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Abstract

With base in object detection and recognition techniques, we developed and implemented a new methodology to perform the first
head-function of a weld quality interpretation system: the weld bead extraction from a digital radiograph. The proposed methodology
uses a genetic algorithm to manage the search for suitable parameters values (position, width, length, and angle) that best defines a win-
dow, in the radiographic image, matching with the model image of a weld bead sample. The search results are verified in a classification
process that recognize true detections using image matching parameters also proposed in this work. To test the proposed methodology,
two groups of images were used; one consisting of 110 radiographs from pipelines welded joints and the other containing 6 images with
different numbers of radiographs per image. The tests results showed that, besides automatically check the number of weld beads per
image, the proposed methodology is also able to supply the respective position, width, length, and angle of each weld bead, with an accu-
rate rate of 94.4%. As a result, the detected weld beads are correctly extracted from the original image and made available to be inspected
through others algorithms for failure detection and classification.

© 2006 Published by Elsevier Inc.
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1. Introduction

Radiographic inspection has been one of the most wide-
ly used non-destructive techniques for detection of internal
defects in welded structures in the industry [14]. Currently,
the analysis of the weld joint radiographs is performed by
qualified inspectors, who make decisions based in their
own experience and visual accuracy. Consequently, results
are often subjective and many efforts have been done
towards the design and construction of computer vision
systems, aiming at supporting the weld joint radiographs
interpretation and, therefore, improving robustness, accu-
racy, and speed of the inspection process [15].
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According to Liao [13], a weld radiographs interpreta-
tion system generally has three major functions: (1) seg-
mentation of the welds from the background, (2)
detection of welding defects in the weld, and (3) classifica-
tion of the defects’ types. Liao and Ni [10] also emphasize
that, since only items within a weld are of interest, it is pre-
ferred to extract the weld from each image before applying
defect detection algorithms. Therefore, this article presents
a new approach, based on object detection and recognition
techniques, for the first step of this image analysis process,
i.e., segmentation of the welds from the image background.

Concerned with the weld bead segmentation, one of the
first related works to be quoted is the approach from Law-
son and Parker [9] that uses artificial neural networks. Basi-
cally, they used a multilayer-perceptron (MLP) neural
network (NN), trained by error backpropagation, in order
to recognize weld bead image pixels from the background
image in a digitized radiograph. However, with their NN
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training, they chose some pixels’ characteristics that are
closely dependent to the pixel position in the image. As a
consequence, the system effectiveness depends on the previ-
ous knowledge about the width, position and angle of the
weld.

Another approach, concerned with weld bead segmenta-
tion, was introduced by Liao and Ni [10]. Their method
was based on the observation that if the joint was welded
with excess of metal its transversal profile of intensities
(gray levels) is more Gaussian-like than other objects in
the image. Based on the peaks and valleys position along
each line image profile, line intercepted objects are firstly
detected. Then, each object profile is compared to a Gauss-
ian curve in terms of the mean square error (MSE). In fur-
ther works, the MSE, as well as other object profiles
characteristics (height, width, and position), are used for
pixels classification into two classes: weld and non-weld,
using fuzzy-based classifiers [12] and MLP neural networks
[11]. However, depending on the weld angle and position, a
line image cannot contain the weld transversal but longitu-
dinal profile, which is not Gaussian-like. Therefore, a pre-
vious knowledge about the weld angle is required in this
case. In addiction, due to the fact that some shaved/re-
paired welds usually have non-Gaussian characteristics,
this implies that another methodology is also needed in
these cases [10].

In our previous work [4], we introduced an object detec-
tion system, based on evolutionary computation and image
matching techniques, to find specific chess pieces in images
with different scales, positions, angles, and number of
objects. Using the same principles, we adapted and
improved the method to be used in the weld bead segmen-
tation problem. As a result, the system was enabled to
detect the position, width, length, and angle of how many
weld beads are there in the image with an accuracy rate
of 94.4%.

In the sequence, this paper is organized as follows: prob-
lem characterization in Section 2, methodology in Section
3, tests and results in Section 4, and final conclusions in
Section 5.

2. Problem characterization

All the digital radiographic images that were acquired
(111 in total) came from carbon-steel pipes with 6 or 8 in.
nominal diameter and a wall thickness between 6.4 and
12.7 mm. The pipes were welded by gas tungsten arc weld-
ing (GTAW) process, using carbon-steel filler metal.
Instead of traditional X-ray films, we used ‘“photostimula-
ble” phosphor plates (manufactured by Gendex®) with
150 mm x 300 mm. After the X-ray radiation exposition,
each phosphor plate is read by a laser scanner device
(DenOptix®, manufactured by Gendex®) and converted
into a digital image with 256 grey levels at 150 dpi (dots
per inch). It is important to emphasize that this resolution
is not proper for analysis of defects and it was used just
for the weld bead detection. The radiographic test was
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Fig. 1. (A) Double-wall radiographic technique with single-wall radio-
graphic viewing. (B) Sampled radiograph from a pipe weld joint.

conducted according to ASME V [1], using double-wall
radiographic exposing technique with single-wall radio-
graphic viewing, as shown in Fig. 1A. Evidently, such tech-
nique has to be repeated in different angles to embrace the
pipe weld joint and cover the whole welded bead. Fig. 1B
shows a sampled image, which were acquired through this
technique.

In our approach, the main objective is to automatically
detect the region of interest, which is the weld bead stretch
indicated by the two position markers, as shown in Fig. 1B.
Some objects, as the position markers and image quality
indicator (IQI), increase the complexity of the problem.
They make the weld image segmentation by a simple gray
level threshold impossible. In addition, many parameters
(width, length, angle, position, and contrast of the weld
bead) can vary from one image to another, making the task
of weld bead detection even more difficult.

3. Methodology

The object detection and recognition system, which the
block diagram is shown in Fig. 2, was adapted for our
problem. This system was first idealized by Centeno et al.
[4] to find chess pieces in images. Actually, each block func-
tion is explained as follows:

e The model image (an object sample image) is fed to the
model construction block. This block processes it in
order to construct the model representation (described
in Section 3.1).
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Fig. 2. The block diagram showing how the information flows through

e The test image (the image to be analyzed) is fed to the
genetic search block. This block uses a genetic algorithm
(GA) in order to find the region of the rest image that
better matches the image model (Sections 3.2 and 3.3).

e The object verification block evaluates the GA output
(object image i). Each time object image i is accepted, it
is extracted from the test image, i/ is updated to (i + 1)
and the remaining image (test image—object image i) is
feed-backed to the GA for another search. As a conse-
quence, when the current object image i is not accepted,
the search stops. Besides, (i — 1) gives the number of
detected objects. The loop between the blocks genetic
search and object verification allows the system to find
further copies of the same pattern in the test image.

e The parameters updating block is just for the system
parameters adjustment.

3.1. Model construction

The image model for this study was the weld bead
radiograph from Fig. 3A. As in Centeno et al. [4], the image
model is represented by a (n x n) matrix, called reference
matrix (Mref), with n=14. The procedure to generate
Mref is described as follows:

(a) The model image is divided by n horizontal lines reg-
ularly spaced by distance dy (where dy = number of
image lines/(n + 1), in pixels).

(b) The model image is divided by n vertical lines regular-
ly spaced by distance dx (where dx = number of image
columns/(n + 1), in pixels).

the components (blocks) of the object detection and recognition system [4].

(c) The intersection points (see Fig. 3A) are named ‘ref-
erence points’ and are denoted by Pij, where
iLj=1,...,n.

(d) Point Pcc, with ¢ = (1 + n/2), is named the ‘central
reference point.’

(e) Function f(Pij) assigns to each reference point the
value corresponding to the mean gray level of the pix-
els in the Pij neighborhood, as defined by the limited
region shown in Fig. 3B.

(f) All the f(Pij) values, normalized in the integer range
[0..255], are represented in the (n X n) reference matrix
(Mref), as Eq. (1):

fPu) o f(Puw)
Ma=| ... f®) ... | (1)
f(Pnl) f(Prm)

Besides Mref, the following parameters were also studied in
this work:

(a) Mref derivative in the i direction

OMref /0i(i,j) =Mref (i,j+1) —Mref(i,j), fori
=1,...,nandj=1,....n—1 (2)
(b) Mref derivative in the j direction

OMref [0j(i,j) =Mref (i+1,j)— Mref(i,j), fori
=1,....n—landj=1,...,n. (3)
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Fig. 3. (A) Model image divided by n = 14 lines and columns, with the central point of reference Pcc. (B) The Pij neighborhood for a single (i,j) point.

(c) Mref horizontal projection Mrel Ph(Mrel)  sMre¥s;
50 30 150 230 20 120
n—l 100 150 230 480 50 80
Ph(Mref)(i) = ZMref (i,j) fori=1,...,n. (4) 200 100 80 380 100 -20
=0 Py (Mref) [350 280 460]
(d) Mref vertical projection ;[ 50 120 80
s Mre¥ 61 100 .50 -150

n—1

Po(Mref)(j) = ZMref(i,j) forj=1,...,n. (5)

The sample, in Fig. 4, shows a (3 x3) Mref and its
derivatives (8 Mref]di and 6 Mref/dj) and correspond-
ing projections (Ph(Mref) and Pv(Mref)).

3.2. Image matching

Supposing that image k is a rectangular region (window)
extracted from the test image, Centeno et al. [4] use a func-
tion F(image k) to compute the similarity between the
image k and the model image:

wr - F(image,) 4+ wg, - F4(image;) + wg,, - Fq;(image;) + wr,,

Fig. 4. A matrix (3 x 3) Mref, derivatives dMref/dl and 6 Mref]dj, and
projections Ph(Mref) and Pv(Mref).

Fu(image k) = S(oMref ' /d;, 0Mref /9;), 9)
Fy(image k) = S(oMref . /d;, 0Mref /9;), (10)
F(image k) = S(Ph(Mref',), Ph(Mref)), (11)
F,(image k) = S(Pv(Mref ), Po(Mref)). (12)

For convenience, instead of five matching parameters
(F, Fy, Fy, Fy, F,p), the weighted sum Fg(image k) from
Eq. (13), also called global similarity value, is used to com-
pare one image (imagey) to the other (model image).

- Fyy(imagey) + wg,, - Fp(imagey,)

Fg(image,) =

; (13)

Wr + WF, + WFdj + Wth + Wva

F(image k) = S(Mref ., Mref). (6)

The similarity value S(Mref;, Mref) is computed for the
reference matrices: Mref;. (for the image k) and Mref (for
the model image) in terms of the absolute error sum, using
Egs. (7) and (8). Indeed, these equations give the similarity
between two (n X m) matrices (M; and M)

S(M,M;) =1 — E/E yax, (7)
where
E= 0 3 M1G) — M) (®)

and E,, 1s the maximum value for E.

Besides F, four other image-matching parameters
(Fa, Fg, Fpp Fp) were studied in this work. The
parameters F; and Fy are related to the reference
matrices derivatives, according to Egs. (9) and (10).
Similarly, the parameters F,;, and F,, are related to
the horizontal and vertical projections, according to
Egs. (11) and (12).

The variables Wg, Wy, Wrgjs Wepn, and wg, are binary
weights (0 or 1) for the matching parameters in the sum.
In the case that any weight is turned to 0, the respective
matching parameter is just cut out of the Fs formula. It
is also important to point out that F; varies in the range
[0.00 1.00] and, actually, values closer to 1.00 are expected
for the most similar images.

As shown in Fig. 5, any image k (Fig. 5B) can be defined
within the fest image (Fig. SA) by an enclosing rectangle
(image window). The position, scales, and angle of the
enclosing rectangle (for image k) are defined by vector I,
as follows:

(14)

where x; and yy are the coordinates of the central reference
point (Pcc), shy. gives the horizontal scale, sv, gives the ver-
tical scale and 0, gives its rotation angle. Using these vari-
ables, image k can be extracted from the test image and,
using the global similarity Fg(image k), image k can also
be compared to the model image (Fig. 5C).

Unlike our previous work [4], independent scales (s/y
and sv;) were used for the horizontal (direction of the

I = (Xi, i Shie, sv, Og),
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Fig. 5. (A) The test image—a typical weld joint radiograph. (B) The image k—a rectangular region extracted from the test image. (C) The model image.

weld bead length) and vertical (direction of the weld
bead width) rectangle dimensions. However, similarly
to our previous work, a genetic algorithm (GA) was
also implemented to manage the search for the optimum
I.

3.3. Genetic algorithms

GAs are well-known search and optimization techniques
based on the mechanics of natural genetics. According to
Simunic and Loncaric [16], GAs are very appropriate for
optimization in large search spaces, where exhaustive
search procedures are not feasible. Recent works [3,5,2]
has also applied evolutionary computation techniques,
such as GA, in order to improve image matching and seg-
mentation techniques for object detection and recognition,
with many advantages.

GAs uses population-based strategies where individuals
are usually represented as strings of bits that, when suit-
ably decoded, correspond to a feasible solution for the
problem. Each individual can be evaluated by a fitness
function whose value represents how good the current
solution for the problem is. Starting from an initial
population of individuals randomly generated, subsequent
generations are evolved based on the natural selection
principle and genetic operators like crossover and muta-
tion. The Darwinian principle of the survival of the fittest
gives more chance to the best individuals to propagate
their own genetic material to the next generations. Conse-
quently, it is expected that the most feasible solutions for
the problem will be represented by individuals from the
last generation [6].

In the next subsections it will be explained how
GAs were used in our problem. This includes describ-
ing how the individuals are encoded (Section 3.3.1),
how they are evaluated (3.3.2) and which genetic oper-
ators and parameters were used in our application
(3.3.3).

3.3.1. Individual encoding

An individual 7 is defined by Eq. (14). Therefore, a gen-
eral solution for the problem will have the following vari-
ables: x, y, sh, sv, and 6. Using a binary code (string)
with 11 bits long to represent each variable, it is possible
to express 2048 values within the feasible variable range.
By using the range specified in Table 1 for the angle 0,
for example, it shall vary in steps of 0.003 radian from 0
until 2x.

It is important to point out that the range in Table 1 for
variable sv was set based on the estimated widths for the
thickest and sharpest weld bead samples. Similarly, sh
range was set based on the estimated lengths for the largest
and shortest weld bead samples. The ranges for x and y,
however, were defined in terms of the fest image dimen-
sions to assure that the central point of reference (Pcc) will
always be a point within the test image. Since the images
used in this work do not exceed 2048 x 2048 pixels, Pcc
can be any test image pixel.

The concatenation of the binary representation of all
variables (Table 1) will give a 55 bits long string that repre-
sents an individual. Consequently, the search space induced
by this representation is 2°° = 3.6 x 10,

3.3.2. Fitness function
The fitness function is aimed at providing a value (fitness
value) to express the individual suitability for the problem

Table 1
Range of encoded variables in an individual

Symbol Parameter Range String length

x Pcc column [0, (number of 11 bits
image columns—1)]

y Pcc line [0, (number of 11 bits
image lines—1)]

sh Horizontal scale [0.95, 2.00] 11 bits

sv Vertical scale [0.60, 1.50] 11 bits

0 Rotation angle [0, 2m] 11 bits
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in hand. Since our problem is an image-matching problem,
we used Fg (from Eq. (13)) to express the fitness value for
some individual I

fitness(I;) = Fg(image). (15)

However, before using the function fitness(1;), two crit-
ical conditions must be considered. The first condition is
illustrated in Fig. 6A, where the enclosing rectangle
(defined by I) includes the invalid image region (A) and
the area (B), which is not an image region. Since the refer-
ence matrix values are undefined for the points located in
these areas, just the small remaining area in the rectangle
inside will influence the fitness(l;) value. Due to the
reduced number of image points to be computed in this
case, an unreal fitness value could be assigned to this indi-
vidual. In this case, fitness(I},) will be penalized by using the
penalty P, defined as follows:

Pi(Iy) = n* /(7 + nyp), (16)

where n;, is the number of reference points located in the
invalid regions and n”* is the total number of reference
points. When n,, increases, P, decreases to lower values
in the range [0.0, 1.0].

Another critical condition to be considered is illustrat-
ed in Fig. 6B that shows an enclosing rectangle with
incomplete length. To be a valid solution, it should
include the minimal weld bead length (L) defined by
the position marks (0 and /). Such critical condition
happens when the horizontal scale sk is insufficiently
large. Therefore, it was decided to penalize fitness(I;)
by using the penalty P,

Py(I}) = (sh+ 6.5hnax) /7 -Shmax, (17)

where s/, 1s the maximum value in the s/ range (Table 1).
Thus, P, is maximum (1.00) just when sh = shp.y.

Using penalty functions P, and P,, the new fitness func-
tion (fitness' (1)) is defined by the following product:

fitness' (1) = fitness(I;).P1(I;).Py(I}). (18)

3.3.3. The genetic algorithm working

The initial population of the GA is randomly generated
and it is constituted by z individuals (55-bits long strings).
Starting from this point, the following procedures describe
how a new population can be generated:

invalid regions

—

7 / //A

\

(a) Each decoded individual is evaluated by the fitness
function (Eq. (18)).

(b) The fittest individual is selected, using elitism (as
described in [6]), to be inserted in the new population.

(c) The stochastic tournament selection method (as
described in [7]) is used to select pairs of individuals
for recombination (crossover).

(d) With probability p., selected pairs of strings are
recombined, using uniform crossover operation (as
described in [6]), and inserted in the new population.

(e) Finally, with probability p,,,, each individual from the
new population have bits (genes) mutated (changed).

Using this procedure, the population is evolved through-
out many generations until some stop criterion is met. In
this work, we used as stop criterion a maximum number
(g) of generations.

Other GA parameters to be set are: population size (z),
crossover probability (pc), and mutation probability (pm).
The tests for parameters setting will be detailed in Section
4.1.

3.4. Object verification

If object image i (where i = 1,2, ... ,j) is the result from
the genetic search, an hypothesis (H) has to be evaluated:
object image i is an acceptable weld bead sample. This
section discusses how such hypothesis can be verified.

Fig. 7 shows samples of non-acceptable (a) and accept-
able (b) weld bead detections. The visual criterion of accep-
tance, used to qualify the detection result, is based in the
observation of 4 terms:

(a) Pcc (the central point of reference) must be located in
the weld bead bulk.

(b) Both the weld bead edges cannot be intercepted by
the same edge of the enclosing rectangle.

(c) The enclosing rectangle must include both weld bead
edges along its effective stretch (L).

(d) The height of the enclosing rectangle must be shorter
than 3/2 length of the maximum weld bead thickness.

During the tests for parameters setting (Section 4.1),
each time the genetic algorithm was run, hundreds of solu-
tions were randomly generated and evolved through many

Fig. 6. (A) The enclosing rectangle includes regions (A and B) with invalid reference points. (B) The enclosing rectangle does not include the whole weld

length (L) to be inspected.
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A

B

Fig. 7. (A) Bad sample (weld bead detection non-accepted by any term of the visual criterion). (B) Good sample (weld bead detection accepted by all terms

of the visual criterion).

generations for each tested image. We only selected the
high scored individual from each generation during the
genetic evolving process. After discarding duplicated solu-
tions, we classified them into bad or good samples accord-
ing to the 4 terms we stated as a visual criterion of
acceptance. These solutions totaled 97 good and 62 bad
samples.

In the chess pieces case [4], the GA output was auto-
matically accepted/rejected based in a minimum thresh-
old for the fitness(l;) value. In this work, in order to
find a feasible threshold for automatic verification, all
the matching parameters (F, Fy, Fy, F,,, F,,) are inves-
tigated using the 97 good and 62 bad samples that were
selected. The most important results are shown Fig. &,
where the samples distribution is plotted in terms of F
and F,, Based on these results, a minimum threshold
Tgpn = 0.862 can be observed for the matching parameter
F,,. Actually, the sample space is divided into two
classes: weld bead (with F,;,> 0.862) and non-weld bead
(with F,;, < 0.862). Note that if Tp,,=0.862 is used,
only one false positive (FP) and one false negative
(FN) are observed (see Fig. 8).

As pointed out in the beginning of Section 3, the object
verification main function is to evaluate the GA output
(object image i), by accepting or rejecting it. The current
section describes an automatic criterion to perform this

evaluation process. Adopting such criterion, the hypothesis
H (object image i is acceptable as a weld bead sample) is
automatically verified using threshold 7p,, =0.862 for
the matching parameter F,;,. When F,;, < 0.862, it means
that H is false and, therefore, object image i is rejected.
Otherwise, object image i is accepted and extracted from
the test image while the remaining image (test ima-
ge — object image i) is feed-backed to the GA, for a further
search, i.e., object image (i + 1).

4. Tests and results

The proposed methodology was implemented in C++
programming language on the Microsoft Windows XP
platform. As in our previous work [4], some C++ routines
from the GAIlib package [17] were used for the GA
implementation.

For our test series, 111 radiographs of welded joint were
acquired as described in Section 2. From one, the model
image (Fig. 2A) was manually extracted. The remaining
110 radiographs were used for testing. From this group,
22 radiographs were selected for the first test series (param-
eters setting), described in Section 4.1. Later, 110 pipeline
weld joint radiographs (including the 22 radiographs from
the last test) were used for the system validation test,
described in Section 4.2. Some of the radiographs were also

Fph
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Fig. 8. Distribution of bad and good samples in a plot in terms of the matching parameters F and F),,
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used to generate images with more than one weld bead per
image. The test using this last type of images is described in
Section 4.3.

4.1. Parameters setting

A number of preliminary tests was done using the group
of images composed by the 22 selected radiographs. The
objective was to achieve a high level of success in the detec-
tion process, without spending a large time in the genetic
search. In this way, appropriate (good, but not optimum)
values for the GA and the fitness function parameters were
defined.

As mentioned in Section 3.3.3, GA parameters to be set
are: maximum number of generations (g), population size
(z), crossover probability (pc), and mutation probability
(pm). For the fitness function, the parameters to be set
are the binary weights (Wg, Wrai, Wrgp, Weph, Wepy), Used in
Eq. (13).

4.1.1. GA parameters setting

Initially, weights wg, Wrgi, Wrgj, WEph, WEps Were set to the
unity: (1, 1, 1, 1, 1). Using tournament selection method
(with tourney size k = 2), single-individual elitism, uniform
crossover (with p.=0.8, p.=0.9, and p,. = 1.0), mutation
(with p,,=0.02 and p,,=0.05) and g =500, we tested
many values in the range [100 ... 750] for the population
size (z). The results were analyzed based in the maximum
fitness value and the genetic search convergence, by observ-
ing the genetic search-evolving plot (see Fig. 9) for each one
of the 22 test images.

As a result, convergence to higher fitness values were
obtained by using p,,=0.02, p.,=0.9 and at least
z = 500. Keeping track of the best fitness value throughout
generations, a convergent behavior to a high-fitness
solution was observed before reaching 100 generations
for the 22 images we tested. Such result suggests that a
reduced number of generations (g = 100 instead of 500)
would be enough as stopping criterion. Using these param-
eter values, the processing time for a run was about 45 s,
with a Pentium-IV 2.0 GHz computer.

245

4.1.2. Testing the relevance of the matching parameters

When all weights (wr, Wrai, Wregj, Weph, Weps) are set to
the unity (1, 1, 1, 1, 1), all matching parameters (F, Fy,
Fyj, Fy, Fy) have the same influence in the fitness function
value. Thus, in order to check the relevance of each param-
eter, other sets of weights were tested. Table 2 shows the
most important results for this analysis.

According to Table 2, the worst results were obtained
when wy and wg,, were set to zero (test 2 and 5). Such
results suggest that the matching parameters F and F,,
are very relevant for the weld bead detection problem.

In test 7, when wg and wg,;, were set to 1 and the remain-
ing weights were set to 0, the number of correct detections
was the same as before (test 1), when all weights were set to
1. Actually, these results suggest that the parameters F;,
F,, and F,, are not so relevant for the detection problem.

In tests 8 and 9, the influence of the parameters F
and F,;, were also individually tested. But, the best per-
formance was not kept using just one of them. As a
conclusion, it is supposed that both, F and F,, have
almost the same relevance for the weld bead detection
problem.

The two unacceptable detections obtained in test 7 are
shown in Figs. 10A and B. Both results are unacceptable
based in term (c) of the visual criterion of acceptance (Sec-
tion 3.4). Despite this, such results are very close to what
would be expected in case detection was correct. These
results encourage us to keep the same parameter values
in the validation tests.

4.2. First validation tests

For this test series, 110 pipeline weld joint radiographs
(including the 22 radiographs from the last test) were used.
As described in Section 2, each radiograph has only one
weld bead to be detected. Some results have already been
shown in Figs. 5B, 7A and B, and 10A and B. Further
results are shown in Table 3.

Using the visual criterion of acceptance (described in
Section 3.4), the system response was classified into four
classes: false positive (FP), false negative (FN), true
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Fig. 9. The maximum, average, and minimum fitness value of population at each generation.
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Table 2
Results for different sets of matching parameters

Test Weight set Parameters Non-detections Unacceptable detections Correct detections
1 (L, 1,1,1, 1) F, Fy, Fy, Fpy, and Fy, 2 0 20
2 0,1,1,1, 1) F4, Fg, Fy,, and F,, 6 4 12
3 (1,0,1,1, 1) F, Fy, F,, and F,, 2 5 15
4 (1,1,0,1, 1) F, Fy, F,y, and F, 2 3 17
5 (1, 1,1,0, 1) F, Fy, Fy, and Fp, 4 8 10
6 (1,1, 1,1,0) F, Fy;, Fy, and F,, 2 3 17
7 (1,0,0,1,0) F, and F,, 0 2 20
8 (1,0,0,0,0) F 3 3 16
9 0,0,0,1,0) F,, 2 4 16

Fig. 10. (A) The length of the detected weld bead is incomplete. (B) The weld bead detection missed some part of the weld bead edge along the effective

bead length (L).

positive (TP) or true negative (TN). These classes are
described as follows:

e FP: something is detected and recognized as a weld
bead, but it is not correct (ex.: Figs. 7A, 10A and B).

e FN: there is a weld bead, but even detected it is not rec-
ognized as a weld bead (ex.: Table 3 test image 1).

e TP: there is a weld bead and it is correctly detected and
recognized as a weld bead (ex.: Figs. 5B, 7B and Table 3
test image 2).

e TN: there is no weld bead and nothing is recognized as a
weld bead.

For test image 1 (Table 3), the weld bead was partially
detected, but it was not recognized as a weld bead by the
verification process. Therefore, it is a case of non-detection,
i.e., a false negative (FN). In the case that it was recognized
as a weld bead, it would be a false positive (FP).

For test image 2 (Table 3), the first detection was cor-
rectly recognized as a weld bead (TP) and the second detec-
tion, that is not a true weld, was correctly rejected (TN). If
the second detection was recognized as a weld bead, it
would be a false positive (FP), since there is just one weld
bead in the image.

The accuracy rate (Ar) was evaluated by Eq. (19) using
the number of events related to each class (FP, FN, TP,
and TN), and shown in Table 4. Using Table 4, one can
compute other performance measures, commonly used in
data classification literature [8]. These measures, namely
sensitivity (Se) and specificity (Sp), mean, respectively,
the proportion of real weld bead cases that the system actu-
ally classifies correctly, and the proportion of non-weld
beads that the system can reject. Sensitivity and specificity
are defined in Egs. (20) and (21), respectively.

Ar = (TP + IN)/(FP + FN + TP + IN), (19)
Se = TP/ (TP + FN), (20)
Sp=IN/(IN + FP). (21)

4.3. Second validation test—with different number of
radiographs in the same image

In [12], X-ray film strips of about 3.5 in. wide by 17 in.
long were digitized four at a time using a scanner. During
digitalization, the X-ray filmstrips were positioned side by
side in the scanner. Consequently, the welds stay parallel
one to another, so that the image lines perpendicularly
intercept them. When these procedures are adopted, the
image line intensity plot contains all the welds transversal
profiles, making possible using the [12] method for the weld
detection.

However, in case the welds are not parallel but perpen-
dicularly one to another, or in case the weld bead angle is
completely unknown, some welds cannot be correctly
detected by that method. To show that our method works
even in these cases, some tests were done using images with
different number of radiographs that were positioned
parallel and perpendicularly in the same image.

Table 5 specifies the number of images, number of weld
radiographs per image, FP, FN, TP, TN, and the system
performance measures Se, Sp, and Ar. According to the
results the accuracy rate was 96% with only one FP case.
As shown in Fig. 11, all four welds were detected but one
of the results (the unique FP case) is non-acceptable by
the visual criterion (Section 3.4).

The results from Table 5 show that the system we
proposed is able to effectively detect how many weld beads
there are in the image to be analyzed. By comparing the
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Table 3
Two test images and the results from genetic search and verification

247

Test Image 1

Test Image 2

27 detection

1 detection

aNGais o4t

1* genetic search result (object image 1)

Verification result

Not accepted as a weld bead.
(Fph = 0,821669 < T)

1* genetic search result (object image 1)

-

Accepted as a weld bead.

[

Verification result

(Fph =0.947319>T7)

2" genetic search result (object image 2)

Not accepted as a weld bead.

Verification result

(Fph = 0.833113<7T)

Table 4
Confusion table and the values for the performance measures

Actual classes  Test results Performance
Weld bead Non-weld = Measures
bead
Weld bead TP =102 FN=2 Se =98.08%  Ar=94.22%
Non-weld FP=11 TN=110 Sp=90.91%
bead

results from Tables 5 to 4 it can also be observed that the
system accuracy was a little better in the second validation
test (96% against 94.22%). However, these results do not
necessarily mean that the system performance will always
be better for images with multiple weld beads. To check

Table 5
Results obtained in the test with multiples weld beads per image

this performance accurately, a large set of data would be
needed.

By observing the weld bead shape from the second (from
left to right) weld in Fig. 11 as well as the weld from test
image 1 in Table 3, it can be seen that the shape of such
weld beads, that were not correctly detected, are more
curved than all others. We cannot claim that this was the
only reason for non-100% of success in the weld detection
process, but such cases suggest that the proposed method is
more adequate for detection of weld bead stretches that are
linear or almost linear shaped.

To better evaluate the system performance, we regarded
the results from both validation tests to construct the new
confusion table and calculated the general performance

Number of images Number of weld radiographs per image

Results classes Performance measures

FP FN TP TN Se (%) Sp (%) Ar (%)
2 2 0 0 4 2 100 100 100
1 3 0 0 3 1 100 100 100
3 4 1 0 11 3 75 100 93.33
Total 6 images 19 weld radiographs 1 0 18 6 85.71 100 96
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Fig. 11. Image with 4 weld joint radiographs and results that were detected and recognized as weld beads.

Table 6

Confusion table and the values for the performance measures including the both validation tests results

Actual classes Test results

Performance measures

Weld bead Non-weld bead
Weld bead TP =120 FN=2 Se =98.36% Ar =94.40%
Non-weld bead FP=12 TN =116 Sp =90.62%

measures, as shown in Table 6. The accuracy rate (A4r)
94.4% was the general system accuracy.

5. Conclusions

A methodology for detecting, recognizing, and extract-
ing weld beads from digital radiographic images was devel-
oped, implemented, and tested. In this methodology, a
reference matrix represents the pixel distribution in a single
model image with the weld bead in the horizontal position.
Five matching parameters (F, Fy, Fy, Fyp, Fy), related to
this reference matrix, were tested for image matching. As
a first conclusion, based in empirical tests, it was observed
that parameters F'and F,;, are very relevant for the problem
in hand.

To perform the search for the radiographic image
regions most similar to the model (a weld bead), a GA-
based procedure was efficiently used. Based on an empirical
threshold value for the matching parameter F,;,, GA results
are classified as weld bead or non-weld bead. For each
image, the number of solutions generated and evaluated
by the GA-based system was 5x10° (population
size x number of generations) and that was done in only
45 s (using a Pentium-I1V 2.0 GHz). Comparing the number
of evaluations with the total search space size (2°°), the
GA-based method can find a satisfactory solution by test-
ing less than 107°% of the search space, with an efficiency
(general accurate rate) of 94.40%, as shown by the results
(Table 6).

Our obtained results strongly suggest that this method is
feasible for detecting position, width, length, and angle of

weld beads in digital radiographic images. By testing imag-
es with different number of radiographs per image, we also
showed that the proposed system is able to detect and
count how many welds are there in the image, even if one
weld bead is perpendicular to another and the number of
welds is previously unknown. However, this method has
a limitation: it was observed that the proposed method is
more adequate for detection of weld bead stretches that
are linear or almost linear shaped instead of curved welds.

This work is part of a project in which the automatic
inspection of weld joint radiographs is the final goal.
Currently, the presented weld recognition system has
already been used for the automatic linear weld bead
extraction. Future work will focus on curved welds, defect
detection and classification of the defect types.

Acknowledgments

This work has been supported by CNPq and (ANP)
Petroleum National Agency—ANP/MCT (PRHI10-CE-
FET-PR). The software developed in this work used the
GAlib genetic algorithm package, written by Matthew
Wall at the Massachusetts Institute of Technology.

References

[1] American Society of Mechanical EngineerssASME Boiler and
Pressure Vessel Code, Section V, Subsection A, Article 2: Radio-
graphic Examination, 2001.

[2] B. Bhanu, J. Peng, Adaptive integrated image segmentation and object
recognition, IEEE Trans. Syst. Man Cybernet. 30 (4) (2000) 427-441.



M.K. Felisberto et al. | Computer Vision and Image Understanding 102 (2006) 238-249 249

[3] L. Bocchi, L. Ballerini, S. Héssler, A new evolutionary algorithm for
image segmentation, in: Lecture Notes in Computer Science, vol.
3449, 2005, pp. 264-273.

[4] T.M. Centeno, H.S. Lopes, M.K. Felisberto, L.V.R. Arruda, in:
Object detection for computer vision using a robust genetic algorithm,
in: Lecture Notes in Computer Science, vol. 3449, 2005, pp. 284-293.

[5] O. Cordon, S. Damas, E. Bardinet, 2D Image registration with
iterated local search, in: Advances in Soft Computing—
Engineering, Design and Manufacturing, Proc. of NSC7, 2003, pp.
1-10.

[6] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, MA, 1989.

[7] D.E. Goldberg, B. Korb, K. Deb, Messy genetic algorithms:
motivation, analysis, and first results, Complex Syst. 3 (5) (1989)
493-530.

[8] D.J. Hand, Construction and Assessment of Classification Rules,
John Wiley, New York, 1997.

[9] S.E. Lawson, G.A. Parker, Intelligent segmentation of industrial
radiographic images using neural networks, in: Proc. SPIE
Architectures and Systems Integration III, vol. 2347, 1994, pp.
245-255.

[10] T.W. Liao, J. Ni, An automated radiographic NDT system for weld
inspection: part [—weld extraction, NDT&E Internat. 29 (3) (1996)
157-162.

[11] T.W. Liao, K. Tang, Automated extraction of welds from digitized
radiographic images based on MLP neural networks, Appl. Artif.
Intell. 11 (13) (1997) 197-218.

[12] T.W. Liao, D. Li, Y. Li, Extraction of welds from radiographic
images using fuzzy classifiers, Informat. Sci. 126 (2000) 21-40.

[13] T.W. Liao, Classification of welding flaw types with fuzzy expert
systems, Expert Syst. With Appl. 25 (2003) 101-111.

[14] H.I. Shafeek, E.S. Gadelmawla, A.A. Abdel-Shafy, .M. Elewa,
Assessment of welding defects for gas pipeline radiographs, NDT&E
Internat. 37 (4) (2004) 291-299.

[15] R.R. Silva, L.P. Caloba, M.H.S. Siqueira, J.M.A. Rebello, Pattern
recognition of weld defects detected by radiographic test, NDT&E
Internat. 37 (6) (2004) 461-470.

[16] K.S. Simunic, S. Loncaric, A genetic search-based partial image
matching, in: Proc. ICIPS’98, IEEE Internat. Conf. on Intelligent
Processing Systems, 1998, pp. 119-122.

[17] Wall, M., 2003. GAlib A C++ library of genetic algorithm
components vs. 2.4.5. <http://lancet.mit.edu/ga/>.


http://lancet.mit.edu/ga/

	An object detection and recognition system for weld bead  extraction from digital radiographs
	Introduction
	Problem characterization
	Methodology
	Model construction
	Image matching
	Genetic algorithms
	Individual encoding
	Fitness function
	The genetic algorithm working

	Object verification

	Tests and results
	Parameters setting
	GA parameters setting
	Testing the relevance of the matching parameters

	First validation tests
	Second validation test-with different number of radiographs in the same image

	Conclusions
	Acknowledgments
	References


