
 1

�
������������	
���������	�����������
��
�
�	�	
�����	�����

Rafael S. Parpinelli
CEFET-PR, Brazil

Heitor S. Lopes
CEFET-PR, Brazil

Alex A. Freitas
University of Kent, United Kingdom

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Ant colony optimization (ACO) is a relatively new compu-
tational intelligence paradigm inspired by the behaviour
of natural ants (Bonabeau, Dorigo & Theraulaz, 1999). The
natural behaviour of ants that we are interested in is the
following. Ants often find the shortest path between a
food source and the nest of the colony without using
visual information. In order to exchange information about
which path should be followed, ants communicate with
each other by means of a chemical substance called
pheromone. As ants move, a certain amount of phero-
mone is dropped on the ground, creating a pheromone
trail. The more ants follow a given trail, the more attractive
that trail becomes to be followed by other ants. This
process involves a loop of positive feedback, in which the
probability that an ant chooses a path is proportional to
the number of ants that have already passed by that path.

Hence, individual ants, following very simple rules,
interact to produce an intelligent behaviour – a solution
to a complex problem – at the higher level of the ant
colony. In other words, intelligence is an emergent phe-
nomenon; that is, “the whole is more than the sum of the
parts”.

In this article we present an overview of Ant-Miner, an
ACO algorithm for discovering classification rules in data
mining (Parpinelli, Lopes & Freitas, 2002a, 2002b). In
essence, in the classification task each case (record) of
the data being mined consists of two parts: a goal at-
tribute, whose value is to be predicted, and a set of
predictor attributes. The aim is to predict the value of the
goal attribute for a case, given the values of the predictor
attributes for that case.

To the best of our knowledge, the use of ACO algo-
rithms (Bonabeau, Dorigo & Theraulaz, 1999; Dorigo et
al., 2002) for discovering classification rules is a very
under-explored research area. There are other ant algo-

rithms developed for the data mining task of clustering –
see for example Monmarché (1999) – but that task is very
different from the classification task addressed in this
article. Note that Ant-Miner was designed specifically for
discovering classification rules, rather than for solving
other kinds of data mining tasks.

In other research areas ACO algorithms have been
shown to produce effective solutions to difficult real-
world problems. A detailed review about many other ACO
algorithms (designed to solve many other different kinds
of problems) and a discussion about their performance
can be found in Bonabeau, Dorigo and Theraulaz (1999)
and Dorigo et al. (2002).

A typical example of application of ACO is network
traffic routing, where artificial ants deposit “virtual phero-
mone” (information) at the network nodes. In essence, the
amount of pheromone deposited at each node is inversely
proportional to the congestion of traffic in that node. This
reinforces paths through uncongested areas. Both British
Telecom and France Telecom have explored this applica-
tion of ACO in telephone networks.

ANT COLONY OPTIMIZATION

An ACO algorithm is essentially a system based on
agents that simulate the natural behavior of ants, includ-
ing mechanisms of cooperation and adaptation.

ACO algorithms are based on the following ideas:

• Each path followed by an ant is associated with a
candidate solution for a given problem;

• When an ant follows a path, the amount of phero-
mone deposited on that path is proportional to the
quality of the corresponding candidate solution for
the target problem;

hslopes
PREPRINT - In: Khosrow-Pour, M (Ed.), Encyclopedia of Information Science and Technology. Hershey: Idea Group Inc., v. ?, p. ?-?, 2005. ISBN: 1-59140-553-X

2

Classification-Rule Discovery with an Ant Colony Algorithm

• When an ant has to choose between two or more
paths, the path(s) with a larger amount of phero-
mone have a greater probability of being chosen by
the ant.

As a result, the ants eventually converge to a short
path, hopefully the optimum or a near-optimum solution
for the target problem.

In essence, the design of an ACO algorithm involves
the specification of (Bonabeau, Dorigo & Theraulaz, 1999):

• An appropriate representation of the problem, which
allows the ants to incrementally construct/modify
solutions through the use of a probabilistic transi-
tion rule, based on the amount of pheromone in the
trail and on a local, problem-dependent heuristic;

• A method to enforce the construction of valid solu-
tions;

• A problem-dependent heuristic function (h) that
measures the quality of items that can be added to
the current partial solution;

• A rule for pheromone updating, which specifies
how to modify the pheromone trail (t);

• A probabilistic transition rule based on the value of
the heuristic function (h) and on the contents of the
pheromone trail (t) that is used to iteratively con-
struct a solution.

Artificial ants have several characteristics similar to
real ants, namely:

• Artificial ants have a probabilistic preference for
paths with a larger amount of pheromone;

• shorter paths tend to have larger rates of growth in
their amount of pheromone;

• The ants use an indirect communication system
based on the amount of pheromone deposited on
each path.

MOTIVATIONS FOR USING ACO

ACO possesses a number of features that are important to
computational problem solving (Freitas & Johnson, 2003):

• The algorithms are relatively simple to understand
and implement, whilst also offering emergent com-
plexity to deal effectively with challenging prob-
lems;

• They can be readily hybridized with other tech-
niques and/or problem-dependent heuristics in a
synergistic fashion;

• They are compatible with the current trend towards
greater decentralization in computing;

• The algorithms are highly adaptive and robust,
enabling them to cope well with noisy data.

Two more features of ACO are particularly useful in
data mining applications:

• Many projects in the field of data mining were
developed using deterministic decision trees or rule
induction algorithms. These algorithms are hill climb-
ing like and are susceptible to finding only locally
optimal solutions instead of the global optimum.
The utilization of ACO to induce classification rules
tries to mitigate this problem of premature conver-
gence to local optima, since ACO algorithms have a
stochastic component that favors a global search in
the problem’s search space;

• Unlike classical methods for rule induction, the
ACO heuristic is a population-based one. This char-
acteristic has advantages over other methods be-
cause it allows the system to search many different
points in the search space concurrently and to use
the positive feedback between the ants as a search
mechanism.

REPRESENTING A CANDIDATE
CLASSIFICATION RULE

In Ant-Miner each artificial ant represents a candidate
classification rule of the form:

• IF <term1 AND term2 AND … > THEN < class >.

Each term is a triple <attribute, operator, value>,
where value is one of the values belonging to the domain
of attribute. An example of a term is: <Sex = female>.
Class is the value of the goal attribute predicted by the
rule for any case that satisfies all the terms of the rule
antecedent. An example of a rule is:

• IF <Salary = high> AND <Mortgage = No> THEN
<Credit = good>.

In the current version of Ant-Miner the operator is
always “=”, so that Ant-Miner can cope only with cat-
egorical (discrete) attributes. Continuous attributes would
have to be discretized in a preprocessing step.

DESCRIPTION OF ANT-MINER

The pseudocode of Ant-Miner is described, at a very high
level of abstraction, in Algorithm 1. Ant-Miner starts by

 3

Classification-Rule Discovery with an Ant Colony Algorithm

�
initializing the training set to the set of all training cases,
and initializing the discovered rule list to an empty list.
Then it performs an outer loop where each iteration
discovers a classification rule.

The first step of this outer loop is to initialize all trails
with the same amount of pheromone, which means that all
terms have the same probability of being chosen by an ant
to incrementally construct a rule. This is done by an inner
loop, consisting of three steps. First, an ant starts with an
empty rule and incrementally constructs a classification
rule by adding one term at a time to the current rule. In this
step a term

ij
 – representing a triple <Attribute

i
 = Value

j
>

– is chosen to be added to the current rule with probability
proportional to the product of h

ij
 ´ t

ij
(t), where h

ij
 is the

value of a problem-dependent heuristic function for term
ij

and t
ij
(t) is the amount of pheromone associated with

term
ij
 at iteration (time index) t. More precisely, h

ij
 is

essentially the information gain associated with term
ij
 –

see Cover and Thomas (1991) for a comprehensive discus-
sion on information gain. The higher the value of h

ij
 the

more relevant for classification term
ij
 is and so the higher

its probability of being chosen. t
ij
(t) corresponds to the

amount of pheromone currently available in the position
i,j of the trail being followed by the current ant. The better
the quality of the rule constructed by an ant, the higher the
amount of pheromone added to the trail positions (“terms”)
visited (“used”) by the ant. Therefore, as time goes by, the
best trail positions to be followed – that is, the best terms
to be added to a rule – will have greater and greater
amounts of pheromone, increasing their probability of
being chosen.

Algorithm 1: High-level pseudocode of Ant-Miner.
TrainingSet = {all training cases};
DiscoveredRuleList = []; /* initialized with an empty

list */
REPEAT

 Initialize all trails with the same amount of pheromone;
 REPEAT

 An ant incrementally constructs a classification rule;
 Prune the just-constructed rule;
 Update the pheromone of all trails;

 UNTIL (stopping criteria
 Choose the best rule out of all rules constructed by

all the ants;
 Add the chosen rule to DiscoveredRuleList;
 TrainingSet = TrainingSet – {cases correctly covered

by the chosen rule};
UNTIL (stopping criteria)

The second step of the inner loop consists of pruning
the just-constructed rule, that is, removing irrelevant
terms – terms that do not improve the predictive accuracy
of the rule. This is done by using a rule-quality measure,

the same one used to update the pheromones of the trails,
as defined later. In essence, a term is removed from a rule
if this operation does not decrease the quality of the rule.
This pruning process helps to avoid the overfitting of the
discovered rule to the training set.

The third step of the inner loop consists of updating
the pheromone of all trails by increasing the pheromone
in the trail followed by the ant, proportionally to the
quality of the rule. In other words, the higher the quality
of the rule, the higher the increase in the pheromone of the
terms occurring in the rule antecedent. The quality (Q) of
a rule is measured by the equation:

• Q = Sensitivity ́ Specificity,

where Sensitivity = TP / (TP + FN) and Specificity =
TN / (TN + FP). The meaning of the acronyms TP, FN, TN
and FP is as follows:

• TP = number of true positives, that is, the number of
cases covered by the rule that have the class pre-
dicted by the rule;

• FN = number of false negatives, that is, the number
of cases that are not covered by the rule but that
have the class predicted by the rule;

• TN = number of true negatives, that is, the number
of cases that are not covered by the rule and that do
not have the class predicted by the rule; and

• FP = number of false positives, that is, the number
of cases covered by the rule that have a class
different from the class predicted by the rule.

See Lopes (1997) for a discussion about these vari-
ables and their use to estimate predictive accuracy.

The inner loop is performed until some stopping
criterion(a) is(are) satisfied, for example, until a maximum
number of candidate rules have been constructed.

Once the inner loop is over, the algorithm chooses the
highest-quality rule out of all the rules constructed by all
the ants in the inner loop, and then it adds the chosen rule
to the discovered rule list. Next, the algorithm removes
from the training set all the cases correctly covered by the
rule, that is, all cases that satisfy the rule antecedent and
have the same class as predicted by the rule consequent.
Hence, the next iteration of the outer loop starts with a
smaller training set, consisting only of cases that have not
been correctly covered by any rule discovered in previous
iterations. The outer loop is performed until some stop-
ping criterion(a) is(are) satisfied, for example, until the
number of uncovered cases is smaller than a user-speci-
fied threshold.

Hence, the output of Ant-Miner is the list of classifi-
cation rules contained in the discovered rule list.

4

Classification-Rule Discovery with an Ant Colony Algorithm

A SUMMARY OF COMPUTATIONAL
RESULTS

We have performed computational experiments compar-
ing Ant-Miner with two well-known rule induction algo-
rithms, namely CN2 (Clark & Niblett, 1989) and C4.5
(Quinlan, 1993) in several public-domain data sets often
used as a benchmark in the machine learning literature.
More precisely, the data sets used in the experiment are
Ljubljana breast cancer, Wisconsin breast cancer, tic-tac-
toe, dermatology, hepatitis, and Cleveland heart disease.
A detailed description of all these data sets is available
online from: http://www.ics.uci.edu/~mlearn/
MLRepository.html. C4.5 and CN2, as well as many other
classification algorithms, are also described in Witten and
Frank (2000). C4.5 and CN2 were chosen for comparison
because they are, in general, two of the most used algo-
rithms belonging to the rule induction paradigm, where
discovered knowledge is expressed by IF-THEN rules.
Hence, they are a natural choice to be compared with Ant-
Miner, since Ant-Miner also discovers knowledge ex-
pressed by IF-THEN rules. The results of the experiments
summarized here are described in detail in Parpinelli,
Lopes and Freitas (2002a, 2002b).

The results showed that Ant-Miner is competitive
with both C4.5 and CN2 concerning predictive accuracy
on the test set used to measure the generalization ability
of the discovered rules. More precisely, predictive accu-
racy was measured by the accuracy rate, that is, the ratio
of the number of correctly classified test cases divided by
the total number of test cases (correctly-classified plus
wrongly-classified test cases), as usual in the classifica-
tion literature (Witten & Frank, 2000). Ant-Miner ob-
tained a considerably better accuracy rate than CN2 in the
Ljubljana breast cancer and the dermatology data sets,
and a considerably better accuracy rate than C4.5 in the
hepatitis data set. However, both CN2 and C4.5 obtained
a considerably better accuracy rate than Ant-Miner in the
tic-tac-toe data set. In the other data sets the difference
in the predictive accuracy of Ant-Miner and the other two
algorithms was quite small.

However, concerning rule set simplicity (measured by
the number of discovered rules and the number of terms
per rule), Ant-Miner discovered rule sets much simpler
(i.e., smaller) than the rule sets discovered by both C4.5
and CN2. This is an important advantage in the context of
data mining, where discovered knowledge is supposed to
be shown to a human user in order to support his/her
decision making (Fayyad, Piatetsky-Shapiro & Smyth,
1996).

REFERENCES

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm
intelligence: From natural to artificial systems. Oxford
University Press.

Clark, P., & Niblett, T. (1989). The CN2 rule induction
algorithm. Machine Learning, 3(4), 261-283.

Cover, T.M., & Thomas, J.A. (1991). Elements of informa-
tion theory. New York: Wiley.

Dorigo, M., Gambardella, L.M., Middendorf, M., & Stutzle,
T. (2002). Guest editorial: Special section on ant colony
optimization. IEEE Transactions on Evolutionary Com-
putation, 6(4), 317-319.

Fayyad, U.M., Piatetsky-Shapiro, G., & Smyth, P. (1996).
From data mining to knowledge discovery: An overview.
In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R.
Uthurusamy (Eds.), Advances in knowledge discovery &
data mining (pp. 1-34). Cambridge, MA: MIT Press.

Freitas, A.A., & Johnson, C.G. (2003). Research cluster in
swarm intelligence. EPSRC Research Proposal GR/
S63274/01 – Case for Support. Computing Laboratory,
University of Kent.

Lopes, H.S., Coutinho, M.S., & Lima, W.C. (1997). An
evolutionary approach to simulate cognitive feedback
learning in medical domain. In E. Sanchez, T. Shibata &
L.A. Zadeh (Eds.), Genetic algorithms and fuzzy logic
systems (pp. 193-207). Singapore: World Scientific.

Monmarché, N. (1999). On data clustering with artificial
ants. In A.A. Freitas (Ed.), Data mining with evolutionary
algorithms, Research directions – Papers from the AAAI
Workshop (pp. 23-26). Menlo Park, CA: AAAI Press.

Parpinelli, R.S., Lopes, H.S., & Freitas, A.A. (2002a). Data
mining with an ant colony optimization algorithm. IEEE
Transactions on Evolutionary Computation, Special
Issue on Ant Colony Algorithms, 6(4), 321-332.

Parpinelli, R.S., Lopes, H.S., & Freitas, A.A. (2002b). An
ant colony algorithm for classification rule discovery. In
H. Abbass, R. Sarker & C. Newton (Eds.), Data mining: A
heuristic approach (pp. 191-208). London: Idea Group
Publishing.

Quinlan, J.R. (1993). C4.5: Programs for machine learn-
ing. San Mateo, CA: Morgan Kaufmann.

Witten, I.H., & Frank, E. (2000). Data mining: Practical
machine learning tools with Java implementations. San
Mateo, CA: Morgan Kaufmann.

 5

Classification-Rule Discovery with an Ant Colony Algorithm

�
KEY TERMS

Data Mining: An interdisciplinary research field, whose
core is at the intersection of machine learning, statistics,
and databases. We emphasize that the goal – unlike, for
example, classical statistics – is to discover knowledge
that is not only accurate, but also comprehensible for the
user.

Overfitting: Term referring to the situation where the
discovered rules fit too much to the training set peculiari-
ties. Overfitting usually leads to a reduction of the predic-
tive accuracy rate on the test cases.

Rule List: An ordered list of IF-THEN rules discov-
ered by the algorithm during training. When the rules are
applied to classify cases in the test set, they are applied
in order. That is, a case is matched with each of the rules
in the list in turn. The first rule whose antecedent (condi-
tions in the IF part) matches the attribute values of the
case is then used to classify the case; that is, the case is
assigned the same class as the class predicted by the first
matching rule found in the discovered rule list.

Testing Case: Each of the cases (records) of the test
set.

Test Set: A set of cases unseen during the training
phase of the algorithm and used to compute the predictive
accuracy of the list of rules discovered during the training
phase.

Training Case: Each of the cases (records) of the
training set.

Training Set: A set of cases used by the algorithm to
discover the classification rules. At each iteration of Ant-
Miner only one rule is discovered. The training cases that
are covered correctly by the discovered rule (i.e., cases
satisfying the rule antecedent and having the class pre-
dicted by the rule consequent) are removed from the
training set. This process is performed iteratively while
the number of uncovered training cases is greater than a
user-specified threshold.

