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Abstract- This paper describes the application of differential
evolution approaches to the optimization of a supply chain.
Although simplified, this supply chain included stocks,
production, transportation and distribution, in an integrated
production-inventory-distribution system. The supply chain
problem model is presented as well as a short introduction to
each evolutionary algorithm. Differential evolution (DE) is an
emergent evolutionary algorithm that offers three major
advantages: it finds the global minimum regardless of the
initial parameter values, it involves fast convergence, and it
uses few control parameters. Inspired by the chaos theory, this
work presents a new global optimization algorithm based on
different DE approaches combined with chaotic sequences
(DEC), called chaotic differential evolution algorithm. The
performance of three evolutionary algorithm approaches
(genetic algorithm, DE and DEC) and branch and bound method
were evaluated with numerical simulations. Results were also
compared with other similar approach in the literature. DEC
was the algorithm that led to better results, outperforming
previously published solutions. The simplicity and robustness
of evolutionary algorithms in general, and the efficiency of
DEC, in particular, suggest their great utility for the supply
chain optimization problem, as well as other logistics-related
problems.

I. INTRODUCTION

T HE optimization of a supply chain is an integer
programming problem or a constrained integer-mixed

problem [1]. Depending on how it was formulated, it can be a
very hard problem for classical optimization methods.
Consequently, several methodologies for optimizing a supply
chain have been proposed in the literature so far. These
methodologies can be organized into four main categories: (i)
stochastic approximation or gradient-based methods; (ii)
meta-models, such as response surface, artificial neural
networks and fuzzy systems; and (iii) random search-based
methods. Regarding evolutionary algorithms, genetic
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algorithms are the most popular for supply chain optimization
problems. See, for instance, Hwang [2], Lee et al. [3], Syarif et
al. [4], Zhou et al. [5] and Smimov et al. [6].

The objective of this work is to compare evolutionary
algorithms (EAs)for the optimization of a supply chain, based
on a benchmark case study proposed by Mak and Wong [1].
EAs use a population ofstructures (individuals) which, in turn,
represent points in the search space of possible solutions to a
given problem. The following EAs are evaluated and
compared: (i) genetic algorithm [1], (ii) differential evolution
(DE), and (iii) new differential evolution approaches based on
chaotic sequences (DEC).

The rest of the paper is organized as follows: section 2
describes the methodology and the scope of problem of
supply chain's optimization, while section 3 explains the
genetic algorithm, standard DE and the DEC. iction 4
presents the results of the supply chain's optimization and
compares methods to solve the case study. Lastly, section 5
outlines our conclusions and future research.

II. METHODOLOGY

A. Scope ofProblem
The supply chain analyzed in this work was based in the

model proposed by Mak and Wong [1]. A simplified block
diagram of this supply chain is presented in Fig. 1.

supplier(s) manufacturer retailer(s)

Fig 1. Block diagram of the supply chain that integrates production,
stocking and distribution systems.

The diagram of Figure 1 consists of three different sectors
serially arranged, and includes suppliers, a manufacturer and
retailers. Suppliers deliver raw materials to manufacturers,
who, in turn, produce goods. Both raw materials and final
products are stored in manufacturer's warehouses. Products
are further transported to retailers in different regions. The
mathematical model that describes such system can be
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conceived in a simplified manner, for the purpose ofcomparing
the heuristic optimization algorithms. The model is evaluated
by an objective function to be minimized subject to a set of
constraints. The object function shown in Equation 1
comprises costs of storage, manufacturing, transportation and
shortage of products [1]:

eval(x) = Cstorage + Cmanufact+ Ctransport + Cshortage (1)

such that:
R P T R
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subject to the following constraints:

Krpt + Zrpt - Krp,t+l > 0 (6)
Krpt + Zrpt - Krp,t+l < Drpt (7)
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where:
* Bp :is the process time necessary to manufacture each

unity of the p-th product;

* Pit: is the total capable time for manufacturing at the the
t-th period;

* CD : is the cost of delivering one unity ofthe p-th product'p
from the manufacturer to the r-th retailer;

Cm : is the cost of delivering one unity of the m-th raw

material from the supplier to the manufacturer;

* Cp: is the cost of manufacturing each unity of the p-th

product;

* Crp: is the cost of shortage of each unity of the p-th

product from the manufacturer to the r-th retailer;
* Drpt: is the demand of the p-th product from the

manufacturer to the r-th retailer in the t-th period;

* Hm is the storage cost for each unity of the m-th raw

material kept in the inlet stock of the manufacturer;

* HP: is the storage cost of each unity of the p-th productp
kept in the outlet stock of the manufacturer;

* Hr is the storage cost of each unity of the p-th product
kept in the r-th retailer;

* Imt: is the amount of the m-th raw material stored kept in

the inlet stock of the manufacturer, at the beginning ofthe t-th
period;

* Jpt: is the amount of the p-th product stored in the

manufacturing sector, at the beginning of the t-th period;

* Krpt: is the amount of the p-th product stored in the r-th

retailer, at the beginning of the t-th period;
* Wm is the weight of each unity of the m-th raw material;

* wj' : is the weight of each unity of the p-th product;

* ()tM: is the load limit for transporting materials from

supplier to manufacturer at the t-th period;

* ct) p: is the load limit for transporting products fom

manufacturer to retailers at the t-th period;
* Zr,t: is the amount of the p-th product sent from the

manufacturer to the r-th retailer, at the t-th period;
* Omp: is the amount of the m-th raw material necessary to

produce each unity of the p-th product.

The objective function (Equation 1) minimizes the sum of
the costs relative to storage, manufacture, transport, and
product shortage. Equations (2), (3), (4), and (5) define the
composition of the costs relative to storage (Cstorage),
manufacture (Cmanujact), transport (Ctransport), and product
shortage (Cshortage), respectively. Equations (6) and (8) impose
that both sales and production must be positive. In the same

way, the iiequation (11) imposes that the amount of raw
material sent from suppliers to manufacturer must be also
positive. Equation (7) limits sales up to the demand of the
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product, for each period and retailer. Equation (9) limits the
production capacity to a given value. Equations (10) and (12)
limit, respectively, the total weight ofthe transported products
and raw materials.

The approach adopted for this case study was formulated
like an integer programming problem, in which the decision
variables that compose vector x, to be optimized by the DE
methods, are:

I mt(m1,2,,M;t=2,3,...,T)
Jpt (p 1,21 ...IP;t=2,3,..-T)
Krpt (r= 1,2,.., R; p =1,2,3,..., P; t =2,3,..., T)
Zrpt (r = 1,2,..., R; p = 1,2,3,..., P; t = 2,3,..., T)

where ImtIpt Krpt, Zrpt > 0

B. Constraint Handling
When applying EAs to the optimization of a supply chain,

a key issue is how constraints related to the problem are
handled by algorithm. During the last decades, several
methods have been proposed for constraint handling in EAs,
and they can be grouped into four categories: methods that
preserve solutions feasibility, penalty-based methods,
methods that clearly distinguish between feasible and
unfeasible solutions and hybrid methods.

When EAs are used for constrained optimization problems,
it is usual to handle constraints using the concept of penalty
functions (that penalize unfeasible solutions). That is, it is tried
to solve an unconstrained problem in the search space S using
a modified fitness function such as:

eval(x) -
f x,i zF(13)
Lf(x) + penalty(x), otherwise

where penalty(x) is zero if no constraint is violated, and it is
positive otherwise. Usually, the penalty function is based on a
distance measure to the nearest solution in the feasible region
F or on the effort to repair the solution. Therefore, Equation
(14) shows how the fitness function is primarily defined as a
maximization problem, such that

fitness= (14)1+eval(x) (4

where x is the set of decision variables to the supply chain
problem, that is, Imt, Jpt, Krpt, Zrpt-
The methodology proposed for constraint handling is

divided in two steps. The first step aims at finding solutions for
the decision variables that lie within user-defined upper
(limupper) and lower (limlower) bounds, that
is, x [Elimlower limupper]- Whenever a lower bound or an

upper bound restriction is not satisfied, a repair rule is applied,
according to Equations 15 and 16, respectively:

Xi =Xi +w- ran40,1]. VifnlppeXXi) - limloweXxi)X (15)

Xi =Xi - w - ran4O,l] * ilinpp,xxi ) -liml,weXxi)} (I16)

where we [0,1] is a user-defined parameter and rand [0,1]
is an uniformly distributed random value between 0 and 1.

In the second step decision variables are considered
inequalities (g(tx) < 0). In this work we maximize the fitness
function defined in Equation 14, and thus Equation 13 is
rewritten as:

f(x), whengi(x) <0
evakx) r {7

f(x) + r* q_*gi (x), wheng (x) >0
i=l

where q is a positive constant (arbitrarily set to 500,000) and r
is the number of constraints g,(x) that were not satisfied.

ITH. DIFFERENTIAL EVOLUTION

A. Classical Differential Evolution
Stom and Price [7] first introduced the DE algorithm a few

years ago. In 1997, the DE was successfully applied by Stom
[8] to the optimization of some well-known non-linear,
non-differentiable and non-convex functions. DE is an
approach for the treatment of real-valued optimization
problems. DE combines simple arithmetic operators with the
classical operators of crossover, mutation and selection to
evolve form a randomly generated starting p opulation to a final
solution.

There are two variants of DE that have been reported,
DE/randlllbin and DElbestl2/bin. The different variants are
classified using the following notation: DE/o ,//4 where a
indicates the method for selecting the parent chromo some that
will form the base ofthe mutated vector, / indicates the number
of difference vectors used to perturb the base chromosome,
and 3 indicates the crossover mechanism used to create the
child population. The bin acronym indicates that crossover is
controlled by a series of independent binomial experiments.

DE, at each time step, mutates vectors by adding weighted,
random vector differentials to them. If the cost of the trial
vector is better than that of the target, the target vector is
replaced by trial vector in the next generation. The variant
implemented in this paper was the DEIrandlllbin and it is
given by the following steps:
(i) Initialize a population of individuals (solution vectors) with
random values generated according to a uniform probability
distribution in the n dimensional problem space.
(ii) For each individual, evaluate its fitness value.
(iii) Mutate individuals in according to equation:

Zi (t +1) =xbest (t) +fm(t)[xi,,2 (t)-xi,r3 (t)I (I18)

(iv) Following the mutation operation, crossover is applied in
the population. For each mutant vector, z(t+1), an index
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rnbr(i) e {1,2, , } is randomly chosen, and a trial

vector, Ui(t+1)= U1(t+1), ui2(t+), .. uin (t + )T is

generated with
ZiF (t+1),
I if (randb(j) < CR) or (j- rnbki)),

if (randb() > CR) or (j . rnbki))

To decide whether or not the vector u(tt + 1) should be a
member of the population comprising the next generation, it is
compared to the corresponding vector x, t ). Thus, if F,
denotes the objective function under minimization, then

X(t + 1) Ui (t + 1), if Fc (t + 1) < Fc (xi (t)), (20)
xi (t), otherwise

(iv) Loop to step (ii) until a stopping criterion is met, usually a
maximum number of iterations (generations).

In the above equations, i =1,2,...Nis the individual's index
of population; j =1,2,..., n is the position in n dimensional
individual; t is the time (generation);

xi (t) = [vil (t), xi2 (t), ...,Xin (t)II stands for the position ofthe

i-th individual of population of N real-valued n-dimensional

vectors; Zi (t) = il (t), zi2 (t),..., Zin (t)1 stands for the

position of the i-th individual of a mutant vector; rl, r2 and r3
are mutually different integers and also different from the
running index, i, randomly selected with uniform distribution
from the set {1, 2,-, i - 1, i +1,, N }; f(t) > 0 is a real

parameter, called mutation fJactor, which controls the
amplification of the difference between two individuals so as
to avoid search stagnation and it is usually taken form the
range [0.1, 1]; randbh) is the j-th evaluation of a uniform
random number generation with [0, 1]; CR is a crossover rate
in the range [0, 1]; and F, is the evaluation of cost function.
Usually, the performance of a DE algorithm depends on three
variables: the population sizeN, the mutation factorfm, and the
crossover rate CR.

B. Chaotic differential evolution
Chaos theory is recognized as very useful in many

engineering applications. Chaos is a phenomenon that can

appear in solutions for nonlinear differential equations. An
essential feature of chaotic systems is that small changes in
the parameters or the starting values for the data lead to vastly
different future behaviors, such as stable fixed points, periodic
oscillations, bifurcations, and ergodicity. These behaviors can

be analyzed based on Lyapunov exponents and the attractor
theory [9].

Optimization algorithms based on the chaos theory are

stochastic search methodologies that differ from any of the
existing EAs. Due to the non-repetition of chaos, it can carry

out overall searches at higher speeds than stochastic ergodic
searches that depend on probabilities [10].

In DE design, the concepts of optimization based on
chaotic sequences can be a good altemative to provide
diversity in populations ofDE approaches. The parametersjm,
CR andjm of DE are generally the key factors that affect the
DE's convergence. In fact, however, parameters f,, and CR
cannot entirely ensure the ergodicity of the optimization in
phase search because they are constant factors in classical DE
algorithm procedures. Therefore, this paper provides three
new approaches introducing chaotic mapping with ergodicity,
irregularity and the stochastic property in DE to improve the
global convergence. The use of chaotic sequences in EAs can
be helpful to escape more easily from local minima than the
traditional EAs [10].

One of the simplest dynamic systems evidencing chaotic
behavior is the iterator named logistic map [11], whose
equation is given by:

y(t) = L-y(t-1).[1 -y(t-1)] (21)

where t is the sample,,is a control parameter, and 0<.u< 4. The
behavior of the system of equation (4) is greatly changed with
the variation of ,u. The value of ,u determines whether y
stabilizes at a constant size, oscillates among a limited
sequence of sizes, or whether y behaves chaotically in an
unpredictable pattern. A very small difference in the initial
value of y causes large differences in its long-time behavior
(Liu et al., 2005). Equation (4) is deterministic, exhibiting
chaotic dynamics when,u= 4 andy(1) X {0, 0.25, 0.50, 0.75, 1 }.
In this case, y(t) is distributed in the range (0,1) provided that
the initialy(1) c (0,1) and thaty(1) 0 {0, 0.25, 0.50, 0.75, 1}. In
this work, y(l)=0.48 was adopted for the experiments.
The design of methods to improve the convergence ofDE is

a challenging issue in EAs. New DE approaches are proposed
here. These two new approaches ofDE combined with chaotic
sequences, DEC, based on logistic maps are described as
follows:

Approach I - DECI: The parameter f, of equation (18) is
incremented with the evolution of generations. The value off,
is modified by the formula (21), based on the following
equations:

zi(t + 1) = xi,,1(t) + f2(t)[xi,,2 (t) -xi,,3 (t)] (22)

f2 (t)=L(f2* fi - a[- f (t-]I)

f2(t) = 0(f2f - fli G + f2i fl (t)
~~max

(23)

(24)

where 1-1 is the absolute value of the expression,f2i and f2f are

constants (f2j<Ji/), and G (the value of G is equal to t) is the
current generation number.
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Approach 2 - DEC2: The value of the parameterfm of equation
(18) decreases with the evolution of the generations. The value
offm is modified by same equations as those ofDEC 1, butf2i >

IV. SIMULATION RESULTS

The optimization was based on the following assumptions:
all stocks (raw materials and products) are initially empty and
there are M=3 raw materials, P=2 products, R=3 retailers and
T=3 periods. The same parameters of this simplified supply
chain problem referred by Mak and Wong[1] were optimized in
this work, as follows:

* products demands Drp, at each period are forecasted as:
DI,, = 80;D12= 60; D13= 70;
D121 = 50; D122 = 50; D123= 55;
D211 = 60;D212 75; D213= 65;
D221 = 45; D222 = 65; D223= 85;
D311 = 80;D312= 70; D313 = 90;
D321 = 50; D322 = 70;D323= 40.

* Machine processing time, Bp: (B1, B2) = (1, 1)
* Allotted time for manufacturing,

Pt (/1 , 2, 3 )=(800, 800, 800 )

* Transportation cost from manufacturer to retailers, CD:

(DrD D CD CD CD CD =- 1 1 4 4 2 2)
\- 11'2l12 21' 22 31 32,-\ ' ' '/

* Transportation cost from supplier to manufacturer, CM:

CMCM C3 = (0,3; 0,3; 0,2)
* Manufacturecost, C: (Cf,Cf)=(20,15)

* Shortage cost,Cs( C2 1IC2:2,I1C32
(1000, 500, 1800, 1000, 1000, 1000)

* Storage cost in the inlet stock, HM

(H1 , H2 I H3 )= (5, 8, 6)
* Storage cost in the outlet stock, HP (H1,Hj2)= (4, 3)

* Storage cost of products in the retailers, HR

\ H2RH IH ,RI IHR)=(8, 4, 12, 8, 8, 8)
* Raw material weight, W:

( MW WM)= (3,2,2)

* Product weight, W : (W1P,W )=(7, 13)

* Load limit from supplier to manufacturer, o M:

t.(0) m) X 3)= (5000, 5000, 5000)
* Load limit from manufacturer to retailers, ot)p

(1 0 W03 ) =(3000, 3000, 3000)

* Amount of raw material used in products, Omp:

For each of the previously describedDE and DEC, a total of
50 experiments were done, using the parameters before
mentioned and different initial random seeds. For all
optimization algorithms, individuals are composed by the
decision variables ImtIJ pt, Krpt, Zrpt , which are rounded to

the nearest integer, when computing the function eval(x).
Variables were allowed to span within the following ranges:
O<Imt<20 , O<Jpt<20 0<Kpt<30 and

0 < Zrpt < 120.

A total of 150,000 fitness evaluations (30 individuals; 5,000
generations) was done by each DE and DEC methods, every
run. Other particular parameters used in the standard DE are
fixed empirically were:
* DE(l): DE/randll/bin with CR = 0.80 and a constant
mutation factor given byfm(t) 0.40;
* DE(2): DE/randll/bin with CR = 0.80 and a mutation factor
fm(t) given by an uniformly distributed random value between
0.50 and 1.50;
* DE(3): classicalDE/rand/1/bin withCR= 0.80 and the value
of mutation factor f,(t) of equation (18) decreases with the
evolution ofthe generations by equation (27) withf2j= 0.80 and
f2L= 0.30;
* DEC1: uses a =0.50 and P =0.40;
* DEC2: uses DEC2 with the constants given byf2j, 0.80 and
f2L= 0.30;
* DEC3: uses DEC2 with the constants given byf2j, 0.30 and
f2L= 0.80.

Table I summarizes results obtained by the DE and DEC
implemented in this work, and those available in the literature,
such as genetic algorithm (GA) and branch and bound (BB) [1]
for the optimization of the supply chain.

TABLE I. RESULTS FOR THE OPTIMIZATION OF THE SUPPLY
CHAIN USING DIFFERENT OPTIMIZATION METHODS.

eval(x)
Optimizatio Best Worst Average Standard

n Deviation
met hods

GA [1] 115495.00 -
BB [1] 113584.00 - - -

DE(1) 98368.90 106092.90 102861.70 3381.05
DE(2) 111139.60 118427.40 115931.18 3304.70
DE(3) 96544.50 99825.40 99825.40 1402.22
DEC(1) 95025.00 96896.40 96322.60 601.99
DEC(2) 127824.70 151550.30 141132.50 10054.09
DEC(3) 97421.40 107158.90 97421.40 4006.52

Table I shows that the best results were obtained using DE
and DEC. GA did present acceptable results, but they still have
to be improved. In table I is observed that the DE and DEC
responded well for all the simulations attempts, except the

(011,01 2 021' 221 31'032/=(1, 3, 2, 1, 1, 2).
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DEC(3) approach. The robustness of DE and DEC is higher
that one of the tested GA and BB.

In table I is also observed that the DEC(1) obtains the best
result, average and standard deviation of tested approaches.
From 50 runs were made for each of the optimization methods
involving 50 different initial trial solutions, it is shown that the
results ofDEC(1), DEC(2), DE(3) and DEC(4) approaches were
significant in terms ofbest and average convergence. The best
results in minimization of cost function, eval(x), given by
DEC(3)with reduction of 19.53% ofthe best result usingGA of
[1].
An important remark is that the EAs implemented in this

work used the penalty-based method for constraint handling.
In contrast, Mak and Wong [1] used a method that preserves
feasibility of solutions by simply discarding unfeasible
solutions generated during its GA evolution, at the expense of
an extra comp utational overhead in the generation of
populations. DE and DEC algorithms were implemented using
Matlab 5.2, and took, in average, 330.99 and 332.18 seconds,
respectively, to run in a PC-compatible with AMD Athon 1.0
GHz processor and 128 MB RAM.

V. CONCLUSION AND FUTURE RESEARCH

This paper presented a comparative study of DE and new
DEC approaches for the optimization of a simplified supply
chain. The supply chain was modeled as a mixed-integer
programming problem, encompassing the optimization of
costs related to stocking, manufacturing, transportation and
shortage. The simplified supply chain had with 3 raw materials,
2 products, 3 retailers and 3 planning periods.

In this paper, the results obtained by DE and DEC are
presented. According to data used in this work, is important to
notice that shortage costs are very relevant. This is an attempt
to reconcile two conflicting objectives: forecasted demand and
low operational costs.
DE and DEC approaches obtained a better solution than

those published in previous work of [1]. The results of these
simulations are very encouraging and represent an important
contribution to DE and DEC algorithm setups. DEC is
employed in this paper to enhance the global exploration of
traditional DE.

Future work will include the hybridization of the DE and
DEC, by using a local search technique, such as

branch-and-bound and simulated annealing. This approach,
combining ofthe efficient global search ofDE and DEC and the
effectiveness of deterministic local search, possibly will give
good results for real-world problems.
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