feature of this 
method is to offer a transparent mode for the user who doesn’t 
know evolutionary computation, as well as its parameters. The 
user inputs the filter specifications and gets a sub-optimal result 
in an average number of four attempts. The sub-optimal criterion 
was based on the Rabiner, Parks and McClellan algorithm and 
the implemented software was built using the GALOPPS tool. 
 

Index Terms—FIR filter design, genetic algoritms, Galopps, 
Rabiner Parks and McClellan algorithm, Remez.  
 

I. INTRODUCTION 

The design of FIR digital filters using techniques of DSP is 
an automatic procedure. There are computer programs like 
MATLAB and DSPLAY that offer this facility. Some of these 
techniques use methods like window, remez and frequency 
sampling [1]. The only thing the user needs to concern is the 
the FIR filter specification which can involve some few 
additional parameters related to the method chosen. 

FIR filter design using genetic algorithms has been studied 
at least for 16 years [2]. But choosing this way to get a digital 
filter, the user usually has to know a considerable number of 
additional parameters besides the filter specifications.  They 
are the evolutionary parameters. Some of them need to be 
adjusted to each new filter specification. Another feature is the 
stochastic behavior of this kind of application: the user 
previously needs to know that it can be necessary to run more 
than one execution to get an interesting solution. And this 
solution can be different at each time the application is run. 
These two features of a FIR filter design tool based on genetic 
algorithms tend to restrict it for people that have some 
knowledge of evolutionary computation. This work is an 
attempt to hide the evolutionary complexity offering sub-
optimal FIR filter responses with a compromise of an average 
number of four executions. A sub-optimal pattern was created 
and the reference for this was the Parks-McClellan method 
implemented in MATLAB through the remez command [3]. 
 
 

 

II. FIR FILTER DESIGN 
 A FIR digital filter frequency response can be calculated 
from [1]: 
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Where: H(k) is the Discrete Fourier Transform complex 

vector. This is the FIR digital filter frequency response; N is 
the number of collected points during the sampling process; k 
is an index varying from zero to N-1; h(n) is the FIR filter 
response vector to the unit impulse. This vector corresponds to 
the FIR filter coefficients; and M is the number of the FIR 
filter coefficients. 

A digital filter gives a realizable version of a desired 
frequency response that was specified as part of the filter 
specifications. This happens because an ideal digital filter 
response is unrealizable. 

To express H(k) as a function of the normalized frequency, 
it can be used [1]: 
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Where f is the normalized frequency ranging from 0.0 to 1.0 

cicles/sample. 
 Depending on the number of coefficients and the simmetry 
of h(n), the FIR filters can be classified in four categories 
(types I to IV), three of them requiring some restrictions to 
give a specific frequency response. This work covers the four 
categories. 
 The complex vector H(k) is more useful when viewed as 
separated in magnitude and phase frequency responses. There 
is a symmetry in the FIR filters coefficients that guarantees a 
linear phase frequency response. Because of this, it is more 
frequent to found FIR filter magnitude frequency responses. 

Table I presents some parameters used in a FIR filter 
desired frequency response specification. 
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TABLE I 
FIR FILTER FREQUENCY RESPONSE USUAL PARAMETERS. 
Parameter Description 
A1 , A2 ,A3 Amplitudes of bands #1, #2, #3 

f11  , f12 Initial and final frequency of band #1 
f21 ,  f22 Initial and final frequency of band #2 
f31 , f32 Initial and final frequency of band #3 

δ1 Maximum ripple allowed for band #1 
δ2 Maximum ripple allowed for band #2 
δ3 Maximum ripple allowed for band #3 

∆t12 Transition width between bands #1 and #2 
∆t23 Transition width between bands #2 and #3 
M Number of FIR filter coefficients 

 
FIR filters are Linear and Time Invariant systems. So, the 

filtering process can be made trough the convolution of the 
FIR filter coefficients and the signal x(n) to be filtered: 
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Where: y(n) is the filtered signal; h(n) is the FIR filter unit 

response; x(n) is the signal to be filtered; * is the convolution 
operator symbol; U is the sum of the number of samples 
founded in h(n) and in x(n); and n varies from zero to U-1. 

It is possible to get from eq. (3) the following conclusion: 
the larger number of h(n) coefficients (M), the more precise 
will be the filtering process. Larger values of M offer a better 
quality of filtering. Better here can be understood as a FIR 
filter frequency response with a minimum transition width and 
a minimum value of ripple. But also through eq. (3), it is 
possible to conclude that for a same signal x(n) to be filtered, 
the number of products between x(n) and h(n) is regulated by 
the number of FIR filter coefficients, M. And, because of this, 
larger values of M cause larger delays during the filtering 
process. This can be unacceptable in some real-time 
applications. 
 The present work also tries to enforce the following area of 
study: the fetch for an acceptable FIR filter response in terms 
of quality with a minimum value of FIR filter coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. GENETIC ALGORITHMS AND THE PROPOSED MODELING 
 A GA is based on a sequence of actions that, among others, 
can be represented by Fig. 1 [4]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A GA basic flow. 
 

A brief description of these actions with the model adopted 
by this work is: 

a) a possible numerical solution of the problem is codified 
as an individual. Such representation usually adopts symbols 
to codify the numerical solution. The vector of the individual 
corresponds to the called chromosome. In the present work, an 
individual is the h(n) vector represented by the binary alphabet 
either in Gray or binary positional codification, as will be 
described in the metodology; 

b) a set of individuals is generated at random. This set is 
called population and corresponds to the step 1 in Fig. 1. It is 
called the search space, S, that corresponds to all possible 
solutions that can be formed with the chosen alphabet. In the 
present work, the search space is variable with the number of 
FIR filter coefficients according to: 
 

lS 2=                               (4) 
 
Where: S is the search space; and l is the size in bits of the 
chromosome: 77 for M=13 or 14, 88 for M=15 or 16, 99 for 
M=17 or 18 and so on. One floating point coefficient with a 
precision of 1×10-3 precision corresponds to 11 bits. Because 
of the simmetry, only half of the coefficients are mapped into 
the chromosome; 
 c) this population is submitted to an evaluation. Each 
individual is tested according to how good it is as an optimal 
or suboptimal numerical solution for the proposed problem. In 
this way, each individual receives a score. The name of the 
mathematical function that does this job is the fitness function. 
In the present work, the fitness used is: 
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Where: fitness is the fitness function; |Hd(f)| is the desired 
(given by user specification) magnitude frequency response; 
and |Hi(f)| is the magnitude frequency response from each 
individual; 
 |Hi(f)| is calculated through Eq. (1), because an individual 
corresponds to one vector h(n). This fitness function is one 
kind of a MSE function that numerically indicates how close 
an answer is from the desired answer. This happens in step one 
of Fig. 1 in the first time; 
 d) it is applied in this evaluated population some mechanism 
of selection. This is an attempt to exclude from the next steps 
the individuals with low values of fitness. In the present work, 
it was used the following selection processes: Roullete Wheel, 
Stochastic Tournament, and the Stochastic Universal 
Sampling, as will be described in the methodology. This 
happens in step two of Fig. 1; 
 e) the next step, with the selected population, is a 
recombination mechanism called crossover. A crossover 
consists basically of changes in portions of the chromosome 
between two individuals. The crossover is applied in this 
selected population with a probability pcross between 0.0 to 
1.0. In the present work the following crossover techniques 
were used: one  point and two point crossover, as will be 
described in the methodology. This happens in step three of 
Fig. 1; 
 f) after this, another operation over the chromosomes is 
applied. It is the mutation, that consists basically of a change 
in one or more bits in an individual at random. This operation 
is applied with a probability pmutation also ranging from 0.0 
to 1.0. In the present work the following mutation operations 
were used: single bit mutation and multiple field mutation, as 
will be described in the methodology. This is step four in Fig. 
1; 
 g) this new population is evaluated as the same way as made 
in the step described in item c. This happens in step five of 
Fig. 1; 
 h) it is called generation to the steps covered by the items d 
to g inclusive. Every time a generation is concluded, a 
finishing condition is tested to finish the GA run. In the present 
work the finish condition is a max generation number. This is 
step six in Fig. 1; 
 i) if the finish condition is not true, there is a return to the 
step that corresponds to item d and a new generation cycle is 
executed. This happens in the decision structure 6 in Fig. 1; 

j) if the finish condition is true, the last population is 
obtained and the most fit individual in this population is the 
best solution the GA can give. 
 

IV. FIR FILTER DESIGN WITH GENETIC ALGORITHMS 
 Counting from reference [1] until these days, more than one 
hundred FIR Filter Design methods using GAs are already 
published, e.g., [5], [6], and [7]. In these works, the prior goal 
was not a look for a method or software based on GAs for give 

FIR filter coefficients without the need to adjust evolutionary 
parameters at each new specification and with a predetermined 
number of mean trials to get an acceptable answer. 
 Two related works were found. 
 The first is a MATLAB toolbox [8]. Some differences 
between that tool and the proposed method are: a) The GA 
parameters specifications. In that tool the GA parameters are 
configurable, that is, the user must know GAs. And here, the 
proposed work, this kind of knowledge is not necessary; b) 
The platform: to run that application, it is necessary to have 
MATLAB. And here, the proposed work, the final version of 
the tool runs over Windows directly. 
 The second work, also a MATLAB toolbox, is a tool called 
CSDFIR [9]. The final version of this tool is automatic, but 
today it owned by a private company. 
 

V. METHODOLOGY 
 To achieve the proposed goals, the following strategy was 
taken:  a) two suboptimal conditions related to a well know 
specialist method was specified;  and b) a bank of FIR filter 
frequency response specifications was specified. These filter 
specifications tried to cover all the possible kinds of hard and 
easy to solve filters. All of them were specified with a zero and 
one amplitudes. Arbitrary levels were not proposed. 
 With the conditions and the filter bank, a three-phase group 
of tests was proposed, differing slightly from a previous work 
[10]: a) Phase 1:  the filter bank was tested with a fixed 
number of coefficients changing and verifying the results of 
the following GA parameters: chromosome binary 
representation, selection process, crossover operator, mutation 
operator, probabilities of mutation and crossover, and a 
auxiliary technique of selection called elitism [4]. A score 
based on the quality of the results for each configuration was 
proposed. If the configuration passed to all the proposed 
filters, it received a score based on the quality of the results. If 
the configuration did not pass through all the proposed filters, 
its score was zero; b) Phase 2: with the best score-approved 
configuration of Phase 1, the same filter bank was tested, but 
with a variable number of coefficients, to check if the 
configuration is robust to support different search spaces. The 
GA parameters to be changed in this phase were the 
population size and the maximum number of generations; and 
c) Phase 3: with the most robust configuration of Phase 2, 
several variable amplitude and variable number of coefficients 
FIR filter specifications were tested. Also in this phase, the 
LTI superposition propriety was tested for hard to solve filters 
or filters that could not be solved when specified directly. 
 During phase two and three, it was looked for some pattern 
behavior in some GA parameters with the variation of the FIR 
filter coefficients. This was done as an attempt to find some 
mathematical relationship between the number of coefficients 
and them. 
 The limitations of the proposed method and GA modeling 
were: a) do not cover more than three amplitude levels 
between 0.0 and 0.5 cycles/sample; b) do not cover any 
frequency range smaller than 0.01 cycles/sample; c) do not 
cover all the possibilities of arbitrary level response 
frequencies; and d) depending of the number of coefficients 



                                                                                        
 

(which determine the search space), the execution cannot be 
processed in usual machines. 

With this strategy the expectation was to find a 
configuration that covered the requisites of any FIR filter 
specification, through tests. 
 

A. The Specialist Method to be Compared 
 To make the quality response comparisons, it was chosen 
the MATLAB implemented version of the Parks-McClellan 
method, with equal weights for pass and reject bands. 
 

B. First and Second Sub-Optimal Conditions 
A FIR filter frequency response given by the GA that is 

considered accepted must satisfy two conditions. 
The condition here called the First Suboptimal Condition, 

FSC is: 
 

5)2/log(20)2/log(20 ≤+×−+× iRiAiAGiA δδ     (6) 

 
Where: δiAG are the GA ripples of bands #1, #2, #3; δiR are 

the Parks-McClellan ripples of bands #1, #2, #3; and Ai are the 
amplitude specifications of bands #1, #2, #3. 
 And the Second Suboptimal Condition, SSC, is: 
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Where: fiAG are the GA transition frequency edges between 

the bands; fiR are the Parks-McClellan transition frequencies 
edges between the bands. 
with equal weights for pass and reject bands. 
 

C. The FIR Filter Bank 
Some FIR filter specifications of the filter bank are 

presented in Table II. 
TABLE II 

SOME FIR FILTER SPECIFICATIONS 
# f12 f21 f22 f31 A1 A2 A3 
1 0.35 0.42 0.45 0.45 1 0 0 
5 0.15 0.19 0.30 0.30 1 0 0 
7 0.04 0.04 0.05 0.12 0 0 1 
8 0.35 0.35 0.40 0.47 0 0 1 
1
0 

0.40 0.40 0.44 0.47 0 0 1 

1
2 

0.05 0.11 0.39 0.45 0 1 0 

1
6 

0.05 0.10 0.40 0.45 1 0 1 

1
8 

0.15 0.16 0.44 0.45 1 0 1 

 
 For all filter specifications: f11 = 0.0 and f32 = 0.5 
cicles/sample. 
 
 
 

VI. RESULTS 
 A GA filter response that does not satisfy the FSC, i.e., it is 
not ok with Eq. (6), is presented in Fig. 2: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: GA filter response that does not satisfy the FSC. 
 
 An example of a FIR filter frequency response that does 
not satisfy the SSC, i.e, Eq. (7), is presented in Fig. 3: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: GA filter response that does not satisfy the SSC. 
 

Figure 5 presents one of the good results of Phase 1 and 
Table III presents some scores obtained by the proposed 
configurations for Phase 1. For this table, it was used a 
population size of 160 individuals, a number of FIR filter 
coefficients M of 15 and the computer used was a Pentium 
notebook, 1.7 GHz with 512 Mb of RAM. 

The number of coefficients (M) was varied in Phase 2. This 
was done with the only approved configuration from Phase 1. 
For each new value of M, new other values for population size 
and maximum number of generations were  needed. 
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Figure 5: One result that satisfy the FSC and the SSC. 
 

TABLE III 
SOME CONFIGURATION SCORES FOR PHASE 1 

config 
#. 

1 2 3 4 

type I I I I 
selectio

n 
suselect rselect tselect/4 tselect/4 

maxgen 500 500 500 500 

cross twoptx oneptx twoptx oneptx 

pcross 0.85 0.90 0.85 0.90 
mutatio

n 
bitmutat multimu

t 
multimu

t bitmutat 

pmut 0.10 0.01 0.01 0.10 
bin rep BinGray BinPos BinPos BinGray 
elitism Yes Yes No Yes 

tAG 11 s 11 s 11 s 11 s 
score 5.00 0.00 0.00 0.00 

     
config. 

# 
5 6 7 8 

type II II III IV 
selectio

n 
suselect suselect suselect suselect 

maxgen 500 1000 500 500 

cross twoptx twoptx twoptx twoptx 

pcross 0.85 0.85 0.85 0.85 
mutatio

n 
bitmutat bitmutat bitmutat bitmutat 

pmut 0.10 0.10 0.10 0.10 
bin rep BinGray BinGray BinGray BinGray 
elitism Yes Yes Yes Yes 

tAG 11 s 11 s 11 s 11 s 
score 0.00 5.00 7.81 5.42 

 
Conventions: type = filter type, selection = selection process, 
maxgen = max generation number, crossover = crossover 
operator, mutation = mutation operator, bin rep = binary 
representation, tAG = time spent, suselect = Stochastic 
Universal Sampling process, rselect = Roullete Whell process, 
tselect = tournament process, twoptx = 2-point crossover, 
oneptx = one-point crossover, bitmutat = single bit mutation 
operator, multmut = multiple field mutation operator, BinGray 
= Gray binary representation, BinPos = Positional binary 

representation. pcross/pmut = probabilities of cross-over and 
mutation. 
 One of the good results obtained in Phase 2 can be seen in 
Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: One FSC and SSC compliant result in Phase 2. 
 
 This result was obtained for a filter specification with the 
configuration approved from Phase 1 (configuration numbers 
1, 5, 6, 7 and 8) except for: M = 20, population size = 2310, 
and maxgen = 1500. 
 For hard to solve and arbitrary levels specifications, the LTI 
superposition principle is also valid. Among other tests, this 
was verified in Phase 3. The AG FIR filter frequency response 
presented in Figure 7 was obtained directly as well as trhough 
the sum of a low-pass and a high-pass FIR filter specification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Arbitrary level filter response obtained in Phase 3. 
 

VII. CONCLUSIONS 
It can be seen in configuration #2 of Table III, that the 

canonic version of the model could not satisfy the proposed 
goals, requiring more advanced processes. 
 It was observed that the elitism was always present with the 
configuration that passed through the filter bank. 
 The binary Gray representation presented more resolution 
than the conventional binary positional representation. This 
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was expected, because in Gray representation, only one bit can 
change from one number and its next or prior. 
 The Stochastic Tournament selection process did not pass in 
Phase 1, but it presented very interesting results (more 
successful results than the Roullete Wheel selection process). 
The Stochastic Universal Sampling selection method presented 
the following useful behavior: at each attempt, one different 
suboptimal result was obtained. Comparing it to the Stochastic 
Tournament, this one presented always the same suboptimal 
result for different attempts. 

A GA with predefined parameters was obtained to solve 
variable coefficients, variable filter type, and fixed in zero or 
one amplitude FIR digital filter specifications. 

The fixed configuration obtained was: binary representation 
= Gray, fitness function = Eq. (5), selection = Stochastic 
Universal Sampling, crossover = two-point crossover, 
mutation = one-bit mutation, elitism = yes, probability of 
crossover = 0.85, and probability of mutation = 0.10. For all 
the filter specifications of the filter bank proposed and for 
more than fifty others, this GA did run on in an average 
number of four times to satisfy the conditions specified in Eq. 
(6) and Eq. (7). 

These results used prior tests [10] to stablish the following 
relationships: 
 

828.3160 −×= Lposize       (8) 

82,50)82(1000 ≥×−+= LLmaxgen
  

(9) 

 Where: popsize is the population size; L2 = M/2 for M even 
and (M+1)/2 for M odd, maxgen is the maximum number of 
generations. 
 With equations (8) and (9) it was possible to get an 
automatic procedure to obtain FIR filter responses for a GA. 
And this was done changing another prior work [11]. 
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