
HARDALIGN: A PARALLEL PAIRWISE ALIGNMENT HARDWARE

Guilherme L. Moritz, Cristiano Jory, Heitor S. Lopes, Carlos R. Erig Lima

 Bioinformatics Laboratory (CPGEI)
Federal Technological University of Paraná

 Av. 7 de setembro, 3165 80230-901 Curitiba (PR) – Brazil
 email: hslopes@pesquisador.cnpq.br, erig@cefetpr.br

ABSTRACT

This paper describes the design and implementation of a
parallel pairwise alignment hardware, implemented in a
FPGA device. This system is aimed at aligning pairs of
proteins, using a dynamic programming algorithm. The
alignment is done in parallel thanks to a pipelined approach.
All functional blocks are described in detail. Experiments
were done to access the performance of the system for up to
pairs of 2000-amino acids-long proteins. Hardalign was
compared with a similar algorithm implemented in software
and running in a PC, resulting in a 1:10 speed-up ratio.
Results encourage the continuity of the work, showing that
reconfigurable computing can offer interesting solutions for
bioinformatics problems.

1. INTRODUCTION

In biological systems, proteins are the most abundant and
functionally diverse molecules and almost all vital
processes depend on these macromolecules, which are
composed by amino acids chains. The common 20 different
types of amino acids can be combined in a linear sequence
having the necessary information for the generation of a
unique tri-dimensional structure. The comparison of two
protein sequences (or a group of them) is known as
alignment. Alignment consists of the systematic
comparison of the amino acids compounding the sequences
throughout their whole extension (or only specific regions),
and then generating a string that shows similar and
dissimilar regions, as well as a similarity score is computed.
Sequence alignment is the most important tool for
discovering and representing similarities between
sequences, and can unravel the evolutionary history, critical
preserved motifs, details of the tertiary structure or
important clues about protein function. Therefore, sequence
alignment is a central topic of extensive research in
computational biology [4].
 However, from the computational viewpoint, the
alignment of sequences (either proteins or DNA) is a very
difficult task. In recent literature, many computational

algorithms were proposed for sequence alignment
(local/global alignment; pairwise/multiple alignment). The
main difference between them is the quality of the
alignment and the computational effort required. There is
an exact algorithm for finding the optimal alignment
between two sequences, based on dynamic programming.
This algorithm, originally proposed by Needleman and
Wunsch [6], was aimed at finding a similarity score
between sequences, and was later explored by Waterman
[7]. The drawback of this algorithm is the memory and
processing time required. Given two sequences of length N,
the memory complexity and time complexity of the
algorithm are O(N2) and O(N3), respectively. As a
consequence, pairwise alignment using dynamic
programming is a problem that requires significant
computational power, especially for large sequences.
 On the other hand, recently, we have witnessed a
pronounced growth of the hardware and software
technologies for embedded systems, with many
technological options arising every year. The use of open
and reconfigurable structures is becoming attractive,
especially due to its robustness and flexibility for easy
adaptation to different project requirements. Reconfigurable
devices have advantages such as: low power consumption
and high speed processing, efficient tools for simulation
and programming, flexibility and modular operation [2]. In
special, the possibility of massive parallel processing makes
reconfigurable computing (that is, systems based on
reconfigurable hardware) a suitable technology to be
applied to the pairwise alignment problem addressed here.
 This work describes the project and implementation of a
parallel pairwise alignment algorithm using reconfigurable
hardware computing.

1.1 Dynamic Programming

The dynamic programming algorithm is used for aligning
two amino acids sequences and computing its similarity
score. This algorithm requests the construction of a (m x n)
matrix, where m and n are the lengths of the two sequences
to be aligned. For the construction of the matrix, the string
of the first sequence is put above the matrix and the other
on the left side. The first line and column of the matrix

This work was supported by the Brazilian National Research
Council (CNPq) under grants no. 506479/04-8 and 305720/04-0.

depend only of the sequence above and to the left,
respectively. All other cells of the matrix have to be
computed recursively, depending on the values of the
upper, left and diagonal cells. This data dependency
imposes a serious constraint on the algorithm, not allowing
its direct parallelizing [5]. The computation of the elements
of the matrix takes into account a substitution matrix, which
gives the “evolutionary distance” between pairs of amino
acids [3]. In this work we used BLOSUM62 as the
evolutionary distance matrix.
 Equation (1) shows the Needleman-Wunsch approach
for computing the elements of the dynamic programming
matrix. Line 0 and column 0 are the preliminary elements
needed for computing the matrix, as mentioned before, and
they are obtained with the three first terms of the equation.
In this equation, i and j are the indexes of the (m x n)
matrix, g is the gap penalty, A[i,j] is the cell at coordinates i
and j, and S[aai,aaj] is the value of the substitution matrix
for the corresponding pair of amino acids that are in line i
and column j of the matrix.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

+−−
=

<<−=
<<−=

=

gjiA
gjiA

aaaaSjiA
jiA

njngjA
mimgiA

A

ji

]1,[
;],1[

];,[]1,1[
max],[

1.],0[
1.]0,[

0]0,0[

 (1)

2. HARDALIGN

Fig. 1 shows a block diagram of the proposed system.
HardAlign is a dedicated processing system, working as a
peripheral of the NIOS II Altera embedded processor,
interconnected via the Avalon bus [1]. Hardalign was
especially developed for pairwise alignment of proteins.
 The Hardalign block contains an arrangement of N
matrix line processor units (MLPUs – see section 2.3) and
all logic for driving the arrangement. The size of N is
limited only by the width of the Avalon bus.
 The process of pairwise alignment using dynamic
programming matrix is divided in steps, as follows:

a) Reception of amino acids data.
b) Reception of system’s configurations.
c) Computation of the dynamic programming matrix.
d) Backtracking in the dynamic programming matrix.
e) Transmission of results.

 The critical part of the process that requires
computational power is the computation of the dynamic
programming matrix and for this reason it is run in parallel
by the MLPUs. For this reason the computation of the
dynamic programming matrix is emphasized in this work.

Fig. 1. Architecture of the Hardalign system.

 The software running in the NIOS II processor performs
steps (a) and (b) and writes data to internal registers of
Hardalign. Then, the driving logic is started and NIOS II
reads sequentially the results. A SDRAM memory is used
for storing vectors generated by the MLPUs. Next, the
backtracking procedure is started by software running in
NIOS II. This algorithm uses the vectors previously
generated and finds a path from the last cell of the matrix
towards the first one. This sequence corresponds to the
alignment of the two proteins and it is the result sent to the
user, ending the process. In the next sections, the Hardalign
Pipeline will be described in details.

2.1 Cell computation circuit

Each MLPU computes one cell of the dynamic
programming matrix, in a single clock cycle, and it is
responsible for computing a line of the matrix. Once
completed, a new line is started until the matrix is fully
done. Since N cells are computed by clock cycle, the whole
matrix is concluded in L.C/N clock cycles, where L is the
number of lines and C the number of columns of the matrix.
 Fig. 2 shows the basic cell computation circuit used by
each MLPU. It is responsible for computing the value of a
cell, and uses the information of the adjacent cells, a
substitution matrix and the Needleman-Wunsch equation
[6] (section 1.1). The outputs of the circuit are the value of
the cell and the information from where the cell was
constructed.

Fig. 2. Internal architecture of a cell computation circuit.

 The substitution matrix is encoded as a combinatorial
circuit: every possible combination of the 20 amino acids
gives an evolutionary distance value as result.
 This value is used in the equation to compute the final
value of the cell. The circuit has a special behavior when
one or both of their input amino acids correspond to a gap.
This occurs in the first line and first column of the dynamic
programming matrix, and known as border penalties.
 Fig. 3 shows in details how a specific cell is computed
by the circuit of Fig. 2. The arrows point back the cell from
which a given cell was generated from. Numbers inside de
cells are the result of applying equation (1), letters above
and to the left are the two amino acids to be aligned. The
current cell under computation is the bottom-right one, and
all elements needed for computing it are shown.

- D Y E
(CA)

- 0 -10 -20 -30

V -10 -3 -11
(DC)

-21
(SC)

Y
(LA)

-20 -13 4
(LC)

-6
(CC)

(V)

Fig. 3. Example of the of a cell computation of the

dynamic programming matrix, using the cell
computation circuit.

2.2 Arrangement of the Cell Computation Circuits

The first approach for the cell computation circuit
arrangement is to set up them exactly as a dynamic
programming matrix. However, this architecture has several
disadvantages, as follows:

• Wasting of logical resources: A cell would compute a

single value, remaining idle for all the rest of the
process.

• Input and output bottleneck: The final score will be
valid only when all of the amino acids are applied
simultaneously to the cells inputs, what would be
longer than the propagation time of the cells, thus
characterizing a bottleneck. This limitation also
appears when the output vectors are read
simultaneously.

• Maximum alignment size: The maximum length of
sequences to be alignment is limited by the number of
cells configured in the FPGA device. Since part of the
device must be reserved to other systems blocks, and
the size of the matrix grows quadratically, this
implementation would be useful only for short
alignments.

 The construction of a pipeline for computing the
dynamic programming matrix is the alternative due to the
limitations of the first approach. In this case, an example of
cells arrangement is shown in Fig. 4.

 a b c d

a 0 1 2 3

b 1 2 3 4

c 2 3 4 5

d 3 4 5 6

Fig. 4. Cell computation sequence for the dynamic
programming matrix using a pipeline structure.

 In a given clock cycle, each cell presents both V and CC
(see Fig. 2) in its outputs. Those values are used for the
recursive computation of the following cells in the next
clock cycle. In the first clock, only the cell (a,a) can be
computed. Using the value of this cell, in the next clock, it
is possible to compute cells (a,b) and (b,a) at the same time.
With these values, in the next clock, cells (a,c), (b,b) and
(c,a) can be computed, and so on. Once computed cell
(a,a), the remaining elements of the first line can be
computed. In the same way, once computed cell (b,a), the
second line can be computed. Therefore, as the clock cycles
advance, more lines are enabled to be computed. This
feature inspired the pipeline approach exploited in this
work.

2.3 The MLPU entity

Except for the first line of the matrix (that is a special case),
the other lines depend on the following values for the
computing a cell:

a) Value of the line amino acid (constant during the

computation of a line);
b) Value of the column amino acid (changes in each

cycle);
c) Value of the previous cell, computed by the own entity.
d) Values of the cells of the line immediately above the

one that it is computed, of the current and the previous
coordinate.

e) Value of the gap penalty.

 MLPU entity can be replicated to compute
simultaneously several lines in parallel. All the necessary
data for an entity can be read from other entities that
compose the pipeline, as follows:

a) The line amino acids are constant during computation of

a line of the matrix. Then, they are read in the
beginning of the process.

b) The pipeline used for the first line of alignment should
receive the column amino acids sequentially. Fig. 5
shows the MLPU entity in details, where an amino acid
requested by a line is always requested by the pipeline
that was above in the previous clock cycle.

c) The previous computed value is registered to be reused
for the subsequent cells computation.

d) Besides the value immediately subsequent, the values
computed in the two subsequent clock cycles are also
registered. The value of these cells is also necessary for
the computation of the line immediately below.

e) The gap penalty is common to all of the entities and
constant during the whole process. Therefore, it is
registered outside of MLPU.

Fig. 5. Details of the MLPU entity.

2.4 Basic structures of the Pipeline entity

The Pipeline entity, shown in Fig. 6, is arranged to compute
several lines in a parallel way. In this figure, an
arrangement with 3 MLPUs is shown, therefore allowing
the simultaneous computation to 3 lines of the dynamic
programming matrix. The inputs of this entity are the gap
penalty, the line amino acids and the column amino acids,
in a sequential way.
 Each MLPU entity has four outputs: two cell values, an
amino acid value and a vector. Only the vector is necessary
for the backtracking procedure later performed. The other
outputs are important for the computation of the subsequent
cells. In fact, only the vectors are defined as outputs, and
the other signals are internal values of the pipeline. These
vectors are defined like an output bus (vector bus) of 2.N
bits, when N is the pipelines number. Initially, just the first
MLPU contains valid values in their internal registers, and
only some bits of the vector bus are valid. After some
cycles the own MLPU apply valid values to the subsequent
MLPU.
 Table 1 shows an example of the computation of the
dynamic programming matrix, when it is shown the
evolution of signal throughout the MLPUs. In the first clock
cycle, the first MLPU registers the used as input of
ColumnAA and LineAA. Since the two values are gaps, after
the gate propagation of the cell, the MLPU output value is
0d and the output vector is 00b. In the next clock cycle, the

first MLPU output vector is registered in the second
MLPU. LinAAWe of the second MLPU should be in high
level, and all the other ones in low level. Then, the second
MLPU will register the line amino acid "V" and, after the
end of the gate propagation, the output vector presents 10b
as value.

Fig. 6. Details of a possible Pipeline entity.

 Values of the column amino acids travel through all of
the MLPUs while the value of the line amino acid is kept
fixed, and so the computation of all cells is done.

Table 1. Contents of the line and column registers, and
respective computed vectors.

 Clock cycle MLPU 0 1 2 3 4 5 6 7
1 X - D Y E X X X
2 X X - D Y E X X ColAA
3 X X X - D Y E X
1 X - - - - - - -
2 X X V V V V V V LinAA
3 X X X Y Y Y Y Y
1 XX XX 00 10 10 10 XX XX
2 XX XX XX 01 11 11 10 XXVector
3 XX XX XX XX 01 01 11 10

2.5 Extended structure of the MLPU entity

 Some additional logic is necessary to handle LinAAWe
pins of each MLPU in a sequential way, during the first 3
clock cycles, and to maintain them inactive for the other
cycles. This logic is supplied by the entity PipelineControl.
 The pipeline is generalized to accomplish alignments
with number of lines greater than the number of MLPUs.
After finishing the computation of a line, a new round is

started, for the next N lines of the matrix. To do so, it is
enough to access the next N line amino acids and provide
again the column amino acids. However, notice that, by this
time, the first MLPU is not in charge of computing the
horizontal border penalties anymore. The computation
depends on the values of the upper line that was computed
by the last MLPU of the arrangement in the previous
processing round. Considering that they are not
synchronized in time with the current data among MLPUs,
it is necessary a memory for to store these values with same
size of the number of columns of the alignment.
 Fig. 7 shows the complete structure of the Pipeline
entity. The block PipeControl implements the logic to
control the LinAAWe line of each MLPU and the memory
storage to synchronize data.

Fig. 7. Complete structure of the Pipeline entity.

2.6 Configuration layer

Each amino acid is encoded with 5 bits (20 types of valid
amino acids, plus the gap), then we used triplets to
represent them, so as to avoid waste of memory. An entity,
denominated Pipeline Driver (Fig. 8), decodes these amino
acids and applies them in the correct order to the pipeline
input. The Pipeline Driver obeys the line amino acids
limits, applies a new processing round whenever necessary
and interrupts NIOS II, signaling the end of the process.

Fig. 8. A complete view of Hardalign pipeline.

 The data necessary for correct operation of Pipeline
(that is, gap penalty, number of line amino acids, number of
column amino acids, value of the line amino acids and
value of the column amino acids) are stored in a memory
into the HardAlign Pipeline. An address decoder manages
data input and output.

3. RESULTS

The synthesis of Hardalign was done in an Stratix II
EP2S60F672C5ES device (Altera), with a 40 MHz clock
rate. For compiling the circuitry described in VHDL we
used SOPC builder (System on a Programmable Chip
Builder) software (to integrate the several modules with the
NIOS II core), and for the physical synthesis and
simulations, Quartus II (Altera).
 Two main experiments were done: analysis of resources
allocation as function of number of MLPUs and analysis of
the performance for different sizes of dynamic
programming matrix, compared with a software
implementation in a PC. For this last experiment, we used
the same method implemented in hardware, but now
implemented in C language, and run in a PC with Athlon
XP 1600+ processor, 512Mb de RAM DDR 266 and
Windows XP Operational System. An additional estimation
is presented for the case when Hardalign is modified for
using DMA (Direct Memory Access). This further
modification will speed up data transfer rate, thus
improving dramatically the performance.

3.1 Resources demand

The demand for LUTs and internal registers grows up
linearly as function of the number of MLPUs. This
experiment takes into account only the Pipeline logic,
excluding the Avalon bus, NIOS II core, additional
memories and pipeline drivers. The maximum frequency
operation of pipeline is not affected by the number of
MLPUs used. Table 2 shows the resources necessary for 5
to 64 MLPUs.

Table 2. Resources allocation.
Number of MLPUs LUTs Registers

5 1384 399
8 2189 589

16 4228 1094
32 8287 2103
64 16392 4120

3.2 Performace comparison

In this experiment, Hardalign used 8 MLPUs and was run at
40 MHz clock. The performance was tested for several

protein sizes to be aligned. Table 3 shows the computation
time for pairs of 20- to 2000-amino acids-long sequences.
 The resolution of the PC timer is 1 ms, precluding to
measure the processing time for 20 x 20 and 50 x 50
matrices. In this table, we observed a 1:10 ratio,
approximately. Data of this table is also shown in Fig. 9.

Fig. 9. Performance comparison between the software and

hardware approaches shown in Table 3.

3.3 DMA performance

A further improvement of Hardalign is the use of a DMA
controller module to improve the transfer rate between the
SRAM and the Hardalign Pipeline (see Fig. 1). This
comparison is shown in Table 3. Data was obtained by
simulation. An improvement of about 28 times in
performance can be observed comparing this approach and
the previous one.

Table 3. Performance comparison.

Matrix size
(lines x

columns)
Hardalign

(ms)

Hardalign
with DMA

(ms)*
Athlon XP

(ms)
20 x 20 0.074 0.001 -
50 x 50 0.280 0.008 -

100 x 100 0.949 0.031 10
200 x 200 3.548 0.125 30
500 x 500 22.123 0.781 200

1000 x 1000 87.618 3.125 831
2000 x 2000 350.207 12.500 3465

* estimated

4. CONCLUSIONS

Pairwise sequence comparison by alignment is an important
problem and still an open issue in computational biology,
especially when dealing with large sequences. We have

proposed a methodology for parallelizing a pairwise
sequence alignment algorithm using a reconfigurable
hardware computing. The performance analysis reveals that
the improvement by using the hardware approach achieves
around 1000% of speed-up, when compared with the
conventional software processing. If we consider the use of
DMA in Hardalign, this ratio, the hardware implementation
can be something around 280 faster.

4000 Reconfigurable logic for local processing allows a
dramatic minimization of the processing time, when
compared with a traditional software approach, currently in
use. Such performance is possible thanks to the parallel
processing and reduced computation time, inherent to a
FPGA hardware implementation. The use of reconfigurable
logic for this class of application was essential, and it
enabled an efficient solution, satisfying the project
requirements and constraints.
 We believe that the proposed algorithm is a useful
contribution to both reconfigurable systems and
bioinformatics. In the next future we intend to do more
extensive experiments and extend the system to the
alignment of multiple sequences. In the same way, it is
expected that this technology can be a feasible alternative
for practical problems that require high computational
power and real-time response, not only in bioinformatics,
but also in combinatorial optimization problems.

5. REFERENCES

[1] Altera Corporation, Nios II Processor Reference Handbook,
2005.

[2] K. Compton, “Reconfigurable computing: a survey of
systems and software,” ACM Computing Surveys, vol. 34,
no. 2, pp.171–210, 2002.

[3] S. Henikoff and J.G. Henikoff, “Amino acid substitution
matrices from protein blocks,” PNAS, vol. 89, pp. 10915-
10919, 1992.

[4] A.R. Leach, Molecular Modelling: Principles and
Applications, 2nd ed., Prentice-Hall, Dorset, 2001.

[5] H.S. Lopes and G.L. Moritz, “A distributed approach for a
multiple sequence alignment algorithm using parallel virtual
machine,” In: Proceedings of 27th Int. Conf. of IEEE EMBS,
Shanghai, China, 2005.

[6] S.B. Needleman and C.D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology,
vol. 48, pp. 433-443, 1970.

[7] M.S. Waterman, T.F. Smith, and W.A. Beyer, “Some
biological sequence metrics,” Advances in Mathematics, vol.
20, pp. 367-387, 1976.

-500

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500

Athon XP 1.6
HardAlign

Time (ms)

Line and columns size

	INTRODUCTION
	Dynamic Programming

	(1)
	HARDALIGN
	Cell computation circuit
	Arrangement of the Cell Computation Circuits
	The MLPU entity
	Basic structures of the Pipeline entity
	Extended structure of the MLPU entity

	RESULTS
	Resources demand
	Performace comparison
	DMA performance

	CONCLUSIONS
	REFERENCES

