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Abstract. This work describes the use of a recently proposed technique
– gene expression programming – for knowledge discovery in the data
mining task of data classification. We propose a new method for rule
encoding and genetic operators that preserve rule integrity, and imple-
mented a system, named GEPCLASS. Due to its encoding scheme, the
system allows the automatic discovery of flexible rules, better fitted to
data. The performance of GEPCLASS was compared with two genetic
programming systems and with C4.5, over four data sets in a five-fold
cross-validation procedure. The predictive accuracy for the methods com-
pared were similar, but the computational effort needed by GEPCLASS
was significantly smaller than the other. GEPCLASS was able to find
simple and accurate rules as it can handle continuous and categorical
attributes.

1 Introduction

Gene Expression Programming - GEP [3] is a novel evolutionary algorithm,
recently proposed, that includes characteristics from Genetic Algorithms - GA
and Genetic Programming - GP. The main difference from GEP to GA and GP
is how individuals are encoded.

In GAs individuals are usually a fixed-size linear string of bits (chromosomes)
whereas in GP, individuals are non-linear entities of different size and shapes,
usually in the form of trees. In GEP, on the other hand, individuals are encoded
as fixed-size strings of symbols (chromosome) that, in turn, are expressed as
non-linear entities of different size and shapes known as “expression trees”. Since
GEP has emerged recently, few applications have been published to date [8]. In
this work we apply GEP to the data mining task of classification, where it is
aimed to find comprehensible rules capable of modelling a given set of data.
The objective of data classification is to predict the value of a goal attribute,
giving a set of predicting attributes. Usually, rules are represented in the form
IF < antecedent > THEN < consequent >, where “antecedent” is a logical
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combination of the predicting attributes and their values, and the “consequent”
part is the value of the goal attribute (class).

A GEP-based tool, named GEPCLASS (Gene-Expression Programming for
CLASSification), was created for this purpose. We describe several modifications
on the original GEP algorithm so as to efficiently cope with data classification.
The application of GEPCLASS to a number of datasets is reported and we its
performance is compared with other published papers in recent literature.

2 Gene Expression Programming

Ferreira [3] proposed a new evolutionary algorithm with linear genotype/non-
linear phenotype, denominated Gene Expression Programming, using concepts
from both GAs and PG. In GEP, chromosomes are simple, compact, linear and
relatively small entities, that are manipulated by means of special genetic opera-
tors (replication, mutation, recombination, translocation, etc). Expression trees
(ETs) are the phenotypical representation of the chromosome. Selection, the
central engine of evolutionary computation paradigms, operates over ETs rather
than chromosomes. During the reproduction cycle, chromosomes, not ETs, are
generated, modified and transmitted to the next generations. In [3], PEG is pre-
sented using individuals with only one chromosome and, henceforth, individual
and chromosome are used as synonymous. Although it would be possible to use
multiple-chromosome individuals, we used that same approach.

Similarly to other evolutionary algorithms, GEP starts with an initial pop-
ulation, either created at random or using some previous knowledge about the
problem. Next, chromosomes are expressed into ETs that, in turn, are evaluated
according to the specific meaning of the problem, yielding a fitness measure. If
a stop criteria is not met, the best individual(s) is(are) kept and the rest are
submitted to a fitness-based selection procedure. Selected individuals undergo
modifications by means of genetic operators leading to a new generation of in-
dividuals. The whole process is repeated until a stopping criterion is satisfied.

2.1 GEP Encoding

The genome in GEP is a single chromosome which, in turn, is composed by one
or more genes (that is, multigenic), as in nature. Every gene is divided into two
parts: head and tail. The size of the head (h) is determined by the user, and the
size of the tail (t) is computed as: t = h(n − 1) + 1, considering n the largest
arity found in the function set for the particular problem.

The phenotypical representation of a genome is the set of sub-trees (ETs),
each one being expressed by a gene, linked together by means of a linking func-
tion. This function is user-defined and connects the roots of all sub-trees. For
instance, this linking function can be sum or multiplication, for symbolic regres-
sion problems, or logical AND or OR for classification problems. Like biological
genes, only part of it is really expressed as an ET.

In the same way as GP, GEP also uses a function set and a terminal set
as building blocks of possible solutions. Considering that genes have two parts,
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namely head and tail, some restrictions apply: in the tail part only terminal
elements can occur, whereas in the head of a gene, both terminals and functions
are permitted (except for the first position, where only functions are allowed).

2.2 Selection Method and Genetic Operators

The main selection method in GEP is the well-known roulette-wheel, a popular
procedure in the early implementations of GA. This method favors the fittest
individuals of the population, whose chances to be selected are proportional to
their relative fitness. During run, individuals that will undergo the transposition
and crossover operators (see below) are randomly selected.

GEP also implements a simple elitist mechanism, where the best individual of
a generation is copied to the next, by means of a cloning operator. This procedure
guarantees that the best individual found throughout generations is kept.

In the original work of Ferreira [3] , several genetic operators were defined.
The mutation operator works similarly as in GP and GA and aims to introduce

new genetic material in the current population so as to increase genetic diversity.
Due to the particular characteristics of the encoding in GEP,some integrity rules
must be obeyed in order to avoid syntactically invalid individuals (see section 3.1).

GEP uses one-point or two-point crossovers, just like GA. The second type
is somewhat more interesting since it can turn on and off noncoding regions
within the chromosome. Also, a kind of uniform crossover was implemented, and
is known as genic recombination. This operator randomly chooses genes of same
position in two parent chromosomes to form two new offsprings.

There are three transposition operators: IS (insertion sequence), RIS (root
IS) and genic. An IS element is a variable-size sequence of alelles extracted from
a random starting point within the genome (even if the genome was composed
by several chromosomes). Another position within the genome is chosen and it
will be the place where the element will be inserted. This target site must be
within the head part of a gene and cannot be the first alelle (gene root). The
IS element is sequentially inserted in the target site, shifting all alelles from this
point forth. The same number of alelles inserted are deleted from the gene head,
from the end backwards. This operator simulates the transposition found in the
evolution of biological genomes. RIS is similar to the IS transposition, except
that the insertion sequence must have a function as first alelle and the target
point must be also the first alelle of a gene (root). Finally, genic transposition
swaps genes within a chromosome.

3 Methodology

In this section we describe all modifications in the original GEP algorithm to de-
velop the GEPCLASS system, specifically designed for data classification. Some
of these changes were also used successfully in another GEP-based system [8].
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3.1 Rule Encoding

Most literature in data-mining use rules in the form if A then C, for classifying
data. The antecedent A is a set of conditions to be met and the consequent C
is the predicted class. Conditions are t-uples in the form {Ai Op Vij}, where Ai

is the i-th attribute, Op is a relational operator (=, �=, > or <), and Vij is the
j-th value belonging to the domain of attribute Ai. To combine several possible
conditions in a rule, logical operators (and, or, not) are used. The consequent
of a rule is simply a condition in the form {Mi = Vij}, where Mi is one of the
possible goal attributes, and Vij is a possible value for this goal attribute.

Implementing data classification using evolutionary algorithms requires defin-
ing, a priori, whether an individual represents a single rule (Michigan approach)
or a complete solution composed by a set of rules (Pittsburg approach) [4].
GEPCLASS can implement both approaches, either by an explicit decision of
the user, or allowing the algorithm decide by itself which one is more adequate
for a given classification task, during the evolutionary process. For instance, user
can define that an individual will generate multiple rules, using more than one
gene per chromosome and a logical or as linking function between genes. The
use of GEP for data classification requires tight restrictions in the individuals’
encoding, so as to avoid syntactically invalid individuals. In our approach, we
define a closure property that states that any ET root must be a logical function.
All logical functions have as offspring nodes other logical or relational functions.
These, in turn, always have as offspring nodes attributes and correlated values.

To assure that the closure property of the encoding will be always met, we
proposed in GEPCLASS some changes in the original encoding of GEP, at the
phenotypical level, and we also defined filling rules for the chromosome. First,
a crucial modification in the structure of the chromosome is regarding lengths
of head and tail. The tail size (t) was defined before for symbolic regression
problems [8], but for data classification, we propose a new way to compute it,
as follows: t = int([h.(n − 1) + 1]/2), where int() returns the integer part of
the argument. This new approach is justified considering the fact that every
terminal element is attached to a set of possible values (domain), for instance
(a > 10), not to another attribute or constant, as in symbolic regression, for
instance (a + b). Therefore, a compact representation for both terminals and
their values reduces half the size of the tail length in a gene. In words, at the
implementation level (only), relational operators have arity 1.

Figure 1 presents a 2-genes chromosome with different lengths for heads and
tails. Upward arrows show the points delimiting the coding sequence of each
gene. The corresponding ET of the chromosome is presented. Notice that the ET
maintains the original characteristics of GEP and, at the same time, guarantees
rule integrity (syntactically valid rules). A filling rule was defined in GEPCLASS:
the tail part of a gene always has only terminals (but head can have terminals and
functions). An extension of this rule is the implicit precedence between functions
(logical and relational) and terminals. In practice, this is accomplished by means
of a constrained syntax, inspired in [2]. There is, the encoding must guarantee
that a given operator will receive valid operands (terminals), and, therefore,
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Fig. 1. Example of chromosome structure, ET and corresponding rule in GEPCLASS

will give a valid output to the parent node. Figure 1 clearly exemplifies this
accomplishment: at root level (node 0) one can find a logical function (AND)
linking two sub-trees; in the second level (nodes 1, 7 and 8) it is found logical
operators (and, or, not); in next level (nodes 2, 3, 9 and 10) there are relational
operators (<, >, =, <); finally, at leaf level (nodes 4, 5, 11 and 12) there are
terminals and respective values.Notice that the arity of relational operators is
not changed, only the representation in the tree.

A consequence of the filling rule is regards to the nature of the attributes.
In a data set, one can have both continuous and categorical (nominal) at-
tributes. If a given attribute is categorical, GEPCLASS uses only = or �= as
relational operators. Otherwise, if the attribute is continuous or ordered cate-
gorical (values mapped in a predetermined scale), all relational operators can
be used. In GEPCLASS, any terminal can appear once, many times or none in
a rule. This flexible characteristic allows one to find rules within a range, for
instance, “Ai > 10) AND (Ai < 15)”. On the other hand, this approach allows
inconsistencies, such that: “Ai = 10) AND (Ai = 15)”. Results obtained up to
now (see section 5) have demonstrated that such characteristic is not a serious
problem.

3.2 Chromosome Structure, Fitness Function and Genetic
Operators

In the original GEP, determining an adequate length for the head of each gene is
an open problem. It was stated that more complex problems may require lengthy
gene heads, and, therefore, the ideal size is found by trial-and-error.
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GEPCLASS uses variable-length chromosomes that can have one or more
genes. Genes within a given chromosome are of the same size. Using chromosomes
with different lengths in the population can introduce healthy genetic diversity
during the search. This approach has also been proved beneficial for symbolic
regression problems [8] and is a way to circumvent the open problem of the
original GEP in defining adequate lengths for the head of a gene [3]. By default,
50% of the initial population is generated according to a user-defined parameter
that defines the maximum and minimum head length of genes, and the rest
is randomly generated in the same interval. This procedure was inspired in a
similar technique proposed by Koza [6] for GP.

In GEPCLASS we propose two other selection methods over methods orig-
inally proposed for GEP . The first method always uses roulette-wheel for se-
lecting individuals regardless of the genetic operator to be used further. This
selection method introduces a strong selective pressure that can lead to fast
convergence, usually to local maxima in the search space. The second imple-
mentation is the stochastic tournament, a successful method frequently used in
GA. This strategy is guided by a user-defined parameter (k) that defines the
number of individuals that will be randomly selected for a tournament. The
individual with highest fitness value will be selected. This method is less aggres-
sive than roulette-wheel and tends to make the algorithms less sensitive to local
maxima.

Amongst the many fitness functions proposed before for data mining with evo-
lutionary algorithms [4], we choose to implement in GEPCLASS that proposed
by Lopes et al. [7]. This function is the product of two measures: sensibility (Se)
and specificity (Sp). Sensitivity measures the fraction of positive instances that
will be correctly classified by the system, and it is defined as Se = tp/(tp + fn).
Specificity measures the fraction of negative instances that will be classified as
such, and it is defined as Sp = tn/(tn + fp). These indicators take into account
not only the number of correct classifications, but also the relationship between
positive and negative classes. Therefore, the fitness function used has the advan-
tage to maximize both Se and Sp at the same time. Sp and Se, are computed
using the number of true-positive (tp), true-negative (tn), false-positive (fp) and
false-negative (fn) scores of a rule.

Due to the way rules are encoded in GEPCLASS, most of the original op-
erators needed functional modifications to comply with the closure property,
maintaining the hierarchical structure of the ETs after the application of oper-
ators.

The mutation operator works in three different levels. When a logical function
is selected for mutation, it will be substituted by another logical function. In the
same way, when a relational function is selected, it will be replaced by another
relational function. Finally, at the leaf level of the ET, when a terminal is selected
for mutation, it will be changed by a new attribute and respective random value.
There is an exception when the mutation operator is inoperative: when the node
selected for mutation is a NOT function, since it is the only function with arity
1 and cannot be substituted by another logical function with higher arity.
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The recombination operator works in the same way for chromosomes of differ-
ent of the same lengths. This operator always swaps the genetic material between
the head parts of two genes.

Both the IS and RIS transposition operators work over a single chromosome.
IS transposition changes only the tail part of a gene (that is, terminals positions
within the gene). Consequently, this operator can move genetic material from one
gene to another or within a single gene. On the other hand, in RIS transposition,
the donor site is in the tail of a gene, whereas the receptor site is always the first
terminal of this same gene.

4 Computational Experiments and Results

Considering that GEP is an extension of GP, we understand that the most
fair performance comparison would be GEPCLASS versus a GP-based system
for data classification. Therefore, we compared GEPCLASS with a constrained-
syntax genetic programming (CSGP) system proposed by [2], over four real-
world data sets. In that work there is also a comparison with a “Booleanized”
version of genetic programming (BGP) [1] that we reproduced here. The well-
known C4.5 decision-tree induction algorithm [9] is often used as the baseline for
performance comparisons in data classification literature, and we also included
results for this algorithm using the same data. The data sets used for this work
were: Ljubljana breast cancer (277/9/2), Wisconsin breast cancer (683/9/2),
Dermatology (358/34/6) and Chest pain (138/161/12). Numbers within paren-
thesis correspond to the number of examples, attributes and classes, respec-
tively. The first three data sets are available at the Machine Learning Repository
(http://www.ics.uci.edu/˜mlearn/ ), and the last one was described in [1].

The CSGP used in [2] had the following parameters: maximum tree depth:
15; population size: 500 individuals; stopping criterion: 50 generations; recom-
bination, reproduction and mutation operators probabilities: 95%, 5% and 0%.
GEPCLASS used the following parameters: population size: 30 individuals; stop-
ping criterion: 50 generations; number of genes per chromosome: 2; linking func-
tion: logical and; head size range: 6-10; selection method: stochastic tournament;
genetic operators: all those defined by the original GEP [3] with the same prob-
abilities. All results reported in this work were obtained by performing a 5-fold
cross-validation procedure [5], and using exactly the same data partitions as in
[2]. Table 1 shows the accuracy rate for the four data sets, using C4.5, CSGP,
BGP, and GEPCLASS.

Table 1. Comparison of accuracy rates (in %)

Data set C4.5 BGP CSGP GEPCLASS
Ljubljana 71.4 ± 0.60 63.9 ± 5.67 71.8 ± 4.68 68.5 ± 12.73
Wisconsin 94.8 ± 0.06 89.3 ± 4.37 93.5 ± 0.79 93.8 ± 2.89
Dermatology 89.1 ± 0.13 86.2 ± 6.24 96.6 ± 1.14 90.5 ± 11.19
Chest pain 73.2 ± 0.77 78.1 ± 4.85 80.3 ± 3.90 88.9 ± 9.61
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Table 2. Best rules found by GEPCLASS for Ljubljana, Dermatology and Wisconsin
data sets and respective classes

Data set class#nodesaccuracy Rule
1 16 83.63% IF ((∼ (Node caps <> 1))|AND|

(((Age = 6)OR(Deg malig <> 2))OR
(Tumor Size = 3)))THEN(class = 1)

Ljubljana 2 15 94.54% IF (((Irradiat <> 1)OR
(Inv nodes <> 0))|AND|((Node caps = 0)

OR(Inv nodes < 5)))THEN(class = 2)
1 9 100% IF ((∼ (Thinning suprapapil epid = 0))|AND|

(∼ (Follic horn plug = 1)))THEN(class = 1)
2 12 82.85% IF (((Polygonal papules < 0)OR

(Saw tooth appearance of retes < 1))
(∼ (Spongiosis < 2)))THEN(class = 2)

3 15 100% IF (((Polygonal papules <> 0)OR
(Knee and elbow involvement <> 2))

|AND|((V acuolisation damage basal layer > 0)
OR(Oral mucosal involvemente <> 0)))

THEN(class = 3)
Dermatology 4 16 100% IF ((((Koebner phenomenon <> 0)OR

(Disappearance of the granular layer = 1))
AND(Band like infiltrate < 2))|AND|
(∼ (Elongation of the rete ridges > 0)))

THEN(class = 4)
5 12 100% IF (((Oral mucosal involvemente <> 2)AND

(V acuolisation damage basal layer <> 3))
|AND|(∼ (Fibrosis papillary dermis < 1)))

THEN(class = 5)
6 16 100% IF (((Disappearance granular layer <> 1)

AND(Perifollicular parakeratosis <> 0))
|AND|(∼ ((Follicular papules = 0)AND

(Perifollicular parakeratosis < 3))))
THEN(class = 6)

1 13 97,03% IF ((∼ (∼ (Bare Nuclei < 4)))|AND|
((Bland Chromatin < 2)OR

(Uniformity of Cell Size < 4)))
THEN(class = 1)

Wisconsin 2 19 98.51% IF ((((Bare Nuclei > 5)OR
(Uniformity of Cell Shape > 3))OR

(Bland Chromatin = 7))|AND|
((Single Epithelial Cell Size > 1)OR

(Mitoses > 3)))THEN(class = 2)

In order to show the simplicity of rules found by GEPCLASS, table 2 shows
the best results found, over the five runs, for three out of the four data sets and
respective classes. The chest pain data set has 12 classes and takes too much
space to be reported. In this table it is shown the number of nodes of the best



GEPCLASS: A Classification Rule Discovery Tool 879

solution, its accuracy rate and the composed rule itself. In each rule, the “|AND|”
is the linking function and “∼” means the logical “NOT”.

5 Discussion and Conclusions

In this work, we proposed a gene expression programming system for data clas-
sification and we compared its performance in four data sets.

The straight comparison for the accuracy rates between GEPCLASS and all
other classifiers shows no statistically significant differences, except for the Chest
pain data set comparing with C4.5 (t-test with confidence level 5%).

The standard deviations of GEPCLASS results were higher than those for
CSGP. This fact could mislead to a false conclusion that GEPCLASS is un-
stable. In fact this is a direct consequence of the number of overall number of
evaluations for each method. The computational effort can be measured by the
product of the number of individuals in the population by the average number of
generations to achieve the best result. Thus, GEPCLASS needed, at most 30 ×
50=1,500 evaluations, whereas CSGP needed 500 × 50=25,000 evaluations. For
all datasets, the computational effort needed by GEPCLASS was significantly
smaller than that needed by CSGP. Therefore, it can be concluded that, for the
datasets tested, GEPCLASS can achieve similar results to those found by CSGP,
but with less computational effort. Accuracy is also similar to BGP and C4.5.

Comprehensibility (short rules), not only accuracy, is an important issue in
data mining. Since GEPCLASS uses a single chromosome with user-defined num-
ber of genes, the concept of parsimony (simplicity) is intrinsically implemented,
at the same time giving to the algorithm degrees of freedom to find flexible
combinations of attributes (see in table 2 the small number of nodes for the
rules found). These are the main advantages inherent to the use of the encoding
scheme of GEP. On the other hand, CSGP needs an explicit parsimony term in
the fitness function to favor smaller rules.

Some considerations are worth to be done about the underlying structure of
CSGP and GEPCLASS. The model used in CSGP demands a logical OR in the
root node of individuals. Therefore, an individual will represent, at least two
rules (following the Pittsburgh approach). Another constraint of CSGP is that
offspring nodes having logical AND as parent node, must have also a logical
AND or a relational operator. These constraints were devised to simplify the
representation of rule antecedents, as normal disjunctive form. In GEPCLASS,
there are no such constraints over the structure of rules, allowing a more flex-
ible combination of attributes. GEPCLASS can handle both Pittsburgh and
Michigan approaches at the same time, increasing the possibility to find good
solutions for complex classification problems. As a consequence, rules found by
GEPCLASS can be, sometimes, substantially different (regarding the attributes
of the antecedent) from those found by CSGP. Notwithstanding, table 2 shows
that the best rules found have excellent accuracy.

The main contribution of this work is to propose a new methodology for the
classification task in data mining inspired in the original GEP algorithm. The
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developed system can handle both continuous and categorical attributes and
is computationally efficient. Future work will include more experiments with
other datasets and the implementation of user-defined fitness functions. Also,
the usefulness of the original genetic operators for data classification tasks will
be evaluated in depth. Authors intend to put GEPCLASS in public domain soon
aiming at fostering further research and applications using this tool.
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