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INTRODUCTION

Ant colony optimization (ACO) isarel atively new compu-
tational intelligence paradigm inspired by the behaviour
of natural ants(Bonabeau, Dorigo & Theraulaz, 1999). The
natural behaviour of antsthat we are interested in isthe
following. Ants often find the shortest path between a
food source and the nest of the colony without using
visual information. Inorder to exchangeinformation about
which path should be followed, ants communicate with
each other by means of a chemical substance called
pheromone. As ants move, a certain amount of phero-
mone is dropped on the ground, creating a pheromone
trail. Themoreantsfollow agiventrail, themoreattractive
that trail becomes to be followed by other ants. This
processinvolvesaloop of positivefeedback, inwhichthe
probability that an ant chooses a path is proportional to
the number of antsthat have already passed by that path.

Hence, individual ants, following very simple rules,
interact to produce an intelligent behaviour — a solution
to a complex problem — at the higher level of the ant
colony. In other words, intelligence is an emergent phe-
nomenon; that is, “the whole is more than the sum of the
parts”.

Inthisarticlewepresent anoverview of Ant-Miner, an
ACOalgorithmfor discovering classificationrulesin data
mining (Parpinelli, Lopes & Freitas, 2002a, 2002b). In
essence, in the classification task each case (record) of
the data being mined consists of two parts: a goal at-
tribute, whose value is to be predicted, and a set of
predictor attributes. Theaimisto predict thevalue of the
goal attributefor acase, given the values of the predictor
attributes for that case.

To the best of our knowledge, the use of ACO algo-
rithms (Bonabeau, Dorigo & Theraulaz, 1999; Dorigo et
al., 2002) for discovering classification rules is a very
under-explored research area. There are other ant algo-

rithms devel oped for the data mining task of clustering—
seefor example Monmarché (1999) —but that task isvery
different from the classification task addressed in this
article. Notethat Ant-Miner wasdesigned specifically for
discovering classification rules, rather than for solving
other kinds of data mining tasks.

In other research areas ACO algorithms have been
shown to produce effective solutions to difficult real-
world problems. A detailed review about many other ACO
algorithms (designed to solve many other different kinds
of problems) and a discussion about their performance
can be found in Bonabeau, Dorigo and Theraulaz (1999)
and Dorigoetal. (2002).

A typical example of application of ACO is network
trafficrouting, whereartificial antsdeposit “ virtual phero-
mone” (information) at the network nodes. In essence, the
amount of pheromonedeposited at each nodeisinversely
proportional to the congestion of trafficinthat node. This
reinforcespathsthrough uncongested areas. Both British
Telecom and France Telecom have explored thisapplica-
tion of ACO in telephone networks.

ANT COLONY OPTIMIZATION

An ACO agorithm is essentially a system based on
agentsthat simulate the natural behavior of ants, includ-
ing mechanisms of cooperation and adaptation.

ACO algorithms are based on the following ideas:

. Each path followed by an ant is associated with a
candidate solution for a given problem;

. When an ant follows a path, the amount of phero-
mone deposited on that path is proportional to the
quality of the corresponding candidate solution for
the target problem;
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. When an ant has to choose between two or more
paths, the path(s) with a larger amount of phero-
mone have agreater probability of being chosen by
the ant.

As aresult, the ants eventually converge to a short
path, hopefully the optimum or anear-optimum solution
for the target problem.

In essence, the design of an ACO algorithm involves
thespecification of (Bonabeau, Dorigo & Theraulaz, 1999):

. Anappropriaterepresentation of theproblem, which
allows the ants to incrementally construct/modify
solutions through the use of a probabilistic transi-
tion rule, based on the amount of pheromonein the
trail and on alocal, problem-dependent heuristic;

. A method to enforce the construction of valid solu-
tions;

. A problem-dependent heuristic function (h) that
measures the quality of items that can be added to
the current partial solution;

. A rule for pheromone updating, which specifies
how to modify the pheromonetrail (t);

. A probabilistictransition rule based onthe value of
the heuristic function (h) and on the contents of the
pheromone trail (t) that is used to iteratively con-
struct a solution.

Artificial ants have several characteristics similar to
real ants, namely:

. Artificial ants have a probabilistic preference for
paths with a larger amount of pheromone;

. shorter pathstend to have larger rates of growthin
their amount of pheromone;

. The ants use an indirect communication system
based on the amount of pheromone deposited on
each path.

MOTIVATIONS FOR USING ACO

ACO possessesanumber of featuresthat areimportant to
computational problem solving (Freitas& Johnson, 2003):

. Thealgorithmsarerelatively simpleto understand
and implement, whilst al so offering emergent com-
plexity to deal effectively with challenging prob-
lems;

. They can be readily hybridized with other tech-
niques and/or problem-dependent heuristics in a
synergistic fashion;

. They are compatiblewiththe current trend towards
greater decentralization in computing;

. The algorithms are highly adaptive and robust,
enabling them to cope well with noisy data.

Two more features of ACO are particularly useful in
datamining applications:

. Many projects in the field of data mining were
devel oped using deterministic decisiontreesor rule
inductionalgorithms. Theseal gorithmsarehill climb-
ing like and are susceptible to finding only locally
optimal solutions instead of the global optimum.
Theutilization of ACOtoinduceclassificationrules
triesto mitigate this problem of premature conver-
gencetolocal optima, sinceACO algorithmshavea
stochastic component that favorsaglobal searchin
the problem’ s search space;

. Unlike classical methods for rule induction, the
ACO heuristicisapopulation-based one. Thischar-
acteristic has advantages over other methods be-
causeit allowsthe system to search many different
points in the search space concurrently and to use
the positive feedback between the ants as a search
mechanism.

REPRESENTING A CANDIDATE
CLASSIFICATION RULE

In Ant-Miner each artificial ant represents a candidate
classification rule of the form:

. IF<terml AND term2 AND ... > THEN <class>.

Each term is a triple <attribute, operator, value>,
where valueisone of the values belonging to the domain
of attribute. An example of aterm is. <Sex = female>.
Class is the value of the goal attribute predicted by the
rule for any case that satisfies all the terms of the rule
antecedent. An example of aruleis:

. IF <Salary = high> AND <Mortgage= No>THEN
<Credit = good>.

In the current version of Ant-Miner the operator is
always “=", so that Ant-Miner can cope only with cat-
egorical (discrete) attributes. Continuousattributeswould
have to be discretized in a preprocessing step.

DESCRIPTION OF ANT-MINER

Thepseudocode of Ant-Minerisdescribed, at avery high
level of abstraction, in Algorithm 1. Ant-Miner starts by
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initializing thetraining set to the set of all training cases,
and initializing the discovered rule list to an empty list.
Then it performs an outer loop where each iteration
discoversaclassification rule.

Thefirst step of thisouter loopistoinitializeall trails
withthe sameamount of pheromone, which meansthat all
termshavethe same probability of being chosen by an ant
toincrementally construct arule. Thisisdoneby aninner
loop, consisting of three steps. First, an ant startswith an
empty rule and incrementally constructs a classification
ruleby adding oneterm at atimetothecurrentrule. Inthis
stepaterm, — representing atriple <Attribute = Val ue>
—ischosentobeaddedtothecurrent rulewith probab| li |ty
proportional to the product of hij t.(t), where hij isthe
val ue of aproblem-dependent heuristic functionfor ter m,
and tij(t) is the amount of pheromone associated with
term. at iteration (time index) t. More precisely, hij is
essentially the information gain associated with ter m, —
see Cover and Thomas(1991) for acomprehensivediscus-
sion on information gain. The higher the value of h, the
morerelevant for classificationterm, |sandsotheh|gher
its probability of being chosen. t. (t) corresponds to the
amount of pheromone currently avallable inthe position
i,j of thetrail beingfollowed by thecurrent ant. The better
thequality of theruleconstructed by anant, the higher the
amount of pheromoneaddedtothetrail positions(“terms”)
visited (“used”) by theant. Therefore, astimegoesby, the
best trail positionsto be followed —that is, the best terms
to be added to a rule — will have greater and greater
amounts of pheromone, increasing their probability of
being chosen.

Algorithm 1: High-level pseudocode of Ant-Miner.
TrainingSet ={all training cases};
DiscoveredRuleList=[]; /* initialized withanempty
list*/
REPEAT
Initializeall trailswith the same amount of pheromone;
REPEAT
An ant incrementally constructs a classification rule;
Prune the just-constructed rule;
Update the pheromone of all trails;
UNTIL (stopping criteria
Choose the best rule out of all rules constructed by
al the ants;
Add the chosen rule to DiscoveredRuleList;
TrainingSet = TrainingSet —{ casescorrectly covered
by the chosen rule};
UNTIL (stoppingcriteria)

The second step of the inner loop consists of pruning
the just-constructed rule, that is, removing irrelevant
terms—termsthat do not improvethe predictiveaccuracy
of therule. Thisisdone by using arule-quality measure,

the same one used to update the pheromones of thetrails,
asdefined later. In essence, atermisremoved fromarule
if this operation does not decrease the quality of therule.
Thispruning process helpsto avoid the overfitting of the
discovered rule to the training set.

The third step of the inner loop consists of updating
the pheromone of all trails by increasing the pheromone
in the trail followed by the ant, proportionally to the
quality of therule. In other words, the higher the quality
of therule, thehigher theincreaseinthe pheromoneof the
termsoccurringintheruleantecedent. Thequality (Q) of
aruleis measured by the equation:

. Q= Sensitivity " Specificity,

where Sensitivity = TP / (TP + FN) and Specificity =
TN/ (TN + FP). Themeaning of theacronyms TP, FN, TN
and FPisasfollows:

. TP=number of truepositives, that is, the number of
cases covered by the rule that have the class pre-
dicted by therule;

. FN = number of false negatives, that is, the number
of cases that are not covered by the rule but that
have the class predicted by the rule;

. TN = number of true negatives, that is, the number
of casesthat are not covered by the rule and that do
not have the class predicted by the rule; and

. FP = number of false positives, that is, the number
of cases covered by the rule that have a class
different from the class predicted by therule.

See Lopes (1997) for a discussion about these vari-
ables and their use to estimate predictive accuracy.

The inner loop is performed until some stopping
criterion(a) is(are) satisfied, for example, until amaximum
number of candidate rules have been constructed.

Oncetheinner loopisover, thealgorithm choosesthe
highest-quality rule out of all therules constructed by all
theantsintheinner loop, and thenit addsthe chosenrule
to the discovered rule list. Next, the algorithm removes
fromthetraining set all the casescorrectly covered by the
rule, that is, all casesthat satisfy the rule antecedent and
have the same class as predicted by the rule consequent.
Hence, the next iteration of the outer loop starts with a
smaller training set, consisting only of casesthat have not
been correctly covered by any rulediscoveredin previous
iterations. The outer loop is performed until some stop-
ping criterion(a) is(are) satisfied, for example, until the
number of uncovered casesis smaller than a user-speci-
fied threshold.

Hence, the output of Ant-Miner isthelist of classifi-
cation rules contained in the discovered rule list.
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A SUMMARY OF COMPUTATIONAL
RESULTS

We have performed computational experiments compar-
ing Ant-Miner with two well-known ruleinduction algo-
rithms, namely CN2 (Clark & Niblett, 1989) and C4.5
(Quinlan, 1993) in several public-domain data sets often
used as a benchmark in the machine learning literature.
More precisely, the data sets used in the experiment are
Ljubljanabreast cancer, Wisconsin breast cancer, tic-tac-
toe, dermatology, hepatitis, and Cleveland heart disease.
A detailed description of all these data sets is available
online from: http://www.ics.uci.edu/~mlearn/
MLRepository.html. C4.5and CN2, aswell asmany other
classificationalgorithms, areal so described in Witten and
Frank (2000). C4.5 and CN2 were chosen for comparison
because they are, in general, two of the most used algo-
rithms belonging to the rule induction paradigm, where
discovered knowledge is expressed by IF-THEN rules.
Hence, they areanatural choiceto becompared with Ant-
Miner, since Ant-Miner also discovers knowledge ex-
pressed by IF-THEN rules. Theresultsof theexperiments
summarized here are described in detail in Parpinelli,
L opesand Freitas(2002a, 2002b).

The results showed that Ant-Miner is competitive
with both C4.5 and CN2 concerning predictive accuracy
on the test set used to measure the generalization ability
of the discovered rules. More precisely, predictive accu-
racy was measured by the accuracy rate, that is, theratio
of thenumber of correctly classifiedtest casesdivided by
the total number of test cases (correctly-classified plus
wrongly-classified test cases), asusual in the classifica-
tion literature (Witten & Frank, 2000). Ant-Miner ob-
tained aconsiderably better accuracy ratethan CN2inthe
Ljubljana breast cancer and the dermatology data sets,
and a considerably better accuracy rate than C4.5 in the
hepatitisdata set. However, both CN2 and C4.5 obtained
aconsiderably better accuracy ratethan Ant-Miner inthe
tic-tac-toe data set. In the other data sets the difference
inthepredictiveaccuracy of Ant-Miner and the other two
algorithmswasquite small.

However, concerningruleset simplicity (measured by
the number of discovered rules and the number of terms
per rule), Ant-Miner discovered rule sets much simpler
(i.e., smaller) than the rule sets discovered by both C4.5
and CN2. Thisisanimportant advantagein the context of
datamining, wherediscovered knowledgeis supposed to
be shown to a human user in order to support his/her
decision making (Fayyad, Piatetsky-Shapiro & Smyth,
1996).
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KEY TERMS

DataMining: Aninterdisciplinary researchfield, whose
coreisat theintersection of machine learning, statistics,
and databases. We emphasi ze that the goal — unlike, for
example, classical statistics —is to discover knowledge
that is not only accurate, but also comprehensiblefor the
user.

Overfitting: Termreferringtothesituation wherethe
discoveredrulesfittoo muchtothetraining set peculiari-
ties. Overfitting usually leadsto areduction of the predic-
tive accuracy rate on the test cases.

RuleList: Anordered list of IF-THEN rules discov-
ered by thealgorithm during training. Whentherulesare
applied to classify cases in the test set, they are applied
inorder. That is, acase is matched with each of therules
inthelistinturn. Thefirst rule whose antecedent (condi-
tions in the IF part) matches the attribute values of the
case is then used to classify the case; that is, the caseis
assigned the same class asthe class predicted by the first
matching rule found in the discovered rule list.

Testing Case: Each of the cases (records) of the test
set.

Test Set: A set of cases unseen during the training
phase of thealgorithm and used to computethepredictive
accuracy of thelist of rulesdiscovered duringthetraining
phase.

Training Case: Each of the cases (records) of the
training set.

Training Set: A set of cases used by thealgorithmto
discover theclassificationrules. At eachiteration of Ant-
Miner only oneruleisdiscovered. Thetraining casesthat
are covered correctly by the discovered rule (i.e., cases
satisfying the rule antecedent and having the class pre-
dicted by the rule consequent) are removed from the
training set. This process is performed iteratively while
the number of uncovered training casesis greater than a
user-specified threshold.






