
Preliminary Steps Towards Protein Folding Prediction
Using Reconfigurable Computing1

Nilton B. Armstrong Jr., Heitor S. Lopes, Carlos R. Erig Lima
Bioinformatics Laboratory (CPGEI) & Electronics Department

Federal University of Technology – Paraná
 Av. 7 de Setembro, 3165 802030-901 Curitiba (PR) – Brazil

 nlt_br@yahoo.com.br, hslopes@pesquisador.cnpq.br, erig@cefetpr.br

1This work was supported by the Brazilian National Research
Council (CNPq) under grants no. 506479/04-8, 501900/04-7
and 305720/04-0.

Abstract

This paper presents methodologies for the design of
a system based on reconfigurable hardware applied to
a complex problem in molecular Biology: the protein
folding problem. Different approaches are explored
and advantages and drawbacks are analyzed. Efficient
strategies are devised to achieve a significant
reduction of the search space of possible foldings.
Several simulations are done to evaluate the
performance of the system as well as the demand for
FPGA’s resources. This work is the base for future
hardware implementations aiming at finding the
optimal solution for protein folding problems using the
2D-HP model.

1. Introduction

Proteins perform vital functions in all living beings.
They are composed of a chain of amino acid residues,
and their function is determined by the way they are
folded into its specific tertiary structure. This structure
is called its native conformation. Therefore,
understanding how proteins fold is of great
significance for Biology and Biochemistry.

The structure of a protein is defined by its amino
acid sequences. The exhaustive search of the
conformational space of a protein is not possible using
a complete analytic model, even for small proteins.
Therefore, simple lattice models have been proposed to
decrease the complexity of the problem [5]. Even so,
the problem is still very hard and intractable for most
real-world instances [1]. The solution is either using
heuristic methods that not guarantee the optimal
solution [7] or some scalable strategy capable of

intelligently swap the search space and finding the
optimal folding.

Reconfigurable computation is a methodology that
has been sparsely explored in molecular Biology
applications. For instance, [9] presented new approach
to compute multiple sequence alignments in far shorter
time using FPGAs. In the same way, [10] and [2]
describe the use of FPGA-based systems for the
analysis of DNA chains. In addition, [8] present a
parallel hardware generator for the design and
prototyping of dedicated systems to the analysis of
biological sequences. However, there are still few
research groups exploring the use of FPGAs in
bioinformatics problems.

On the other hand, recently, we have witnessed a
pronounced growth of the hardware and software
technologies for embedded systems, with many
technological options arising every year. The use of
open and reconfigurable structures is becoming
attractive, especially due to its robustness and
flexibility for easy adaptation to different project
requirements. The possibility of massive parallel
processing makes reconfigurable computing (that is,
systems based on reconfigurable hardware) a suitable
technology to be applied to protein folding prediction
problem addressed here. Hence, the need for powerful
processing of biological sequences, on one hand, and
the appealing flexibility and performance of
reconfigurable logic, on the other hand, are the main
motivations of this work.

The main goal of this project is to develop a
methodology for sweeping all possible folding
combinations of a protein, using the 2D-HP model [4],
and find the conformation in which the number of
hydrophobic contacts is maximized. This methodology

is focused on a future implementation in hardware
using reconfigurable logic.

2. The 2D-HP model for protein folding

The Hydrophobic-Polar (HP) model is the most
known and studied discrete model for protein tertiary
structure prediction and it is due to [4]. It is based on
the concept that the major contribution to the free
energy of a native conformation of a protein is due to
interactions among hydrophobic amino acids. Such
amino acids tend to form a core in the protein structure
while being surrounded by the hydrophilic residues, in
such a way that the core is less susceptible to the
environmental influence [6].

The HP model classifies the 20 standard amino
acids in two types: either hydrophobic (H) or
hydrophilic (P, for polar). Therefore, a protein is a
string of characters defined over a binary alphabet
{H,P}. Each amino acid in the chain is called a
residue. In this model, the amino acids chain is
embedded in a 2-dimensional square lattice. At each
point of the lattice, the chain can turn 90º left or right,
or continue ahead. For a given conformation to be
valid the adjacent residues in the sequence must be also
adjacent in the lattice and each lattice point can be
occupied by only one residue.

If two hydrophobic residues occupy adjacent grid
points in the lattice but are not consecutive in the
sequence, it is said that a non-local bond (or H-H
contact) takes place. The free energy of a conformation
is inversely proportional to the number of H-H
contacts. This yields two basic characteristics of real
proteins: the protein fold must be compact and the
hydrophobic residues are buried inside to form low-
energy conformations [6]. The protein folding problem
may be considered as the maximization of the
hydrophobic non-local bonds, since this is the same as
the minimization of the free energy of a conformation
in this model.

Although simple, the folding process with the 2D-
HP model has behavioral similarities with the real
process of folding [4]. Notwithstanding, from the
computational point of view, the problem of finding
the native structure using the 2D-HP model is proved
to be NP-complete [3].

3. Methodology

3.1 Topology

Fig. 1 shows a functional block diagram of a

hardware-based system for finding the optimum
conformation (folding) of a protein. This system uses

the primary structure of a protein and is based on the
2D-HP model. Basically, a counter will swap all
possible conformations, according to a given encoding
(section 3.2). Conformations have to be converted to
Cartesian coordinates (section 3.5) and then checked
for validity (sections 3.3 and 3.6). After, the number of
H-H contacts is counted for the valid conformations
found. The conformation with the largest number of
contacts is kept and this is the solution for the problem.

Fig. 1. Functional blocks of the proposed system.

 3.2 Representation

To find the conformation with minimum energy, the
whole search space has to be swapped. It will be shown
later that, instead of a crude exhaustive search, we
devised an intelligent search that avoids most of the
invalid conformations. The central issues to be
addressed is how to represent a protein chain folded in
the 2D-HP model using reconfigurable logic, and how
to browse the search space.

To solve the representation problem, a relative
positional convention and hydrophobicity information
was defined. Basically, only the relative positional
information is stored, saving the system from storing
the set of Cartesian coordinates of the amino acids in
the lattice. This convention is simple and comprises the
four possible relative folding directions: North (N),
South (S), East (E) and West (W), encoded with two
bits, respectively, 00, 01, 10 and 11, and stands for the
bindings between the amino acids. Therefore, a
complete fold of N amino acids has (N-1) bindings and
is represented by a 2(N-1) long binary number. It is
important to note that this representation considers the
folding backwards, from the last amino acid of the
sequence to the first one. That is why the binary
number generated does not looks like the actual
structure itself, but its reverse image. Actually, this is
just a convention to make the least significant pair of
bits represent the initial amino acid of the folding. This

convention represents the bindings themselves and not
the amino acids.

Another relevant information is the hydrophobicity
data (HD), that is, a reverse single binary number
representing which amino acids are Hydrophobic (bit
1) and which are Polar (bit 0). Therefore, an entire
folded protein is represented by two binary numbers:
its positional information and its HD configuration.
According to this convention, Fig. 2 shows an example
of a 6 amino acids-long protein, its representation and
how this specific fold would be represented in the
lattice. The filled out points represent hydrophobic
amino acids. The “X” mark indicates the first amino
acid of the chain.

Fig. 2. Example of a folded protein and its
representation.

3.3 Intelligent counter

The straightforward advantage of this binary
representation, to the folding perspective, is that it is
possible to generate a single step binary counter to
generate every possible folding (described by a binary
number) for a given amino acids chain. However, there
is a serious drawback. For a N amino acids-long
protein it is necessary a number of bits that is twice the
number of bindings (2(N-1)), according to the
proposed representation, thus resulting in 22(N-1)

possible foldings. For instance, to fold a 50 amino
acids protein there would be 298 or 3.16913x1029
possible combinations. Such a combination explosion
could render the counter unlikely to sweep through all
these combinations in a useful time, even considering a
typical maximum clock of 500 MHz of modern FPGA
devices.

However, checking closely the physical behavior of
the folding nature, it can be noticed that the folding
must follow a self-avoiding path in the lattice. That is,
if the previous folding was to the North direction, the
next folding cannot be to the South. The same applies
to the West-East directions. These foldings are invalid
since, according to the HP model, in a valid protein
conformation a point in the lattice can have at most a

single amino acid. Thus, there is no reason to consider
any folding that violate this rule, leading to the need of
preventing the system of analyzing them, as they are
previously known to be invalid. These violations were
named of Rule2 violations, for being related to
consecutive adjacent invalid foldings. Consequently,
we created an intelligent counter that generates only
valid foldings (according to Rule2). It can be proved
(not shown here) that using this type of counter a
significant reduction of the search space is obtained, up
to 97% or more. However, depending on the length of
the protein, analyzing 3% of a huge search space is still
too large be done.

Notice that Rule2 does not prevent violations
caused by the overlapping of distant amino acids in the
chain, as a consequence of a loop in the folding.
Although these loop violations are desirable to be
eliminated from the analysis they are very difficult to
be foreseen, as will be explained later.

Another feature addressed in this counter is the
primary elimination of repetitive hydrophobic count
information. As shown in Fig. 3, if all of the possible
foldings of a protein are drawn, it can be seen that
there is a pattern (shown in light gray) that repeats
itself, rotated in the space. Since each occurrence of
this pattern contains exactly the same set of foldings, ¾
of the possible foldings, already considering the Rule2
applied, can be discarded saving processing time.

With the proposed intelligent counter a dramatic
reduction of the search space is achieved, that is, only
0.75% of the original search space has to be analyzed.

Fig. 3. Out-of-scale sketch of all possible foldings of
a 3-amino acids protein. The “X” marks the initial

amino acid.

3.4 Alternative implementations

The intelligent counter was designed in such a way
to generate only the numbers that do not violate Rule2.
The main challenge is to build a counter that
implements Rule2 in real-time (for instance, without

the addition of any machine state). The counter cannot
simply stop updating its output when a Rule2 violation
is found. Actually, it has to be intelligent enough to
avoid these violations by avoiding the counting, and to
do this spending the minimal number of clocks as
possible.

For instance, the actual count, for a 3 amino acids
counter could be 0-2-3-5-6-7-8-9-10-12-13-15, with no
clock spent on conformations 1-4-11-14, as they
contain Rule2 violations. Notice that the objective is
devise a counter that behaves like this example, with
no clocks wasted between the valid counts. However, it
turned out to be unfeasible. It is possible to find a
mathematical way to detect Rule2 violations, but loops
in any point of the chain cannot be predicted with
formulas, requiring a further test converting a folding
to the coordinates space (see validity checker block in
Fig. 1). This kind of counting is required to preserve
the real-time property, such that the output of the
counter should be stable for no more than 1 clock
cycle. This problem revealed itself to be considerably
difficult, as there are no formulas or methods for
predicting such violations.

The first attempt tried to implement a full
combinational logic counter, specific to each number
of amino acids. In this circuit, the actual output is
analyzed at the moment of its generation, and
evaluated to be valid or not. A truth table is created for
each possible, valid and invalid, counting, which
already incorporates the required analysis. The
advantages of this architecture are its speed and the
warranty that the output of the circuit would contain
only valid, Rule2 violation free countings, at each
clock cycle. However, since this circuit must be
specific for a given number of amino acids, it tends to
become hard to be implemented, when the number of
amino acids increases, demanding large amount of
FPGA’s resources. Due to an exponential growth of
resources used with this approach, it is unlike to be
feasible for chains larger than 9.

The second approach is to create a general solution
that can be applied to any number of amino acids. This
attempt is purely combinatorial, and uses sophisticated
capabilities of the VHDL language to implement this
counter, such as parallel/sequential blocks of code and
check the validity of a counting before it is generated.
This general solution turned out to be much more
efficient, regarding resources (memory and logic
elements), but did not have the same speed as the first
approach. On the other hand, it can be used with any
number of amino acids desired. It implements a series
of comparisons between the pairs of bits which define
the positional information. This approach looks for
Rule2 violations, that is, the four combinations: 00-01,
01-00, 10-11, 11-10. If any of them is detected, the

counter is automatically incremented, generating a new
folding. This solution is particularly useful when the
violation occurs in the most significant pair of bits. For
instance, this approach jumps from 00-00-11-11
(which has a Rule2 violation between pairs two and
three) directly to 00-10-00-00. This prevents the
system from counting 16 useless combinations (every
number which started with 00-01-…). This is done
within a single clock cycle in most of the cases, except
when the new number is also invalid, thus justifying
the check to be done in the following number.

3.5 Coordinates converter

The output of the counter, representing a given
conformation, has to be converted to Cartesian
coordinates (see Fig. 2) so as to effectively embed the
amino acid chain in the lattice, for further loop
detection and contact counting. Using the first amino
acid as reference, the coordinates are generated by a
combinational circuit, in real-time, for the whole
protein. When a new count is generated, the system
checks the position relative to the first pair of bits, and
goes on checking until the whole protein is completely
analyzed. This process is done in such a manner that
the current pair of bits is analyzed. Then, according to
a comparison with the previous coordinates, it
increments or decrements conveniently to generate the
next pair of Cartesian coordinates. This process is also
done by a combinational circuit and does not depend
on clock changes.

3.6 Loop detector and contact counter

The next step before actually counting the number
of contacts of a valid folding is the loop detection. This
block checks for valid conformations, in which there
are no overlapped amino acids. For this purpose, two
approaches were studied, both using the data generated
from the relative positional information from the
intelligent counter (section 3.3) and are based on the
Cartesian coordinates explained in section 3.5.

The first model intends to predict overlaps in a
single clock and the second one uses a finite state
machine (FSM). The objective is to devise a circuit for
detecting any pair of identical coordinates. If two pairs
of XY coordinates are identical, there is an overlap in
the chain, therefore, the folding is invalid. To predict
an overlap in a single clock cycle, the circuit must be
purely combinatorial. To do this, every XY pair is
connected to (N-1) comparators, where N is the number
of coordinates. However, although it performs well, the
number of FPGA’s resources used tends to grow
exponentially as the length of amino acids chain

increase. This approach is feasible only for very small
amino acids chains.

The second approach does sequential comparisons,
using a FSM that reads the coordinates (starting in
(0,0)) sequentially, until the last pair. For each new
coordinate pair read, a comparison is carried out with
all the pairs yet to be analyzed, to check for
overlapping of any distant amino acids with the current
one. Also, if the amino acid is hydrophobic, its
neighborhood is checked for non adjacent hydrophobic
amino acids. As new H-H contacts are found, they are
summed up. Therefore, this block performs two
functions at the same time: detects loops (invalid
foldings) and counts H-H contacts (for the valid
foldings). If a loop is found, invalidating the folding,
the process stops and the next folding is analyzed.

Currently, this approach stores the relative position
code of the first occurrence of the highest contact count
and also its hydrophobic count. Any subsequent
occurrence of a folding with the same number of
contacts is discarded.

The main drawback of this approach is that each
coordinate pair has to be compared with almost all of
the pairs yet to be analyzed. When the number of
amino acids increases, the analysis can demand a
significant processing time. Another alternative for
these comparisons, currently under study, is somehow
to abstract a matrix within the FPGA and try to draw
the protein into this matrix. This process indeed would
take no longer than N clock cycles to check the
occurrence of overlapping, with a protein of N amino
acids, but the process of writing into a logic cell matrix
and erasing it seems to request a lot of FPGA’s
resources.

4. Results

In order to evaluate the efficiency of the proposed
approach before implementing it in hardware, several
simulations were done using Altera’s Quartus II
software. There are three motivations for these
simulations, as follows:

• Check if the system really can identify the
first occurrence of the optimum folding,
according to its hydrophobicity, compared to
the known value.

• Determine the required processing time for
foldings with a given set of amino acids and,
then, estimate the time required for processing
proteins with higher number of amino acids.

• Estimate the FPGA’s resources usage growth
with the increment of the size of the amino
acids chain.

Simulations were done using an Altera Stratix II
EP2S15F484C3 device. Each simulation was done
considering that the system will supply results to a
desktop computer, by reading directly the FPGA’s
internal memory. Every simulation respected the clock
restrictions of the whole system, which is known to
decrease as the internal logic is increased.

 Table 1 shows the results obtained regarding the
number of contacts for a set of hypothetical amino
acids chains. All of these proteins are purely
hydrophobic, in order to count not only the real H-H
contacts, but also to be sure that the system is not
considering contacts on adjacent and consecutive
amino acids. The column “Best folding number” in the
table is the positional information of the best folding
converted to a decimal number, for better
understanding. Column “Desktop computer” presents
the processing time of the same amino acids chains
using a desktop computer with Pentium 4 processor
with 800 MHz clock. These results are merely
illustrative since the resolution of the PC timer is 1
millisecond and the algorithm (implemented in C
language) is not the same as the one simulated in
hardware.

Table 1. Results of simulations regarding folding
number and contact count for purely hydrophobic

amino acids chains.
Number of
amino acids Best folding number Number of

contacts
4 9 1
5 9 1
6 37 2
7 37 2
8 149 3
9 2400 4

10 597 4
11 9568 5

Table 2 shows the processing time needed to find

the optimum folding and the total processing time
necessary to sweep the whole search space of possible
foldings.

Finally, Table 3 shows the resources usage of the
FPGA versus the several amino acids chain sizes. It is
important to note that these values are specific to the
FPGA device chosen and may be different for other
chips. The “Maximum clock” column is the speed the
system is able to run, according to each amino acid
chain simulated.

The term ALUTs is an Altera specific naming
used to be equivalent to Logic Cells, which are

functional logic blocks within the chip. Actually, the
chosen FPGA has 12,480 ALUTs.

Table 2. Processing time.

Number of
amino acids

Time to find
the optimal
folding (s)

Total time
(s)

Desktop
computer (s)

4 1.92E-07 3.44E-07 -
5 4.48E-07 2.30E-06 -
6 2.08E-06 1.21E-05 -
7 2.93E-06 4.84E-05 -
8 1.32E-05 2.27E-04 2.00E-02
9 1.52E-04 9.63E-04 5.00E-02

10 6.98E-05 3.68E-03 1.30E-01
11 7.26E-04 1.37E-02 4.01E-01

Table 3. Resources usage and maximum clock.

Number of
amino acids

Resources usage
(ALUTs)

Maximum clock
(MHz)

4 106 274.88
5 173 228.26
6 243 217.78
7 268 235.18
8 442 205.47
9 520 186.39

10 604 184.37
11 687 177.12
30 3241 106.40
50 7611 73.42

5. Conclusions

Results of the simulations showed that the proposed
algorithm is efficient for finding the optimal folding.
The number of H-H contacts found by the system for
each simulation did match with the expected value.
Therefore, the proposed methodology for solving the
protein folding problem gives correct answers.

Since the main objective is to find the first
occurrence of the optimum folding as fast as possible,
the system achieved this goal. Recall that the optimum
folding is the one with the highest number of H-H
contacts. Table 2 shows that the time necessary to find
the best folding is indeed small, when compared to the
time needed for the software implementation.

Regarding the growth of resources usage, the
implementation behaved within satisfactory
boundaries. Despite this growth is not linear with the
increase of the amino acids chain, it does not increase
exponentially. The maximum allowed clock decreased

slower than expected, and it still can be run in a fair
speed even with 30 or 50 amino acids.

The main focus in this work is to devise a
methodology to reduce the huge search space to a limit
in which it can be analyzed in an acceptable time. This
feature has been achieved by reducing the search
space, thanks to the Rule2 elimination and by
discarding 75% of the redundant combinations. With
the proposed intelligent counter a dramatic reduction of
the search space is achieved, that is, only 0.75% of the
original search space has to be analyzed.

We believe that the performance of the system
could be greatly increased by using strategies for
massive parallelization of the processing elements.

Another point to be explored so as to enhance the
system is the substitution of the algorithm based on the
comparison of the Cartesian coordinates by another
algorithm based on a matrix of bits. In such approach,
the entire chain could be drawn, enabling the system to
check validity in parallel with the contact count.

6. References

[1] B. Berger and T. Leight, “Protein folding in the
hydrophobic-hydrophilic (HP) model is NP-complete,” J.
Comput. Biol., vol. 5, pp. 27–40, 1998.

[2] M. Canella, F. Miglioli, A. Bogliolo, E. Petraglio and E.
Sanchez, “Performing DNA comparison on a bio-inspired
tissue of FPGAs,” in Proc. of IEEE International Parallel
and Distributed Processing Symposium, pp. 193–199, 2003.

[3] P. Crescenzi, D. Goldman, C. Papadimitriou, A.
Piccolboni, and M. Yannakakis, “On the complexity of
protein folding,” J. Comput. Biol., vol. 5, pp. 423–465, 1998.

[4] K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee,
P.D. Thomas, and H.S. Chan, “Principles of protein folding –
a perspective from simple exact models,” Protein Sci., vol. 4,
pp. 561–602, 1995.

[5] K.A. Kill, “Theory for the folding and stability of
globular proteins,” Biochemistry, vol. 24, pp. 1501–1509,
1985.

[6] A.L. Lehninger, D.L. Nelson, and M.M. Cox, Principles
of Biochemistry, 2nd ed. New York, USA: Worth Publishers,
1998.

[7] H.S. Lopes and M. Scapin, “An enhanced genetic
algorithm for protein structure prediction using the 2D
hydrophobic-polar model,” in Proc. Artificial Evolution,
LNCS, vol. 3871, pp.238-246, 2005.

[8] A. Marongiu, P. Palazzari, V. Rosato, V., “Designing
hardware for protein sequence analysis, Bioinformatics, vol.
19, pp. 1739–1740, 2003.

[9] T. Oliver, B. Schmidt, D. Nathan, R. Clemens, and D.
Maskell, “Using reconfigurable hardware to accelerate
multiple sequence alignment with ClustalW,” Bioinformatics,
vol. 21, pp. 3431–3432, 2005.

[10] Y. Yamaguchi, T. Maruyama and A. Konagaya, “High
speed homology search with FPGAs,” in Proc. Pacific
Symposium on Biocomputing, pp. 271–282, 2002.

