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ABSTRACT 

This paper describes the design and implementation of a 
parallel pairwise alignment hardware, implemented in a 
FPGA device. This system is aimed at aligning pairs of 
proteins, using a dynamic programming algorithm. The 
alignment is done in parallel thanks to a pipelined approach. 
All functional blocks are described in detail. Experiments 
were done to access the performance of the system for up to 
pairs of 2000-amino acids-long proteins. Hardalign was 
compared with a similar algorithm implemented in software 
and running in a PC, resulting in a 1:10 speed-up ratio. 
Results encourage the continuity of the work, showing that 
reconfigurable computing can offer interesting solutions for 
bioinformatics problems. 

1. INTRODUCTION 

In biological systems, proteins are the most abundant and 
functionally diverse molecules and almost all vital 
processes depend on these macromolecules, which are 
composed by amino acids chains. The common 20 different 
types of amino acids can be combined in a linear sequence 
having the necessary information for the generation of a 
unique tri-dimensional structure. The comparison of two 
protein sequences (or a group of them) is known as 
alignment. Alignment consists of the systematic 
comparison of the amino acids compounding the sequences 
throughout their whole extension (or only specific regions), 
and then generating a string that shows similar and 
dissimilar regions, as well as a similarity score is computed.  
Sequence alignment is the most important tool for 
discovering and representing similarities between 
sequences, and can unravel the evolutionary history, critical 
preserved motifs, details of the tertiary structure or 
important clues about protein function. Therefore, sequence 
alignment is a central topic of extensive research in 
computational biology [4]. 
 However, from the computational viewpoint, the 
alignment of sequences (either proteins or DNA) is a very 
difficult task. In recent literature, many computational 

algorithms were proposed for sequence alignment 
(local/global alignment; pairwise/multiple alignment). The 
main difference between them is the quality of the 
alignment and the computational effort required. There is 
an exact algorithm for finding the optimal alignment 
between two sequences, based on dynamic programming. 
This algorithm, originally proposed by Needleman and 
Wunsch [6], was aimed at finding a similarity score 
between sequences, and was later explored by Waterman 
[7]. The drawback of this algorithm is the memory and 
processing time required. Given two sequences of length N, 
the memory complexity and time complexity of the 
algorithm are O(N2) and O(N3), respectively. As a 
consequence, pairwise alignment using dynamic 
programming is a problem that requires significant 
computational power, especially for large sequences. 
 On the other hand, recently, we have witnessed a 
pronounced growth of the hardware and software 
technologies for embedded systems, with many 
technological options arising every year. The use of open 
and reconfigurable structures is becoming attractive, 
especially due to its robustness and flexibility for easy 
adaptation to different project requirements. Reconfigurable 
devices have advantages such as: low power consumption 
and high speed processing, efficient tools for simulation 
and programming, flexibility and modular operation [2]. In 
special, the possibility of massive parallel processing makes 
reconfigurable computing (that is, systems based on 
reconfigurable hardware) a suitable technology to be 
applied to the pairwise alignment problem addressed here. 
 This work describes the project and implementation of a 
parallel pairwise alignment algorithm using reconfigurable 
hardware computing.  

1.1 Dynamic Programming 

The dynamic programming algorithm is used for aligning 
two amino acids sequences and computing its similarity 
score. This algorithm requests the construction of a (m x n) 
matrix, where m and n are the lengths of the two sequences 
to be aligned. For the construction of the matrix, the string 
of the first sequence is put above the matrix and the other 
on the left side. The first line and column of the matrix 
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depend only of the sequence above and to the left, 
respectively. All other cells of the matrix have to be 
computed recursively, depending on the values of the 
upper, left and diagonal cells. This data dependency 
imposes a serious constraint on the algorithm, not allowing 
its direct parallelizing [5]. The computation of the elements 
of the matrix takes into account a substitution matrix, which 
gives the “evolutionary distance” between pairs of amino 
acids [3]. In this work we used BLOSUM62 as the 
evolutionary distance matrix.    
 Equation (1) shows the Needleman-Wunsch approach 
for computing the elements of the dynamic programming 
matrix. Line 0 and column 0 are the preliminary elements 
needed for computing the matrix, as mentioned before, and 
they are obtained with the three first terms of the equation. 
In this equation, i and j are the indexes of the (m x n) 
matrix, g is the gap penalty, A[i,j] is the cell at coordinates i 
and j, and S[aai,aaj] is the value of the substitution matrix 
for the corresponding pair of amino acids that are in line i 
and column j of the matrix. 
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2. HARDALIGN 

Fig. 1 shows a block diagram of the proposed system. 
HardAlign is a dedicated processing system, working as a 
peripheral of the NIOS II Altera embedded processor,  
interconnected via the Avalon bus [1]. Hardalign was 
especially developed for pairwise alignment of proteins.  
 The Hardalign block contains an arrangement of N 
matrix line processor units (MLPUs – see section 2.3) and 
all logic for driving the arrangement. The size of N is 
limited only by the width of the Avalon bus.  
 The process of pairwise alignment using dynamic 
programming matrix is divided in steps, as follows: 
 
a) Reception of amino acids data. 
b) Reception of system’s configurations. 
c) Computation of the dynamic programming matrix. 
d) Backtracking in the dynamic programming matrix. 
e) Transmission of results. 
 
 The critical part of the process that requires 
computational power is the computation of the dynamic 
programming matrix and for this reason it is run in parallel 
by the MLPUs. For this reason the computation of the 
dynamic programming matrix is emphasized in this work. 

 

Fig. 1. Architecture of the Hardalign system. 

 The software running in the NIOS II processor performs 
steps (a) and (b) and writes data to internal registers of 
Hardalign. Then, the driving logic is started and NIOS II 
reads sequentially the results. A SDRAM memory is used 
for storing vectors generated by the MLPUs. Next, the 
backtracking procedure is started by software running in 
NIOS II. This algorithm uses the vectors previously 
generated and finds a path from the last cell of the matrix 
towards the first one. This sequence corresponds to the 
alignment of the two proteins and it is the result sent to the 
user, ending the process. In the next sections, the Hardalign 
Pipeline will be described in details. 

2.1 Cell computation circuit 

Each MLPU computes one cell of the dynamic 
programming matrix, in a single clock cycle, and it is 
responsible for computing a line of the matrix. Once 
completed, a new line is started until the matrix is fully 
done. Since N cells are computed by clock cycle, the whole 
matrix is concluded in L.C/N clock cycles, where L is the 
number of lines and C the number of columns of the matrix. 
 Fig. 2 shows the basic cell computation circuit used by 
each MLPU. It is responsible for computing the value of a 
cell, and uses the information of the adjacent cells, a 
substitution matrix and the Needleman-Wunsch equation 
[6] (section 1.1). The outputs of the circuit are the value of 
the cell and the information from where the cell was 
constructed.  
 

 

Fig. 2. Internal architecture of a cell computation circuit. 



 The substitution matrix is encoded as a combinatorial 
circuit: every possible combination of the 20 amino acids 
gives an evolutionary distance value as result. 
 This value is used in the equation to compute the final 
value of the cell. The circuit has a special behavior when 
one or both of their input amino acids correspond to a gap. 
This occurs in the first line and first column of the dynamic 
programming matrix, and known as border penalties. 
 Fig. 3 shows in details how a specific cell is computed 
by the circuit of Fig. 2. The arrows point back the cell from 
which a given cell was generated from. Numbers inside de 
cells are the result of applying equation (1), letters above 
and to the left are the two amino acids to be aligned. The 
current cell under computation is the bottom-right one, and 
all elements needed for computing it are shown. 
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Fig. 3. Example of the of a cell computation of the 

dynamic programming matrix, using the cell 
computation circuit. 

2.2 Arrangement of the Cell Computation Circuits 

The first approach for the cell computation circuit 
arrangement is to set up them exactly as a dynamic 
programming matrix. However, this architecture has several 
disadvantages, as follows: 
 
• Wasting of logical resources:  A cell would compute a 

single value, remaining idle for all the rest of the 
process. 

•  Input and output bottleneck:  The final score will be 
valid only when all of the amino acids are applied 
simultaneously to the cells inputs, what would be 
longer than the propagation time of the cells, thus 
characterizing a bottleneck. This limitation also 
appears when the output vectors are read 
simultaneously. 

• Maximum alignment size: The maximum length of 
sequences to be alignment is limited by the number of 
cells configured in the FPGA device. Since part of the 
device must be reserved to other systems blocks, and 
the size of the matrix grows quadratically, this 
implementation would be useful only for short 
alignments. 

  

 The construction of a pipeline for computing the 
dynamic programming matrix is the alternative due to the 
limitations of the first approach. In this case, an example of 
cells arrangement is shown in Fig. 4. 
 

 a b c d 

a 0 1 2 3 

b 1 2 3 4 

c 2 3 4 5 

d 3 4 5 6 

Fig. 4. Cell computation sequence for the dynamic 
programming matrix using a pipeline structure. 

 
 In a given clock cycle, each cell presents both V and CC  
(see Fig. 2) in its outputs. Those values are used for the 
recursive computation of the following cells in the next 
clock cycle. In the first clock, only the cell (a,a) can be 
computed. Using the value of this cell, in the next clock, it 
is possible to compute cells (a,b) and (b,a) at the same time. 
With these values, in the next clock, cells (a,c), (b,b) and 
(c,a) can be computed, and so on.  Once computed cell 
(a,a), the remaining elements of the first line can be 
computed. In the same way, once computed cell (b,a), the 
second line can be computed. Therefore, as the clock cycles 
advance, more lines are enabled to be computed. This 
feature inspired the pipeline approach exploited in this 
work.  

2.3 The MLPU entity 

Except for the first line of the matrix (that is a special case), 
the other lines depend on the following values for the 
computing a cell: 
 
a) Value of the line amino acid (constant during the 

computation of a line);  
b) Value of the column amino acid (changes in each 

cycle); 
c) Value of the previous cell, computed by the own entity. 
d) Values of the cells of the line immediately above the 

one that it is computed, of the current and the previous 
coordinate. 

e) Value of the gap penalty. 
 
 MLPU entity can be replicated to compute 
simultaneously several lines in parallel. All the necessary 
data for an entity can be read from other entities that 
compose the pipeline, as follows: 
 
a) The line amino acids are constant during computation of 

a line of the matrix. Then, they are read in the 
beginning of the process.  



b) The pipeline used for the first line of alignment should 
receive the column amino acids sequentially. Fig. 5 
shows the MLPU entity in details, where an amino acid 
requested by a line is always requested by the pipeline 
that was above in the previous clock cycle. 

c) The previous computed value is registered to be reused 
for the subsequent cells computation. 

d) Besides the value immediately subsequent, the values 
computed in the two subsequent clock cycles are also 
registered. The value of these cells is also necessary for 
the computation of the line immediately below. 

e)  The gap penalty is common to all of the entities and 
constant during the whole process. Therefore, it is 
registered outside of MLPU. 

 

 
Fig. 5. Details of the MLPU entity. 

2.4 Basic structures  of the Pipeline entity 

The Pipeline entity, shown in Fig. 6, is arranged to compute 
several lines in a parallel way. In this figure, an 
arrangement with 3 MLPUs is shown, therefore allowing 
the simultaneous computation to 3 lines of the dynamic 
programming matrix. The inputs of this entity are the gap 
penalty, the line amino acids and the column amino acids, 
in a sequential way.  
 Each MLPU entity has four outputs: two cell values, an 
amino acid value and a vector. Only the vector is necessary 
for the backtracking procedure later performed. The other 
outputs are important for the computation of the subsequent 
cells. In fact, only the vectors are defined as outputs, and 
the other signals are internal values of the pipeline. These 
vectors are defined like an output bus (vector bus) of 2.N 
bits, when N is the pipelines number. Initially, just the first 
MLPU contains valid values in their internal registers, and 
only some bits of the vector bus are valid. After some 
cycles the own MLPU apply valid values to the subsequent 
MLPU. 
 Table 1 shows an example of the computation of the 
dynamic programming matrix, when it is shown the 
evolution of signal throughout the MLPUs. In the first clock 
cycle, the first MLPU registers the used as input of 
ColumnAA and LineAA. Since the two values are gaps, after 
the gate propagation of the cell, the MLPU output value is 
0d and the output vector is 00b.  In the next clock cycle, the 

first MLPU output vector is registered in the second 
MLPU. LinAAWe of the second MLPU should be in high 
level, and all the other ones in low level. Then, the second 
MLPU will register the line amino acid "V" and, after the 
end of the gate propagation, the output vector presents 10b 
as value. 

 
Fig. 6. Details of a possible Pipeline entity. 

  
 Values of the column amino acids travel through all of 
the MLPUs while the value of the line amino acid is kept 
fixed, and so the computation of all cells is done. 
  

Table 1. Contents of the line and column registers, and 
respective computed vectors. 

 Clock cycle  MLPU 0 1 2 3 4 5 6 7 
1 X - D Y E X X X 
2 X X - D Y E X X ColAA 
3 X X X - D Y E X 
1 X - - - - - - - 
2 X X V V V V V V LinAA 
3 X X X Y Y Y Y Y 
1 XX XX 00 10 10 10 XX XX
2 XX XX XX 01 11 11 10 XXVector 
3 XX XX XX XX 01 01 11 10 

2.5 Extended structure of the MLPU entity 

 Some additional logic is necessary to handle LinAAWe 
pins of each MLPU in a sequential way, during the first 3 
clock cycles, and to maintain them inactive for the other 
cycles. This logic is supplied by the entity PipelineControl.  
 The pipeline is generalized to accomplish alignments 
with number of lines greater than the number of MLPUs. 
After finishing the computation of a line, a new round is 



started, for the next N lines of the matrix. To do so, it is 
enough to access the next N line amino acids and provide 
again the column amino acids. However, notice that, by this 
time, the first MLPU is not in charge of computing the 
horizontal border penalties anymore. The computation 
depends on the values of the upper line that was computed 
by the last MLPU of the arrangement in the previous 
processing round. Considering that they are not 
synchronized in time with the current data among MLPUs, 
it is necessary a memory for to store these values with same 
size of the number of columns of the alignment. 
 Fig. 7 shows the complete structure of the Pipeline 
entity. The block PipeControl implements the logic to 
control the LinAAWe line of each MLPU and the memory 
storage to synchronize data. 
 

 
Fig. 7. Complete structure of the Pipeline entity. 

 
2.6 Configuration layer 
 
Each amino acid is encoded with 5 bits (20 types of valid 
amino acids, plus the gap), then we used triplets to 
represent them, so as to avoid waste of memory. An entity, 
denominated Pipeline Driver (Fig. 8), decodes these amino 
acids and applies them in the correct order to the pipeline 
input. The Pipeline Driver obeys the line amino acids 
limits, applies a new processing round whenever necessary 
and interrupts NIOS II, signaling the end of the process. 
 

Fig. 8. A complete view of Hardalign pipeline. 

 The data necessary for correct operation of Pipeline 
(that is, gap penalty, number of line amino acids, number of 
column amino acids, value of the line amino acids and 
value of the column amino acids) are stored in a memory 
into the HardAlign Pipeline. An address decoder manages 
data input and output. 

3. RESULTS 

The synthesis of Hardalign was done in an Stratix II 
EP2S60F672C5ES device (Altera), with a 40 MHz clock 
rate. For compiling the circuitry described in VHDL we 
used SOPC builder (System on a Programmable Chip 
Builder) software (to integrate the several modules with the 
NIOS II core), and for the physical synthesis and 
simulations, Quartus II (Altera).  
 Two main experiments were done: analysis of resources 
allocation as function of number of MLPUs and analysis of 
the performance for different sizes of dynamic 
programming matrix, compared with a software 
implementation in a PC. For this last experiment, we used 
the same method implemented in hardware, but now 
implemented in C language, and run in a PC with Athlon 
XP 1600+ processor, 512Mb de RAM DDR 266 and 
Windows XP Operational System. An additional estimation 
is presented for the case when Hardalign is modified for 
using DMA (Direct Memory Access). This further 
modification will speed up data transfer rate, thus 
improving dramatically the performance. 

3.1 Resources demand 

The demand for LUTs and internal registers grows up 
linearly as function of the number of MLPUs. This 
experiment takes into account only the Pipeline logic, 
excluding the Avalon bus, NIOS II core, additional 
memories and pipeline drivers. The maximum frequency 
operation of pipeline is not affected by the number of 
MLPUs used. Table 2 shows the resources necessary for 5 
to 64 MLPUs.  
 

Table 2. Resources allocation. 
Number of MLPUs LUTs Registers 

5 1384 399 
8 2189 589 

16 4228 1094 
32 8287 2103 
64 16392 4120 

3.2 Performace comparison 

In this experiment, Hardalign used 8 MLPUs and was run at 
40 MHz clock. The performance was tested for several 



protein sizes to be aligned.  Table 3 shows the computation 
time for pairs of 20- to 2000-amino acids-long sequences.  
 The resolution of the PC timer is 1 ms, precluding to 
measure the processing time for 20 x 20 and 50 x 50 
matrices. In this table, we observed a 1:10 ratio, 
approximately. Data of this table is also shown in Fig. 9. 
 

  
Fig. 9. Performance comparison between the software and 

hardware approaches shown in Table 3. 

3.3 DMA performance 

A further improvement of Hardalign is the use of a DMA 
controller module to improve the transfer rate between the 
SRAM and the Hardalign Pipeline (see Fig. 1).  This 
comparison is shown in Table 3. Data was obtained by 
simulation.  An improvement of about 28 times in 
performance can be observed comparing this approach and 
the previous one.   

 
Table 3.  Performance comparison.  

Matrix size 
(lines x 

columns) 
Hardalign 

(ms) 

Hardalign 
with DMA 

(ms)* 
Athlon XP 

(ms) 
20 x 20 0.074 0.001 -
50 x 50 0.280 0.008 -

100 x 100 0.949 0.031 10
200 x 200 3.548 0.125 30
500 x 500 22.123 0.781 200

1000 x 1000 87.618 3.125 831
2000 x 2000 350.207 12.500 3465

* estimated 

4. CONCLUSIONS 

Pairwise sequence comparison by alignment is an important 
problem and still an open issue in computational biology, 
especially when dealing with large sequences. We have 

proposed a methodology for parallelizing a pairwise 
sequence alignment algorithm using a reconfigurable 
hardware computing. The performance analysis reveals that 
the improvement by using the hardware approach achieves 
around 1000% of speed-up, when compared with the 
conventional software processing. If we consider the use of 
DMA in Hardalign, this ratio, the hardware implementation 
can be something around 280 faster. 

4000  Reconfigurable logic for local processing allows a 
dramatic minimization of the processing time, when 
compared with a traditional software approach, currently in 
use. Such performance is possible thanks to the parallel 
processing and reduced computation time, inherent to a 
FPGA hardware implementation. The use of reconfigurable 
logic for this class of application was essential, and it 
enabled an efficient solution, satisfying the project 
requirements and constraints.  
 We believe that the proposed algorithm is a useful 
contribution to both reconfigurable systems and 
bioinformatics. In the next future we intend to do more 
extensive experiments and extend the system to the 
alignment of multiple sequences. In the same way, it is 
expected that this technology can be a feasible alternative 
for practical problems that require high computational 
power and real-time response, not only in bioinformatics, 
but also in combinatorial optimization problems. 
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