
Soft Comput (2005)
DOI 10.1007/s00500-005-0490-z

FOCUS

D. F. Tsunoda · H. S. Lopes

Automatic motif discovery in an enzyme database using a genetic
algorithm-based approach

Published online: 10 May 2005
© Springer-Verlag 2005

Abstract Proteins can be grouped into families according to
some features such as hydrophobicity, composition or struc-
ture, aiming to establish the common biological functions.
This paper presents a system that was conceived to discover
features (particular sequences of amino acids, or motifs) that
occur very often in proteins of a given family but rarely oc-
cur in proteins of other families. These features can be used
for the classification of unknown proteins, that is, to predict
their function by analyzing the primary structure. Runnings
were done with the enzymes subset extracted from the Protein
Data Bank. The heuristic method used was based on a genetic
algorithm using specially tailored operators for the problem.
Motifs found were used to build a decision tree using the C4.5
algorithm. The results were compared with motifs found by
MEME, a freely available web tool. Another comparison was
made with classification results of other two systems: a neural
network-based tool and a hidden Markov model-based tool.
The final performance was measured using sensitivity (Se)
and specificity (Sp): similar results were obtained for the pro-
posed tool (78.79 and 95.82) and the neural network-based
tool (74.65 and 94.80, respectively), while MEME and HM-
MER resulted in an inferior performance. The proposed sys-
tem has the advantage of giving comprehensible rules when
compared with the other approaches. These results obtained
for the enzyme dataset suggest that the evolutionary compu-
tation method proposed is very efficient to find patterns for
protein classification.

1 Introduction

Since the beginning of the genome sequencing projects, bio-
logical databases have been overwhelmed by experimental

D. F. Tsunoda · H. S. Lopes (B)
Laboratório de Bioinformática / CPGEI,
CEFET-PR, Av. 7 de setembro,
3165 80230-901 Curitiba (PR), Brazil
E-mail: hslopes@cefetpr.br
Tel.: +55-41-3104694
Fax: +55-41-3104683

data. Currently, most of the research results are freely avail-
able in the Internet and are organized in databases. After
sequencing an organism, researchers turn to the laborious
task of annotation. Afterwards, the proteome of the organism
is seen as one of the main products of the whole process of
genome sequencing.

Proteins are responsible for several functions such as:
transport of small molecules (e.g., hemoglobin), regulation
(e.g., insulin), sustentation (e.g., collagen), increase of reac-
tion speed (e.g., enzymes) and others. Biological organisms
have thousands of different types of proteins, which are con-
stituted basically of amino acids linked in linear chains
through peptide connections. Active intra-molecular forces
cause the proteins to assume specific three-dimensional sha-
pes that are directly related to their biological functions [7].
Proteins are grouped into super families, families and sub-
families according to their biological function. Therefore, the
classification of proteins is an important task for the molecu-
lar biologist, and, ultimately, it is aimed to identify the func-
tion of the protein.

There are several protein databases available, for instance,
Swiss-Prot and Protein Data Bank (PDB) [1]. In this work
we used PDB that contains information about the primary,
secondary and tertiary structures of thousands of proteins,
besides many other data. The choice for PDB was due to
the intention to improve this work in the future (not reported
here) using information provided by the secondary and ter-
tiary structures.

The protein-classification problem (PCP) is a very impor-
tant research area in bioinformatics. As mentioned before,
the many genome sequencing projects has unveiled a grow-
ing number of gene products whose function is unknown or
barely estimated by homology techniques. The prediction of
protein function has been done basically in two ways: predic-
tion of the protein structure and then prediction of function
from the structure, or else classifying proteins into functional
families and supposing that similar sequences will have sim-
ilar functions. Notwithstanding, most proteins share similar
structures (in particular, considering the primary structure),
since many of them have a common evolutionary origin [11].

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [595 842] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

D. F. Tsunoda, H. S. Lopes

Common structures may be characteristic of a given family
of proteins but, on the other hand, unrelated families can also
share common structures. This two-fold characteristic makes
protein classification a difficult problem.

Computer researches have been using many heuristics to
present possible solutions for the PCP, for instance: artificial
neural networks [16,15], clustering [9], genetic algorithms
[10] and other data mining algorithms [12,14].

This paper reports the development and application of
a computational tool, based on an evolutionary computation
technique, a genetic algorithm, specially devised for the auto-
matic discovery of motifs using as input the primary structure
of proteins. The system finds sequences of amino acids (fea-
tures or motifs) that occur very often in proteins of a given
class (family) but rarely occur in proteins of other classes.
Those discovered motifs can be further used for the charac-
terization of families of proteins as well as for the automatic
classification of unknown proteins.

Genetic algorithms were used mainly for its ability to per-
form adaptive, powerful and robust searches. Besides, as an
evolutionary computation technique, they operate in parallel
over a population of candidate solutions, allowing a simulta-
neous exploration of different regions of the search space in
the solution domain.

2 Genetic algorithms

A genetic algorithm (GA) is a search and optimization meth-
odology from the field of evolutionary computation that was
invented by Holland [6]. A GA is based on the Darwin’s
natural selection principle of the survival of the fittest and
is widely used for hard problems in engineering and com-
puter science. A GA is a population-based method where
each individual of the population represents a candidate solu-
tion for the target problem. This population of solutions is
evolved throughout several generations, starting from a ran-
domly generated one. During each generation of the evolu-
tionary process, each individual of the population is evaluated
by a fitness function, which measures how good the solution
represented by the individual is for the target problem. From a
given generation to another, some “parent” individuals (usu-
ally those having the highest fitness) produce “offsprings”,
i.e. new individuals that inherit some features from their par-
ents, whereas others (with low fitness) are discarded, follow-
ing Darwin’s principle of natural selection. The selection of
parents is based on a probabilistic process, biased by their fit-
ness value. Following this procedure, it is expected that, on
average, the fitness of the population will not decrease every
consecutive generation. The generation of new offsprings,
from the selected parents of the current generation, is accom-
plished by means of genetic operators. This process is itera-
tively repeated until a satisfactory solution is found or some
stop criterion is reached, such as the maximum number of
generations.

3 Methodology

The version of the Protein Data Bank (PDB) used in this
work was #102. PDB file-encoded sequences are notoriously
cumbersome to manipulate because the structural complete-
ness of data is not always guaranteed. Besides, in PDB, pro-
teins files are compressed using GZIPTM format. Therefore,
a specific tool is necessary for uncompressing and extracting
correct formatted data from the relevant fields. A PDB file
has information about the three levels of proteins structures
but, for the purposes of this work, only the primary structure
information was used: name, class and amino acids sequence.
In the future, it is intended to use more data to improve the
system.

The PDB is an archive of experimentally determined three-
dimensional structures of biological macromolecules. The
PDB available classification is: proteins, peptides, and viruses;
protein/nucleic acid complexes; nucleic acids or carbohy-
drates and their sources: X-ray Diffraction and other or NMR.

The PDB files include atomic coordinates, bibliographic
citations and structural information. These information fol-
lows a PDB format guide, e.g., there is a field named SEQ-
RES that contains the amino acid or nucleic acid sequence of
residues in each chain of a chosen macromolecule. These res-
idues names are also standard for amino acids: ALA, ARG,
ASN, ASP, CYS, GLN, GLU, GLY, HIS, ILE, LEU, LYS,
MET, PHE, PRO, SER, THR, TRP, TYR, VAL or UNK (for
an unknown amino acid in the structure).

The developed system allows the extraction of relevant
information and makes the conversion of non-standard amino
acids for the letter U (unknown), since this letter is not part
of the standard letters set for amino acids representation.

Before loading the input file (created from thousands of
PDB files), it is possible to set the system to discard those
classes with less than a minimum number of proteins. This
option is necessary because there are many classes with a
very few number of proteins, which are not significant for
classification purposes. Therefore, all tests reported in this
paper have been performed over classes with more than 10
proteins. Enzymes were extracted from PDB using the EC
number given by the International Union of Biochemistry
and Molecular Biology (IUBMB). From a data mining view-
point, each EC number corresponds to a class, i.e., a specific
protein function. More precisely, the EC number consists of
four digits, where each pair of adjacent digits is separated by
a dot (“.”), and it specifies the chemical reaction catalyzed by
the corresponding enzyme. For instance, the enzyme alcohol
dehydrogenase has the number EC.1.1.1.1.

Some of the enzymes stored in the PDB contained the
called non-standard amino acids, from which no useful
motif can be discovered. Therefore, as part of our data prep-
aration procedure, we have only retrieved from PDB the
enzymes whose primary sequence has at least 30 standard
amino acids. After this simple filtering, the total number of
proteins retrieved from PDB was 8,339.As usual in the litera-
ture, the classification accuracy rate is computed in a test set

Automatic motif discovery in an enzyme database using a genetic algorithm-based approach

separated from the training set [5] in order to evaluate the
generalization ability of the discovered patterns. The en-
zymes are distributed across the six classes as follows: 1,483
proteins in class EC.1 (oxidoreductases); 1,766 in class EC.2
(transferases); 3,285 in class EC.3 (hydrolases); 675 in class
EC.4 (lyases); 381 in class EC.5 (isomerases) and 209 in class
EC.6 (ligases). Therefore, the training set had 600 enzymes,
evenly distributed into these six classes. The test set was built
with the remaining 7,739 enzymes.

4 Algorithm description

4.1 Encoding and fitness function

Using GA for real-world problems encompasses two crucial
definitions: the encoding scheme of an individual and the fit-
ness function. In the implemented system, every individual
represents a motif, that is, a variable-length string of charac-
ters. The alphabet used for encoding is the 20 standard letters
for representing amino acids, plus letter U.

Recall that our goal is to find a sequence of amino acids
(motif) with a high discriminatory power – i.e., a pattern that
occurs in most proteins of a given class and occurs in few
or no proteins of all other classes. Therefore, this pattern can
be characteristic of a given family, allowing it to be discrim-
inated from all others - the essence of classification.

In order to discriminate an individual, we developed a
special fitness function that is computed as follows. First the
EA computes, for each class i, i = 1, . . ., 6 (for the enzymes
dataset used in this work), the relative frequency of occur-
rence of the motif in that class. This is simply the number of
proteins of the i-th class where the motif occurs in the pro-
tein’s sequence. Second, the EA computes, for each class i,
a measure of the ability of the motif to discriminate between
class iand the other classes, denoted Disci and given by the
Eq. 1:

Disc(i) = Fi.


1 − (k − 1)−1.

n∑
j=1

Fj,j �=i


 , (1)

where Fi is the relative frequency of the individual’s motif in
the i-th class, n is the number of classes (n = 6 in this work),
and k is the number of classes that contain at least one protein
whose primary sequence contains the individual’s motif. The
rightmost term of the formula simply computes the average
relative frequency of the motif in all the (n−1) classes j such
that j �= i. This term is subtracted from 1, so that the term
between square brackets is to be maximized – the higher its
value, the better the value of Disci . Similarly, the value of Fi

(the first term of the formula) is also to be maximized, so that
a high value of Disci means that the motif occurs very often
in class i but rarely in the other classes.

Once the value of Disc(i) has been computed for all n clas-
ses (i = 1, . . ., n), the individual is associated with the class
having the largest value of Disc(i). In other words, the motif
represented by the individual is considered as a characteristic

pattern for proteins of class i. The proposed fitness function
is normalized in the range [0..1], making the interpretation
of results somewhat easier, since 1 is the best possible value,
meaning maximum discrimination.

4.2 Selection method and genetic operators

Selection is not an operator by itself. It is a procedure that
takes place before the application of the genetic operators.
The selection method used by the system is the stochastic
tournament. This method randomly takes k individuals (k =
2) of the population and chooses the one with the largest
fitness. Usually, k is a user-defined percentage of the pop-
ulation. This process is repeated P times (with reposition),
where P is the population size. The copy of the selected P
individuals will undergo the genetic operators, as follows.

In this work, the usual one-point crossover operator is
stochastically applied with a predefined probability, using
two individuals of the selected pool. Since the length of the
chromosome is variable, the traditional concept of crossover
point was slightly modified and adapted to our individual
representation. The crossover point is a percentage (of the
length of the individual) that defines the starting point from
where the crossover breaks the string.

The mutation operator is used to foster more exploration
of the search space and to avoid unrecoverable loss of genetic
material that leads to premature convergence to some local
minima. In general, mutation is implemented by changing
the value of a specific position (an allele) of a chromosome
with a given probability, denominated mutation probability.
Due to the specificity and purpose of our system the mutation
operator was implemented as a set of four different kinds of
sub-operations over a single individual:

1. Left-adding: one randomly generated character (corre-
sponding to an amino acid) is added to the left of the
motif.

2. Right-adding: one randomly generated character (corre-
sponding to an amino acid) is added to the right of the
motif.

3. Random-changing: all the amino acids from a randomly
selected starting point up to the end of the motif are
changed, except the first and the last position.

4. Cutting-out: it removes a single character from the amino
acid sequence. The removal position is randomly gener-
ated.

The mutation probability is a user-defined parameter, as usual
in GA, however, the mutation is divided in four different sub-
operations, each one having an equal probability of choice,
which is made in a random basis.

Both crossover and mutation operators are “hill climbing-
based operators” because they are implemented in such a way
that a new individual is immediately evaluated after its gen-
eration and, if its fitness is lower than the parent’s fitness the
operation is undone. This procedure, although computation-
ally expensive, makes the evolutionary process faster in terms

D. F. Tsunoda, H. S. Lopes

of number of generations, since the generated offspring will
be always better than their parents (or will not be generated
otherwise). To alleviate the computational load, in our sys-
tem, after a genetic operator be selected according to a given
probability, it can be applied as usual or as a hill climbing-
based operator. This choice is done probabilistically accord-
ing to a user-defined parameter – hill climbing-based operator
rate.

4.3 Running parameters

As described earlier, the GA has several parameters. Hence,
35 preliminary runnings were performed to find good values
for some of these parameters. In these preliminary runnings
the expansion operator was turned off, because this is a com-
putationally expensive operator and we wanted to perform
some relatively quick runnings just to set some parameters.
More precisely, these preliminary runnings produced the
following parameter values: tournament size = 10%; prob-
ability of crossover = 80%; probability of mutation = 80%;
population size = 200; number of generations = 300; hill
climbing-based operator probability = 10%. Note that the
hill climbing-based operator rate is low, in order to avoid
losing population diversity and to prevent a premature con-
vergence. Having fixed these parameters, nine runnings were
made to evaluate the influence of the probability of crossover
(20, 50, 80%) and probability of mutation (20, 50, 80%) and
the best result had probability of crossover = 20%; proba-
bility of mutation = 80%. Another important parameter to
be adjusted was the hill climbing-based operator probability
and five tests were made with 0, 20, 40, 80 and 100%; the
40% value returned the best result. As expected, this opera-
tor increases the computational cost. For a 0% running, the
time taken was 2.8 h (for the five-fold cross validation). For
20, 40, 80 and 100%, the times were 4.4, 9.1, 47 and 116 h,
respectively.

Subsequently, other two runnings (using the two best
obtained results) were made to evaluate the influence of expan-
sion operator. Evaluations of those runnings showed that
expansion operator increase the quality of obtained motifs.

A conventional GA returns, as its result, the best indi-
vidual (the one with highest fitness) generated during the
run. However, in our system the desired result is not a sin-
gle individual, but rather, a set of individuals. The reason is
that each individual represents a single amino acid sequence
(motif), associated with a single class, and these patterns will
be used further to classify proteins. Therefore, it is necessary
to discover many patterns, associated with as many different
classes as possible during genetic search.

In each generation, after the fitness of all individuals
have been computed, some high-quality motifs are saved in a
separated file, called the set of discovered patterns (SDP). In
fact, the individuals representing those patterns still remain
in the population; only a copy of them is saved into SDP.
The criterion to select these individuals is their fitness – only
those with fitness greater than a user-defined minimum qual-
ity threshold will be saved. Special care was taken to prevent

adding motifs that are substrings of other motifs already in
the SDP. This procedure results in the discovery of many
motifs, associated with different classes, as desired.

5 Classification

Using the training data, motifs were discovered by using
two different tools: our system, named Genetic Algorithm
for Motif DIscovery (GAMDI) and Multiple EM for Motif
Elicitation (MEME) [2].

MEME is a freely web tool1 supported by the San Diego
Supercomputer Center that uses statistical modeling tech-
niques to automatically choose the best width, number of
occurrences, and description for each motif. The web ver-
sion of MEME used in this paper requires that the sequences
in your group have less than 60,000 characters in total. We
submitted the enzyme families to MEME web version.

The five best motifs discovered (a higher fitness means
a better discriminatory ability of the motif, what makes it
better) by each approach (MEME and GAMDI) were used to
classify the test set (7,739 enzymes). Those motifs are viewed
as attributes of a decision tree in which each node tests the
presence of the motif.

There are many decision tree algorithms, and the most
popular is the C4.5 algorithm [13]. The C4.5 decision tree
method can discover relationships between the classification
of objects and their attributes. The algorithm goal is to con-
struct a decision tree with minimum number of nodes that
gives the least number of misclassifications on training data.
The C4.5 machine learning algorithm enabled us to extract
a tree for enzymes classification, based on the previously
discovered motifs.

To generate the decision trees for classification of un-
known instances (enzymes) we used Waikato Environment
for Knowledge Analysis (WEKA), a Java-based tool freely
available in the Internet2[17]. Decision trees were gener-
ated using the standard parameters of the J48 algorithm (the
WEKA version of C4.5), using motifs generated by GAMDI
and MEME.

Figure 1 illustrates a hypothetic example of a decision tree
generated by WEKA. Each internal node (including the root
node) tests for the presence (1) or absence (0) of an attribute
(in this case, a motif). For example, a rule from this tree is:
if a protein has the motif LKG (LKG = 1), does not have the
motifAELD (AELD = 0), but the motif VLG is present (VLG
= 1), the protein will be classified as EC2 (that is, a transfer-
ase). Notice that it is possible to have many rules for the same
class, for example EC4 (Fig. 1) has three associate rules: first,
“if there is not the motif LKG nor DGL then EC4”, second
“if there are motifs LKG and AELD but not VLG, then EC4”
and third “if there are motifs LKG and AELD and LKG but
not DLG, then EC4”.

1 http://meme.sdsc.edu/meme/website/intro.html
2 http://www.cs.waikato.ac.nz/ml/weka

Automatic motif discovery in an enzyme database using a genetic algorithm-based approach

Table 1 Comparative results for classification of enzymes

GAMDI MEME HMMER Neural networks
Enzyme Class Se Sp Se Sp Se Sp Se Sp

Oxireductases 78.82 94.90 0.00 82.13 40.45 73.55 82.02 91.22
Transferases 79.02 93.08 85.00 78.97 23.54 93.13 72.08 92.48
Hydrolases 84.19 91.80 49.26 76.09 51.33 82.56 73.34 95.41
Lyases 81.78 97.40 51.59 94.25 38.43 95.24 73.77 95.72
Isomerases 74.66 98.46 0.00 96.37 58.72 94.67 76.23 96.85
Ligases 74.29 99.26 0.00 95.59 54.86 88.30 70.46 97.17
Average 78.79 95.82 30.97 87.73 44.56 87.91 74.65 94.81

Fig. 1 An example of a decision tree

6 Results and discussion

We have performed tests to measure the quality of our algo-
rithm for the enzyme subset of the PDB previously men-
tioned. Recall that the subset contains 600 (enzymes) equally
divided into 6 classes and the test set contains the others 7,739
enzymes.

To further compare the performance of the GAMDI sys-
tem, the classification accuracy was also compared against
a neural network-based system [16] and a hidden Markov
model-based system (HMMER) [4]. Notice that these tools
do not intend to discover motifs for classification but to per-
form straight classification.

The results were obtained using a five-fold cross-valida-
tion procedure, in which the input data set is divided into
mutually exclusive and exhaustive partitions. Then, the clas-
sification algorithm is run five times, in such a way that for
each of these runs a different partition is used as the test set
and the other four partitions are grouped into an training set.
In each of those five runs the classification rate on the evalu-
ation set is computed (see below). The classification rates on
the test set are averaged over the five runs, and this average
result is reported. We stress that for all systems compared, it
was given exactly the same training and test sets in each of

the five runs of the cross-validation procedure, making the
comparison as fair as possible.

Table 1 shows the best results obtained over the runnings.
The final performance was measured using sensitivity (Se)
and specificity (Sp). Sensitivity measures the amount of pos-
itive cases that are correctly classified, whereas specificity
measures the amount of negative cases that the classifier
correctly rejected. Notice that when using sensitivity and
specificity, a multi-class classification problem is reduced to
a double-class. This is accomplished by considering the cur-
rent class as positive and all other classes as negative. More
details about this and other performance measures can be
found in [5]. The average sensitivity obtained over all the 51
runnings was 78.79 and the average specificity was 95.82.

In Table 1, it can be observed that for almost all classes,
specificity is higher than sensitivity. Due to the way Se and
Sp are calculated, the positive class always has much less
instances than the negative class (the sum of cases of the
remaining five classes, in our implementation). Therefore, as
expected, classifiers tend to display a better performance for
classes with more instances.

When analyzing Table 1, two comparisons can be done:
first comparing GAMDI with MEME, since both tools dis-
cover motifs that are used in a decision tree. Afterwards, the
overall results can be compared with the other tools that use
quite different methods.

For the neural networks and HMMER approaches, spec-
ificity values were again always higher than sensitivity. This
means that all the compared systems are more efficient to
predict when a given protein does not belongs to a class than
the opposite. The GAMDI system has performed better than
all the other methods, considering the balanced values for
both sensitivity and specificity.

Hidden Markov models (HMMER) are very sensitive and
dependent to the training set and, in our tests, they had poor
generalization capability, one of the evident advantages of the
GAMDI system, once the system was conceived to consider
this ability.

Comparing GAMDI with MEME, it can be seen that the
latter did not find consistent motifs to discriminate from one
class to the others. In the other hand, this is an innate abil-
ity of GAMDI, accomplished by its fitness function. It is a
matter of fact that MEME was not projected for the same
purpose as GAMDI but, for the best of our knowledge, it
is the tool that most closely can be compared with our sys-
tem. In short, MEME discovers motifs in a group of proteins,

D. F. Tsunoda, H. S. Lopes

Table 2 Comparative computational time

System Time

GAMDI 9.1 h
MEME 24 h
HMMER 2.7 h
Neural networks Not informed by authors [16]

while GAMDI discovers motifs that discriminate a group of
proteins from another.

Both systems, together with the C4.5 algorithm generate
a somewhat comprehensive classifier, useful to the biologist.
It is possible that those discovered motifs used in the deci-
sion trees are related to known specific secondary or tertiary
structures. On the other hand, the hidden Markov model is at
a lower level of abstraction, not so comprehensible as a deci-
sion tree. Finally, the neural networks system is completely
obscure for the final user and can be considered a “black box”
under the point of view of interpretation of the model.

The classification accuracy can be accessed by multiply-
ing Se by Sp (as proposed in other evolutionary systems for
data classification, see [3,8] for instance). For all classes, the
performance of GAMDI approach is comparable with the
neural networks system, and both are quite superior to MEME
and HMMER approaches. In fact, if we consider the average
results, GAMDI is slightly superior to the neural system.

From a computational cost point of view, GAMDI presents
an acceptable performance when compared to others, as shown
in Table 2. Note that MEME runs on the CrayTM T3E super-
computer at the San Diego Supercomputer Center, and others
on a PentiumTM III 550 MHz.

7 Conclusions and future work

We have proposed a system based on a modified GA for motif
discovery, aiming to classify unknown proteins. The system
was evaluated using the enzymes subset of the PDB.

The knowledge-augmented genetic operators of the GA,
specifically designed for the PCP, have played an important
role in the positive results achieved. Despite the computa-
tional cost, the use of the hill climbing-based operators was
beneficial in the sense that it allowed the GA to obtain better
motifs (motifs with higher fitness).

As explained, final performance was measured using sen-
sitivity (Se) and specificity (Sp) and similar average results
were obtained by the proposed tool (78.79 and 95.82) and the
neural network-based system (74.65 and 94.81). Note that a
rule generated by a tree is easily understandable by a human
while a neural network output is not.

The other results obtained by MEME (30.97 and 87.73)
and by HMMER (44.56 and 87.91) demonstrate that classi-
fiers built specifically for proteins classification can obtain
better results.

Finally, the results for the enzyme dataset using GAMDI
and WEKA strongly suggest that the evolutionary computa-
tion method proposed is efficient to find motifs capable of
discriminating between groups or proteins.

Future work includes an exhaustive test of the GA con-
trol parameters for fine-tuning, development of other specific
genetic operators so as to increase efficiency and allow motifs
to be described as regular expressions. Also, it is intended to
apply this system to other sets of proteins, i.e. transmembrane
proteins.

References

1. Abola EE, Sussman JL, Prilusky J, Manning NO (1997) Protein
data bank archives of three-dimensional macromolecular struc-
tures. Meth Enzymol 277: 556–571

2. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation
maximization to discover motifs in biopolymers. In: Proceedings
of the second international conference on intelligent systems for
molecular biology, AAAI Press, Menlo Park, pp 28–36

3. Bojarczuk CC, Lopes HS, Freitas AA (2004) A constrained-syntax
genetic programming system for discovering classification rules:
application to medical data sets. Artif Intell Med 30(1): 27–48

4. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological se-
quence analysis: probabilistic models of proteins and nucleic acids.
Cambridge University Press, Cambridge

5. Hand DJ (1997) Construction and assessment of classification
rules. Wiley, New York

6. Holland JH (1975)Adaptation in natural and artificial systems. The
University of Michigan Press, Ann Arbor

7. LehningerAL, Nelson DL, Cox MM (1998) Principles of biochem-
istry, 2nd edn. Worth Publishers, New York, pp 134–137

8. Lopes HS, Coutinho MS, Lima WC (1997) An evolutionary ap-
proach to simulate cognitive feedback in medical domain. In: San-
chez E, Shibata T, Zadeh LA (eds) Genetic algorithms and fuzzy
logic systems. World Scientific, Singapore, pp 193–207

9. Manning AM, Brass A, Goble CA, Keane JA (1997) Clustering
techniques in biological sequence analysis. In: Proceedings of the
1st European symposium on principles of data mining and knowl-
edge discovery, pp 315–322

10. McGarrah DB, Judson RS (1993) An analysis of the genetic algo-
rithm method of molecular conformation determination. J Comput
Chem 14(11): 1385–1395

11. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) A structural
classification of proteins database for the investigation of sequences
and structures. J Mol Biol 247: 536–540

12. Piccolboni A, Mauri G (1998) Application of evolutionary algo-
rithms to protein folding prediction. In: Proceedings of the artificial
evolution 97, LNCS, 1363: 123–136

13. Quinlan JR (1993) C4.5: In: Programs for machine learning.
Morgan Kaufmann, San Francisco

14. Salamov AA, Solovyev VV (1995) Prediction of protein secondary
structure by combining nearest-neighbor algorithms and multiple
sequence alignments. J Mol Biol 247: 11–15

15. Wang JTL, Sasha D, Wu CH (2000) Application of neural net-
works to biological data mining: a case study in protein sequence
classification. In: Proceedings of the knowledge discovery in
databases conference, pp 305–309

16. Weinert WR, Lopes HS (2004) Neural networks for protein
classification. Appl Bioinformatics 3: 41–48

17. Witten IH, Frank E (1999) Data Mining: practical machine
learning tools and techniques with java implementations. Morgan
Kaufmann, San Francisco

