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Abstract 
 

This paper presents methodologies for the design of 
a system based on reconfigurable hardware applied to 
a complex problem in molecular Biology: the protein 
folding problem. Different approaches are explored 
and advantages and drawbacks are analyzed. Efficient 
strategies are devised to achieve a significant 
reduction of the search space of possible foldings. 
Several simulations are done to evaluate the 
performance of the system as well as the demand for 
FPGA’s resources. This work is the base for future 
hardware implementations aiming at finding the 
optimal solution for protein folding problems using the 
2D-HP model. 
 
1. Introduction 
 

Proteins perform vital functions in all living beings. 
They are composed of a chain of amino acid residues, 
and their function is determined by the way they are 
folded into its specific tertiary structure. This structure 
is called its native conformation. Therefore, 
understanding how proteins fold is of great 
significance for Biology and Biochemistry. 

The structure of a protein is defined by its amino 
acid sequences. The exhaustive search of the 
conformational space of a protein is not possible using 
a complete analytic model, even for small proteins. 
Therefore, simple lattice models have been proposed to 
decrease the complexity of the problem [5]. Even so, 
the problem is still very hard and intractable for most 
real-world instances [1]. The solution is either using 
heuristic methods that not guarantee the optimal 
solution [7] or some scalable strategy capable of 

intelligently swap the search space and finding the 
optimal folding. 

Reconfigurable computation is a methodology that 
has been sparsely explored in molecular Biology 
applications. For instance, [9] presented new approach 
to compute multiple sequence alignments in far shorter 
time using FPGAs. In the same way, [10] and [2] 
describe the use of FPGA-based systems for the 
analysis of DNA chains. In addition, [8] present a 
parallel hardware generator for the design and 
prototyping of dedicated systems to the analysis of 
biological sequences. However, there are still few 
research groups exploring the use of FPGAs in 
bioinformatics problems.  

On the other hand, recently, we have witnessed a 
pronounced growth of the hardware and software 
technologies for embedded systems, with many 
technological options arising every year. The use of 
open and reconfigurable structures is becoming 
attractive, especially due to its robustness and 
flexibility for easy adaptation to different project 
requirements. The possibility of massive parallel 
processing makes reconfigurable computing (that is, 
systems based on reconfigurable hardware) a suitable 
technology to be applied to protein folding prediction 
problem addressed here. Hence, the need for powerful 
processing of biological sequences, on one hand, and 
the appealing flexibility and performance of 
reconfigurable logic, on the other hand, are the main 
motivations of this work. 

The main goal of this project is to develop a 
methodology for sweeping all possible folding 
combinations of a protein, using the 2D-HP model [4], 
and find the conformation in which the number of 
hydrophobic contacts is maximized. This methodology 



is focused on a future implementation in hardware 
using reconfigurable logic. 
 
2. The 2D-HP model for protein folding 
 

The Hydrophobic-Polar (HP) model is the most 
known and studied discrete model for protein tertiary 
structure prediction and it is due to [4]. It is based on 
the concept that the major contribution to the free 
energy of a native conformation of a protein is due to 
interactions among hydrophobic amino acids. Such 
amino acids tend to form a core in the protein structure 
while being surrounded by the hydrophilic residues, in 
such a way that the core is less susceptible to the 
environmental influence [6]. 

The HP model classifies the 20 standard amino 
acids in two types: either hydrophobic (H) or 
hydrophilic (P, for polar). Therefore, a protein is a 
string of characters defined over a binary alphabet 
{H,P}. Each amino acid in the chain is called a 
residue. In this model, the amino acids chain is 
embedded in a 2-dimensional square lattice. At each 
point of the lattice, the chain can turn 90º left or right, 
or continue ahead. For a given conformation to be 
valid the adjacent residues in the sequence must be also 
adjacent in the lattice and each lattice point can be 
occupied by only one residue. 

If two hydrophobic residues occupy adjacent grid 
points in the lattice but are not consecutive in the 
sequence, it is said that a non-local bond (or H-H 
contact) takes place. The free energy of a conformation 
is inversely proportional to the number of H-H 
contacts. This yields two basic characteristics of real 
proteins: the protein fold must be compact and the 
hydrophobic residues are buried inside to form low-
energy conformations [6]. The protein folding problem 
may be considered as the maximization of the 
hydrophobic non-local bonds, since this is the same as 
the minimization of the free energy of a conformation 
in this model. 

Although simple, the folding process with the 2D-
HP model has behavioral similarities with the real 
process of folding [4]. Notwithstanding, from the 
computational point of view, the problem of finding 
the native structure using the 2D-HP model is proved 
to be NP-complete [3]. 
 
3. Methodology 
 
3.1 Topology 

 
Fig. 1 shows a functional block diagram of a 

hardware-based system for finding the optimum 
conformation (folding) of a protein. This system uses 

the primary structure of a protein and is based on the 
2D-HP model. Basically, a counter will swap all 
possible conformations, according to a given encoding 
(section 3.2). Conformations have to be converted to 
Cartesian coordinates (section 3.5) and then checked 
for validity (sections 3.3 and 3.6). After, the number of 
H-H contacts is counted for the valid conformations 
found. The conformation with the largest number of 
contacts is kept and this is the solution for the problem.  
 

 
Fig. 1. Functional blocks of the proposed system. 

 
 3.2 Representation  
 

To find the conformation with minimum energy, the 
whole search space has to be swapped. It will be shown 
later that, instead of a crude exhaustive search, we 
devised an intelligent search that avoids most of the 
invalid conformations.  The central issues to be 
addressed is how to represent a protein chain folded in 
the 2D-HP model using reconfigurable logic, and how 
to browse the search space.  

To solve the representation problem, a relative 
positional convention and hydrophobicity information 
was defined. Basically, only the relative positional 
information is stored, saving the system from storing 
the set of Cartesian coordinates of the amino acids in 
the lattice. This convention is simple and comprises the 
four possible relative folding directions: North (N), 
South (S), East (E) and West (W), encoded with two 
bits, respectively, 00, 01, 10 and 11, and stands for the 
bindings between the amino acids. Therefore, a 
complete fold of N amino acids has (N-1) bindings and 
is represented by a 2(N-1) long binary number. It is 
important to note that this representation considers the 
folding backwards, from the last amino acid of the 
sequence to the first one. That is why the binary 
number generated does not looks like the actual 
structure itself, but its reverse image. Actually, this is 
just a convention to make the least significant pair of 
bits represent the initial amino acid of the folding. This 



convention represents the bindings themselves and not 
the amino acids.  

Another relevant information is the hydrophobicity 
data (HD), that is, a reverse single binary number 
representing which amino acids are Hydrophobic (bit 
1) and which are Polar (bit 0). Therefore, an entire 
folded protein is represented by two binary numbers: 
its positional information and its HD configuration. 
According to this convention, Fig. 2 shows an example 
of a 6 amino acids-long protein, its representation and 
how this specific fold would be represented in the 
lattice. The filled out points represent hydrophobic 
amino acids. The “X” mark indicates the first amino 
acid of the chain. 
 

 
 

Fig. 2. Example of a folded protein and its 
representation. 

 
3.3 Intelligent counter 
 

The straightforward advantage of this binary 
representation, to the folding perspective, is that it is 
possible to generate a single step binary counter to 
generate every possible folding (described by a binary 
number) for a given amino acids chain. However, there 
is a serious drawback. For a N amino acids-long 
protein it is necessary a number of bits that is twice the 
number of bindings (2(N-1)), according to the 
proposed representation, thus resulting in 22(N-1) 

possible foldings. For instance, to fold a 50 amino 
acids protein there would be 298 or 3.16913x1029 
possible combinations. Such a combination explosion 
could render the counter unlikely to sweep through all 
these combinations in a useful time, even considering a 
typical maximum clock of 500 MHz of modern FPGA 
devices.  

However, checking closely the physical behavior of 
the folding nature, it can be noticed that the folding 
must follow a self-avoiding path in the lattice. That is, 
if the previous folding was to the North direction, the 
next folding cannot be to the South. The same applies 
to the West-East directions. These foldings are invalid 
since, according to the HP model, in a valid protein 
conformation a point in the lattice can have at most a 

single amino acid. Thus, there is no reason to consider 
any folding that violate this rule, leading to the need of 
preventing the system of analyzing them, as they are 
previously known to be invalid. These violations were 
named of Rule2 violations, for being related to 
consecutive adjacent invalid foldings. Consequently, 
we created an intelligent counter that generates only 
valid foldings (according to Rule2). It can be proved 
(not shown here) that using this type of counter a 
significant reduction of the search space is obtained, up 
to 97% or more. However, depending on the length of 
the protein, analyzing 3% of a huge search space is still 
too large be done.  

Notice that Rule2 does not prevent violations 
caused by the overlapping of distant amino acids in the 
chain, as a consequence of a loop in the folding. 
Although these loop violations are desirable to be 
eliminated from the analysis they are very difficult to 
be foreseen, as will be explained later. 

Another feature addressed in this counter is the 
primary elimination of repetitive hydrophobic count 
information. As shown in Fig. 3, if all of the possible 
foldings of a protein are drawn, it can be seen that 
there is a pattern (shown in light gray) that repeats 
itself, rotated in the space. Since each occurrence of 
this pattern contains exactly the same set of foldings, ¾ 
of the possible foldings, already considering the Rule2 
applied, can be discarded saving processing time. 

With the proposed intelligent counter a dramatic 
reduction of the search space is achieved, that is, only 
0.75% of the original search space has to be analyzed. 
 

 
Fig. 3. Out-of-scale sketch of all possible foldings of 
a 3-amino acids protein. The “X” marks the initial 

amino acid. 
 
3.4 Alternative implementations 
 

The intelligent counter was designed in such a way 
to generate only the numbers that do not violate Rule2. 
The main challenge is to build a counter that 
implements Rule2 in real-time (for instance, without 



the addition of any machine state). The counter cannot 
simply stop updating its output when a Rule2 violation 
is found. Actually, it has to be intelligent enough to 
avoid these violations by avoiding the counting, and to 
do this spending the minimal number of clocks as 
possible.  

For instance, the actual count, for a 3 amino acids 
counter could be 0-2-3-5-6-7-8-9-10-12-13-15, with no 
clock spent on conformations 1-4-11-14, as they 
contain Rule2 violations. Notice that the objective is 
devise a counter that behaves like this example, with 
no clocks wasted between the valid counts. However, it 
turned out to be unfeasible. It is possible to find a 
mathematical way to detect Rule2 violations, but loops 
in any point of the chain cannot be predicted with 
formulas, requiring a further test converting a folding 
to the coordinates space (see validity checker block in 
Fig. 1). This kind of counting is required to preserve 
the real-time property, such that the output of the 
counter should be stable for no more than 1 clock 
cycle. This problem revealed itself to be considerably 
difficult, as there are no formulas or methods for 
predicting such violations.  

The first attempt tried to implement a full 
combinational logic counter, specific to each number 
of amino acids. In this circuit, the actual output is 
analyzed at the moment of its generation, and 
evaluated to be valid or not. A truth table is created for 
each possible, valid and invalid, counting, which 
already incorporates the required analysis. The 
advantages of this architecture are its speed and the 
warranty that the output of the circuit would contain 
only valid, Rule2 violation free countings, at each 
clock cycle. However, since this circuit must be 
specific for a given number of amino acids, it tends to 
become hard to be implemented, when the number of 
amino acids increases, demanding large amount of 
FPGA’s resources. Due to an exponential growth of 
resources used with this approach, it is unlike to be 
feasible for chains larger than 9.  

The second approach is to create a general solution 
that can be applied to any number of amino acids. This 
attempt is purely combinatorial, and uses sophisticated 
capabilities of the VHDL language to implement this 
counter, such as parallel/sequential blocks of code and 
check the validity of a counting before it is generated. 
This general solution turned out to be much more 
efficient, regarding resources (memory and logic 
elements), but did not have the same speed as the first 
approach. On the other hand, it can be used with any 
number of amino acids desired. It implements a series 
of comparisons between the pairs of bits which define 
the positional information. This approach looks for 
Rule2 violations, that is, the four combinations: 00-01, 
01-00, 10-11, 11-10. If any of them is detected, the 

counter is automatically incremented, generating a new 
folding. This solution is particularly useful when the 
violation occurs in the most significant pair of bits. For 
instance, this approach jumps from 00-00-11-11 
(which has a Rule2 violation between pairs two and 
three) directly to 00-10-00-00. This prevents the 
system from counting 16 useless combinations (every 
number which started with 00-01-…). This is done 
within a single clock cycle in most of the cases, except 
when the new number is also invalid, thus justifying 
the check to be done in the following number. 

 
3.5 Coordinates converter 
 

The output of the counter, representing a given 
conformation, has to be converted to Cartesian 
coordinates (see Fig. 2) so as to effectively embed the 
amino acid chain in the lattice, for further loop 
detection and contact counting. Using the first amino 
acid as reference, the coordinates are generated by a 
combinational circuit, in real-time, for the whole 
protein. When a new count is generated, the system 
checks the position relative to the first pair of bits, and 
goes on checking until the whole protein is completely 
analyzed. This process is done in such a manner that 
the current pair of bits is analyzed. Then, according to 
a comparison with the previous coordinates, it 
increments or decrements conveniently to generate the 
next pair of Cartesian coordinates. This process is also 
done by a combinational circuit and does not depend 
on clock changes. 
 
3.6 Loop detector and contact counter 
 

The next step before actually counting the number 
of contacts of a valid folding is the loop detection. This 
block checks for valid conformations, in which there 
are no overlapped amino acids. For this purpose, two 
approaches were studied, both using the data generated 
from the relative positional information from the 
intelligent counter (section 3.3) and are based on the 
Cartesian coordinates explained in section 3.5.  

The first model intends to predict overlaps in a 
single clock and the second one uses a finite state 
machine (FSM). The objective is to devise a circuit for 
detecting any pair of identical coordinates. If two pairs 
of XY coordinates are identical, there is an overlap in 
the chain, therefore, the folding is invalid. To predict 
an overlap in a single clock cycle, the circuit must be 
purely combinatorial. To do this, every XY pair is 
connected to (N-1) comparators, where N is the number 
of coordinates. However, although it performs well, the 
number of FPGA’s resources used tends to grow 
exponentially as the length of amino acids chain 



increase. This approach is feasible only for very small 
amino acids chains. 

The second approach does sequential comparisons, 
using a FSM that reads the coordinates (starting in 
(0,0)) sequentially, until the last pair. For each new 
coordinate pair read, a comparison is carried out with 
all the pairs yet to be analyzed, to check for 
overlapping of any distant amino acids with the current 
one. Also, if the amino acid is hydrophobic, its 
neighborhood is checked for non adjacent hydrophobic 
amino acids. As new H-H contacts are found, they are 
summed up. Therefore, this block performs two 
functions at the same time: detects loops (invalid 
foldings) and counts H-H contacts (for the valid 
foldings). If a loop is found, invalidating the folding, 
the process stops and the next folding is analyzed.  

Currently, this approach stores the relative position 
code of the first occurrence of the highest contact count 
and also its hydrophobic count. Any subsequent 
occurrence of a folding with the same number of 
contacts is discarded. 

The main drawback of this approach is that each 
coordinate pair has to be compared with almost all of 
the pairs yet to be analyzed. When the number of 
amino acids increases, the analysis can demand a 
significant processing time. Another alternative for 
these comparisons, currently under study, is somehow 
to abstract a matrix within the FPGA and try to draw 
the protein into this matrix. This process indeed would 
take no longer than N clock cycles to check the 
occurrence of overlapping, with a protein of N amino 
acids, but the process of writing into a logic cell matrix 
and erasing it seems to request a lot of FPGA’s 
resources.  

 
4. Results 
 

In order to evaluate the efficiency of the proposed 
approach before implementing it in hardware, several 
simulations were done using Altera’s Quartus II 
software. There are three motivations for these 
simulations, as follows: 

• Check if the system really can identify the 
first occurrence of the optimum folding, 
according to its hydrophobicity, compared to 
the known value. 

• Determine the required processing time for 
foldings with a given set of amino acids and, 
then, estimate the time required for processing 
proteins with higher number of amino acids.  

• Estimate the FPGA’s resources usage growth 
with the increment of the size of the amino 
acids chain. 

Simulations were done using an Altera Stratix II 
EP2S15F484C3 device. Each simulation was done 
considering that the system will supply results to  a 
desktop computer, by reading directly the FPGA’s 
internal memory. Every simulation respected the clock 
restrictions of the whole system, which is known to 
decrease as the internal logic is increased. 

 Table 1 shows the results obtained regarding the 
number of contacts for a set of hypothetical amino 
acids chains. All of these proteins are purely 
hydrophobic, in order to count not only the real H-H 
contacts, but also to be sure that the system is not 
considering contacts on adjacent and consecutive 
amino acids. The column “Best folding number” in the 
table is the positional information of the best folding 
converted to a decimal number, for better 
understanding. Column “Desktop computer” presents 
the processing time of the same amino acids chains 
using a desktop computer with Pentium 4 processor 
with 800 MHz clock. These results are merely 
illustrative since the resolution of the PC timer is 1 
millisecond and the algorithm (implemented in C 
language) is not the same as the one simulated in 
hardware. 
 

Table 1. Results of simulations regarding folding 
number and contact count for purely hydrophobic 

amino acids chains. 
Number of 
amino acids Best folding number Number of 

contacts 
4 9 1 
5 9 1 
6 37 2 
7 37 2 
8 149 3 
9 2400 4 

10 597 4 
11 9568 5 

 
Table 2 shows the processing time needed to find 

the optimum folding and the total processing time 
necessary to sweep the whole search space of possible 
foldings. 

Finally, Table 3 shows the resources usage of the 
FPGA versus the several amino acids chain sizes. It is 
important to note that these values are specific to the 
FPGA device chosen and may be different for other 
chips. The “Maximum clock” column is the speed the 
system is able to run, according to each amino acid 
chain simulated. 

The term ALUTs is an Altera specific naming 
used to be equivalent to Logic Cells, which are 



functional logic blocks within the chip. Actually, the 
chosen FPGA has 12,480 ALUTs. 

 
Table 2. Processing time. 

Number of 
amino acids 

Time to find 
the optimal 
folding (s) 

Total time 
(s) 

Desktop 
computer (s)

4 1.92E-07 3.44E-07 - 
5 4.48E-07 2.30E-06 - 
6 2.08E-06 1.21E-05 - 
7 2.93E-06 4.84E-05 - 
8 1.32E-05 2.27E-04 2.00E-02 
9 1.52E-04 9.63E-04 5.00E-02 

10 6.98E-05 3.68E-03 1.30E-01 
11 7.26E-04 1.37E-02 4.01E-01 

 
Table 3. Resources usage and maximum clock. 

Number of 
amino acids 

Resources usage 
(ALUTs) 

Maximum clock 
(MHz) 

4 106 274.88 
5 173 228.26 
6 243 217.78 
7 268 235.18 
8 442 205.47 
9 520 186.39 

10 604 184.37 
11 687 177.12 
30 3241 106.40 
50 7611 73.42 

 
5. Conclusions 
 

Results of the simulations showed that the proposed 
algorithm is efficient for finding the optimal folding. 
The number of H-H contacts found by the system for 
each simulation did match with the expected value. 
Therefore, the proposed methodology for solving the 
protein folding problem gives correct answers.  

Since the main objective is to find the first 
occurrence of the optimum folding as fast as possible, 
the system achieved this goal. Recall that the optimum 
folding is the one with the highest number of H-H 
contacts. Table 2 shows that the time necessary to find 
the best folding is indeed small, when compared to the 
time needed for the software implementation. 

Regarding the growth of resources usage, the 
implementation behaved within satisfactory 
boundaries. Despite this growth is not linear with the 
increase of the amino acids chain, it does not increase 
exponentially. The maximum allowed clock decreased 

slower than expected, and it still can be run in a fair 
speed even with 30 or 50 amino acids.  

The main focus in this work is to devise a 
methodology to reduce the huge search space to a limit 
in which it can be analyzed in an acceptable time. This 
feature has been achieved by reducing the search 
space, thanks to the Rule2 elimination and by 
discarding 75% of the redundant combinations. With 
the proposed intelligent counter a dramatic reduction of 
the search space is achieved, that is, only 0.75% of the 
original search space has to be analyzed. 

We believe that the performance of the system 
could be greatly increased by using strategies for 
massive parallelization of the processing elements. 

Another point to be explored so as to enhance the 
system is the substitution of the algorithm based on the 
comparison of the Cartesian coordinates by another 
algorithm based on a matrix of bits. In such approach, 
the entire chain could be drawn, enabling the system to 
check validity in parallel with the contact count. 
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