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Abstract

The classical travelling salesman problem (TSP) is to de-
termine a tour in a weighted graph (that is, a cycle that
visits every vertex exactly once) such that the sum of the
weights of the edges in this tour is minimal. Hybrid meth-
ods, based on nature inspired heuristics, have shown their
ability to provide high quality solutions for the TSP. The
success of a hybrid algorithm is due to its tradeoff between
the exploration and exploitation abilities in search space.
This work presents a new hybrid model, based on Particle
Swarm Optimization and Fast Local Search, with concepts
of Genetic Algorithms, for the blind TSP. A detailed descrip-
tion of the model is provided, emphasizing its hybrid fea-
tures. The control parameters were carefully adjusted and
the implemented system was tested with instances from 76
to 2103 cities. For instances up to 439 cities, the best re-
sults were less than 1% in excess of the known optima. In
the average, for all instances, results are 2.538% in excess.
Simulation results indicated that the proposed hybrid model
performs robustly. These results encourage further research
and improvement of the hybrid model to tackle with hard
combinatorial problems.

1 Introduction

Many problems with important practical applications are
concerned with the search of the “best” configuration or set
of parameters to achieve some objective criteria. Such prob-
lems are generally referred to as optimization problems. If
the entities to be optimized are discrete, the number of fea-
sible solutions is finite. In this case, such problems are
called combinatorial optimization problems. The travelling
salesman problem (TSP), a classical example of a N P-hard
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problem, is one of the most widely discussed problems in
combinatorial optimization. The TSP is the problem of
finding the shortest closed tour (shortest Hamiltonian cy-
cle) through a given set of n. cities visiting each city exactly
once and returning to the starting point, minimizing the total
cost of the tour. The TSP and its variants have many practi-
cal applications such as X-ray crystallography, vehicle rout-
ing, integrated circuits design, automated guided vehicles
scheduling, robot control, mobile computing, etc. In this
work, we focus on the symmetric and blind TSP (BTSP).
BTSP allows the starting point to be in any city and it is
defined by a symmetric distance matrix between cities.

During the last decades, several algorithmic strategies
have been proposed for finding near optimum solutions to
the TSP, including 2-opt [4], particle swarm optimization
[17], guided local search [16] and hybrid heuristics [2].

The computational demand of approximate and exact al-
gorithms is huge. Some problem-independent and domain-
specific heuristics have been proved to be very effective
both in terms of execution and quality of the solutions
achieved [2]. Domain-specific heuristics are very effective
for refining arbitrary points in the search space into better
solutions for solving TSPs. On the other hand, problem-
independent heuristics perform quite poorly on large TSP
instances [13]. They require more execution time for so-
lutions whose quality is often not comparable with those
achieved in much less time by their domain-specific local
search counterparts.

Some of the most successful published results [7], [14],
[13], have been provided by hybrid problem-independent
heuristics that incorporate local optimization based on
domain-specific heuristics. Local search techniques can
often be incorporated naturally into problem-independent
heuristics, such as evolutionary algorithms, tabu search
or simulated annealing, in order to increase the effective-
ness of the search. Such hybrid models have the poten-
tial to exploit the complementary advantages of problem-



independent heuristics (robustness and exploration abili-
ties), and problem-specific heuristics (fast convergence to-
ward local minima and exploitation abilities).

This paper presents a new hybrid model for the TSP.
The proposed model is based on the Particle Swarm Op-
timization — PSO [5],[6] heuristics, Fast Local Search —
FLS [16], besides some concepts drawn from Genetic Al-
gorithms — GA [8]. From PSO, the model uses local max-
imum, global maximum and the swarm movement. FLS is
used to improve solutions found during the search, by evalu-
ating points in the neighborhood of each particle. From GA,
we used the representation of the solution as a numerical
vector and the order crossover for moving particles across
the discrete search space. We will show that the success
of this new hybrid model is thanks to the tradeoff between
the exploration and exploitation features of its composing
paradigms.

2 Background

2.1 Particle Swarm Optimization

PSO is a heuristic method for optimization proposed by
Eberhart and Kennedy [5],[6]. It is inspired in the behavior
of social agents found in nature. This behavior can be ob-
served in bird flocking, bee swarming, and fish schooling,
for instance.

The computational model is population-based. Agents,
or particles, change their position (state) in the multidimen-
sional search space of the problem, according to own expe-
rience and the influence of the neighboring particles. Each
particle has a limited store capability, keeping track only
of information about its current position, speed and qual-
ity (fitness regarding the other particles), as well as its best
position ever visited (“best local solution”— BLS). Amongst
the swarm of particles, the one with best quality is referred
as “the best global solution” — BGS. At each time tick, par-
ticles move, influenced by both BLS and BGS, to a new
position in the search space. This is an iterative process,
repeated until a stop condition is met, usually a predefined
number of iterations. BGS is updated whenever a better so-
lution than the previous is found. This procedure is similar
to the principle of elitism, common in most GA applica-
tions, since throughout iterations the best solution is con-
served. Although, there is a subtle difference: BGS is a
reference for all particles in the same iteration (in GA, this
would be similar to say that all individuals would mate with
the best individuals). BLS is used only by a particle itself,
not sharing this information with other particles.

It is interesting that BLS would be a point with good fit-
ness but, also, it would be better if this point is quite far
from BGS, so as to improve diversity. In population-based
heuristics diversity maintenance throughout iterations is of-

ten a challenge, and it is a necessary condition to assure a
satisfactory exploration of the search space. In PSO, when
many BLS’s are somewhat close to the BGS, there will be
a particle crowding and the search stagnates. A mechanism
to avoid the consequences of this unavoidable convergence
will be described later.

In the classical PSO model, the movement of a particle
is defined by Equation 1, where its next position (X, 1) is
updated using the current position and a speed term (V;).

X=X+ V; (D

In fact, the speed term actually does not have the dimen-
sion of velocity. It could be better defined as A X; but, for
the sake of simplicity, it is called speed (V;), following [6].
The speed term is defined according to the Equation 2:

Vi=c.m.dprs +care.dpas (2)

where: V; is the current speed of particle ¢; ry and ro are
random values in the range [0..1]; ¢ and cg are the weights
of BLS and BGS, respectively (in percentage); dgrs and
dpq s are the distance between the current position and BLS
and the current position and BGS, respectively. The speed
term, that is, the updating rate of the current position, is di-
rectly proportional to the distance between the current posi-
tion to BLS and BGS. Therefore, within few iterations the
particle will be attracted to either BLS or BGS.

The speed term controls the amount of global and local
exploration of the particle (that is, the balance between ex-
ploration and exploitation). A high speed facilitates global
exploration, while small speed will encourage local search.
A user-defined upper bound (V,,,,..) is established to limit
the maximum speed of particles. According to a psycho-
logical interpretation of PSO [6], the swarm of particles is
like as a population of individuals. Then, the two terms of
Equation 2 represent the cognitive and the social compo-
nents of a particle’s behavior. The former leads the particle
to repeat its own past successful behaviors, while the latter
makes it follows the others’. There are no default values
for weights ¢y and c;; sometimes they are set identical and
sometimes they are set asymmetrical. It is commonly ac-
cepted that those weights are problem-dependent and this
seems to be an open subject for further research [3].

As mentioned before, when particles agglomerate, a
mechanism is necessary to avoid stagnation, and the crowd
is dissolved by an explosion, repositioning all particles ran-
domly in the search space. However, they do not loose the
information of BLS and BGS. A similar approach applied to
the classical PSO, named “mass extinction” was proposed
by [18], where the population of particles becomes extinct
atregular time intervals. The way particle agglomeration is
treated in our model will be explained later.



2.2 Fast Local Search

The FLS algorithm [16] is an enhanced local search pro-
cedure, also known as fast hill climbing. Although FLS can
achieve similar results than the classical hill-climbing (or
neighborhood search), it is more efficient regarding the pro-
cessing time. The main characteristic of FLS is the use of an
activation bit for each position of the of the current solution
vector. In the initial iteration, all bits of the binary activa-
tion vector are set to 1. Whenever two points are selected,
the corresponding bits are reset. From the second iteration
on, only the bits corresponding to permutations of higher
fitness (than the previous one) are kept set. Therefore, the
number of permutations is greatly reduced, since changes
occur only for those positions where the corresponding bit
is set. The intention of using FLS is to ignore points of
the search space which are unlikely to lead to fruitful hill-
climbs, by means of reducing the neighborhood considered
for hill-climbing of a given point in the search space. The
way actually FLS is used in our hybrid approach is detailed
in section 3.3.

3 The hybrid PSO model

The hybrid model proposed in this work can be defined
as a discrete PSO that uses explicit local search and con-
cepts from GA. The original PSO was first devised to cope
with continuous rather than discrete search space and, there-
fore, some adaptations were necessary. The hybrid nature
of our model can be considered strongly coupled, since it
embodies the fusion of concepts from different paradigms:
the local search performed by FLS and the GA characteris-
tic appropriated to deal with the permutation problem (OX
operator [8]). In contrast, [12] present a loosely coupled
model, where two different subsystems (GA and PSO) share
only the final results. Other hybrid methods, with different
approaches, can also be found elsewhere, such as [9] and
[11], where either the components of the model interact in
the same context, or the main paradigm uses concepts from
other.

3.1 Particles, swarm and fitness

In our model, each particle represents a possible solu-
tion for the BTSP, that is, a complete tour. A given parti-
cle is composed by three main vectors, representing possi-
ble permutations for the BTSP: CP (current position), BL.S
and BGS. Also, the information of its current speed (V;),
current fitness of the particle (Cfieness) and fitness of BLS
(M fiiness) are kept in the particle. Other global parameters
are defined: maximum number of iterations (N,,,,), NUM-
ber of particles (Np), minimum distance for computing fit-
ness (D), number of cities of the current problem (NC),

and the matrix of distances between cities (D = [d;;]). Pa-
rameter NC determines the size of vectors CP, BLS and
BGS. As default, the distance matrix is generated using Eu-
clidean coordinates in the plane.

Fitness is computed by dividing D,,;. by the cost of the
tour represented by the current solution. Considering the
benchmark instances used in this work, D,,;, is set to the
already known optimal value of the tour. Therefore, fitness
values represent the excess of distance relative to the known
optimum for the instance. In the case when the value of
optimum tour is not known, D,,;,, can be set to 1. In this
way, fitness is inversely proportional to the cost of the tour.

The swarm represents a population of particles and, at
the startup, Np particles are generated (usually, 20 < Np <
50). For each particle 4, V; is randomly initialized, respect-
ing Vpaz, and vector CP is set with a random (but valid)
tour. For the first iteration, BLS receives the value of CP.
All just generated particles will be in different points of the
search space, and all of them will have different values for
CP. This represents a good diversity for the initial popula-
tion, an essential feature for evolving good solutions. Next,
the fitness of each particle is computed. The BGS and its
fitness receives the corresponding values of the first gener-
ated particle and are updated as soon as any other particle is
better than the previous stored value.

The speed term of Equation 1 requests two parameters:
dprs and dpggs. In the classical PSO, those parameters
are continuous. Therefore, the distance between particles
is calculated as the value of BLS or BGS decreased by
the CP value. However, in the BTSP, each position of the
search space represents a complete tour (a permutation of
cities), thus requesting a new method to compute the dis-
tance between particles, inspired on the Hamming distance.
Given two particles “A” and “B” representing a tour, the dis-
tance between them is computed comparing vectors depart-
ing from a common city (point zero). Initially, the distance
is null and, for each position of the vector the correspond-
ing values are compared. Whenever they are different, the
distance is incremented by 1. In this way, the maximum
distance possible will be exactly equal to NC'. This com-
putation may require a previous adjustment in one of the
vectors: it will be slid circularly until the initial point of
both vectors is the same. This procedure creates a new vec-
tor B/, but does not change the encoded information about
the tour (recall that it refers to a BTSP).

3.2 Diversity and particles’ movement

In each iteration, the average distance between particles
and the BGS is calculated. If this value is lower than a given
percentage of NC (recall how the distance between parti-
cles is computed), agglomeration is characterized and the
swarm is exploded. This “hot boot™ is controlled by a pa-



rameter named diversity (8). Also, it is possible to have
agglomeration around the BLS of a particle. In this partic-
ular case, all surrounding particles will have its BLS value
changed to a random value. This procedure simulates a lo-
cal explosion of the swarm.This diversity maintenance pro-
cedure does not affect the original number of iterations and
itis essential for an efficient exploration of the search space,
without excessive local exploitation.

The movement of particles is based on Equations 1 and
2 and the GA-inspired OX operator [8] that recombines two
possible solutions. The OX operator is adapted as follows:
only one cut point (P; O X) is randomly chosen and it is the
same for the two particles. The second cut point (PO X),
necessary to define the matching section, is found travers-
ing circularly NC' — 1 positions of the solution vector (tour
represented by the particle). Operator OX is applied to two
sets of vectors: {CP, BLS} and {CP, BGS}. The number
of positions of the matching section for each operation is
given by Equations 3 and 4, where ¢; and cp are the same
parameters of Equation 2.

Sprs = c1.Via (3)

Seas = c2.Vig )

This procedure generates two new temporary solutions
that are evaluated according to their fitness. The solution
with best fitness will be considered the new CP of the par-
ticle. The concept of speed in this work is the same as in
the classical PSO, and determines the level of exploration
of the search space by the particles. As usual, after a parti-
cle has been moved in the search space, its BLS is updated
accordingly. An iteration is defined by the movement of one
particle and, after each iteration BGS is updated, if neces-
sary.

3.3 Local search with FLS

Refinement of solutions takes place together with the
search process. This refinement is accomplished by a local
search, exploring positions (of the search space) surround-
ing to a given reference particle by means of the FLS strat-
egy. For each particle, there is a binary activation vector.
When two points of the activation vector are randomly se-
lected, the changes in the solution vector (tour) is done us-
ing the 2-opt heuristics [15]. That is, the sub-tour defined
by these two points is inverted leading to a different tour,
but preserving its structure. This newly created solution is
stored in a temporary memory. The remaining bits set of
the activation vector are browsed two-by-two and the same
procedure as above is repeated. As result, the temporary
memory holds several variations descendent of the current
solution. The best of them substitutes the current particle
and the remaining are discarded. The 2-opt heuristics alone

is not efficient [15], but its combined use with FLS in our
hybrid model can enhance efficiency of the search, espe-
cially when the problem has many local maxima. A more
detailed explanation about FLS is avoided due to space lim-
itations.

4 Parameters adjustment

The hybrid PSO model proposed in this work has some
parameters that control its behavior and performance. It is
a matter of fact that, for the same problem instance, the be-
havior or the system can be very different and lead to di-
verse results, when using different sets of control parame-
ters. Much work in the literature does not specify clearly
how control parameters are adjusted, and does not give the
attention this issue deserves. Aware of this, we conducted a
series of experiments to investigate the effect of each con-
trol parameter in the performance of our system. Again,
here, some simulation details, as well the sensitivity analy-
sis, are not shown due to space limitations.

Each experiment was composed of 100 independent
runs, using instances from the TSPLIB [1], a collection of
instances widely used as a benchmark. For the adjustment
of parameters, we used two BTSP instances: pr76 (with 76
cities), and pr299 (with 299 cities). These instances are not
too large to be computationally expensive (for our system)
and not too small to be trivial. The quality criterion was the
distance of the Hamiltonian cycle found by the algorithm
divided by the optimal known value, averaged over the 100
runs.

The initial values for the running parameters are shown
in Table 1. Those values were based on the recent literature
about PSO (except for FLS rate, which is specific for our
system). The strategy used was to investigate the perfor-
mance of the system changing some parameter(s) and se-
lecting the two best values, and then using such values for
investigating the next parameters.

The following parameters and ranges were tested:
e = {0.3,0.4,0.5,0.6,0.7}; c2 = {0.3,0.4,0.5,0.6,0.7};
Vinaz = {0.5,0.6,0.7,0.8,0.9}  (this param-
eter corresponds to the proportion of NC);
6 = {0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40} (de-
fined in Section 3.2 as a proportion of NC'); and FLS
rate= {0.05,0.10,0.15,0.20,0.25}. After all experiments,
the set of default parameters for our hybrid PSO was
defined as those shown in Table 1.

5 Results

In this section, we report the application of our pro-
posed system to several instances of the BTSP, also found



Table 1. Initial and default values for parame-
ters of the hybrid PSO.

Parameter Initial Value Default Value
Number of particles 20 20

Number of iterations 1200 1200

4 0.4 0.7

Cy 0.6 0.3

é 0.05 04

Vinaz 0.8 0.7

FLS rate 0.1 0.25

at TSPLIB. We tested two versions of our system: with (hy-
brid PSO) and without (pure PSO) the FLS feature. The
experiments with FLS rate set to zero aimed at evaluating
in what extent this distinguishing feature of our system in-
fluences the performance. Except by FLS rate, all other pa-
rameters were set to the default values previously defined.
Besides the instances used to investigate the best set of con-
trol parameters (pr76 and pr299), the following instances of
TSPLIB were used: rat195, prd439, d657, pr1002, r11304,
d1655 and d2103. The suffix of each instance is the number
of cities it represents, that is, from 76 to 2103 cities. Itis im-
portant to observe that most work in the literature regarding
heuristic methods for the TSP use small instances.

Our hybrid PSO system was implemented in ANSI C
programming language and all tests reported here were run
in a desktop computer. Results are presented in Table 2.
In this table, for each instance, we present the best solution
found and the average over 10 independent runs. Values
shown are normalized with respect the known optimal tour
for each instance, and represent the percent of excess over
it. Therefore, the small the excess, the better and closer
to the optimal value. Considering all nine instances re-
ported, the average excess was 2.538% for the hybrid PSO
and 87.006% for the pure PSO.

Table 2. Results obtained.

hybrid PSO pure PSO
Instance Best  Avg. Best Avg.

pr76 0.000  0.000 47.581 53.107
rat195 0.810 1.148 75.696 76.757
pr299 0.120  0.620 85.878 86.535
pr439 0.280 0.500 88.408 88.962
d6s7 2.114  3.193 89.743  90.160
pr1002 3.569 4715 93.108 93.270
11304 1.454  2.498 95.774 95.793
d1655 4.887 5.644 93.232 93.683
d2103 3.433  4.524 96.338  96.362

In PSO, an iteration corresponds to the evaluations of the
whole swarm. The upper bound for the computational effort

to solve a problem is obtained by the product of the number
of particles by the number of iterations (in our case, 20 x
1200 = 24000). The real computational effort can be esti-
mated by the product of the actual iteration in which the
best solution was found by the number of particles, giv-
ing the number of evaluations. This measure is computer-
independent. Table 3 shows, for each instance, the average
iteration in which the best solution was found, as well the
corresponding computational effort.

Table 3. Computational effort.

hybrid PSO pure PSO
Instance Avg.lIter. Effort Avg.lter. Effort
pr76 164 3280 1160 23200
rat195 853 17060 1156 23120
pr299 1010 20200 1173 23460
pr439 1061 21220 1163 23260
des57 986 19720 1183 23660
pr1002 1064 21280 1180 23600
11304 1071 21420 1184 23680
d1655 1109 22180 1167 23340
d2103 977 19540 1188 23760
average 922 18433 1173 23453

6 Conclusions

The dichotomy between a global search and a local
search is a recurring theme in computational models of
evolution and biology. In computational contexts, the hy-
bridization of global and local search is known to produce
more efficient optimization algorithms for the BTSP. Sev-
eral general-purpose heuristics have been proposed for the
BSTP. Conventional GA and PSO suffer from a certain in-
efficiency, characterized by a slow convergence and a lack
of accuracy when a high-quality solution is required, es-
pecially for large instances of BSTP. In contrast, special-
ized, local search methods can focus in a given region of the
search space, possibly retrieving the best local optima of the
neighborhood. The aim of this paper was to propose a new
hybrid model, combining PSO, FLS and GA methodologies
for the BSTP. The combined features of PSO and GA were
competent to find high-quality tours which are then refined
by means of the FLS heuristic. While the PSO is efficient
for searching the solution space globally (exploration), FL.S
does a good job while searching locally (exploitation).

The new hybrid model presented very good computa-
tional results, considering the performance measured with
instances form 76 to 2013 cities of BSTP. The local search
with FLS has a very significant influence on the final per-
formance of hybrid model. Table 2 supports this assertion
by showing how bad are results given by the version of
PSO without FLS (pure PSO). Although not shown here,



the analysis of the joint effect of FLS and swarm explosion
showed that they are responsible for keeping a high level of
diversity along the search.

As expected, the quality of solutions found by the pro-
posed model decreases as the size of the problem increases.
For instances up to 439 cities, the best results found by
our hybrid PSO were less than 1% in excess of the optimal
value. A statistical analysis of such values and the proxim-
ity of the average with the best values suggest that the pro-
posed system offers consistent results throughout different
runs. Computational requirements with the proposed hybrid
model are reduced compared to the pure PSO, as shown in
Table 3. The pure PSO obtained very poor results for all
instances, even requiring a higher computational effort than
the hybrid PSO. This fact confirms the need for hybridism
as a way to better explore the search space.

Regarding the processing time, using the control param-
eters previously defined, the hybrid PSO took around six
times more time to run than the pure PSO. For real-world
applications this fact can be neglected considering the qual-
ity of the solutions found by the hybrid PSO compared with
the pure PSO.

There are many approaches devised to solve TSP, includ-
ing those that use PSO [17],[12]. Usually, such approaches
are tested with small dimension problems. For instance,
[17] reports the application their model to instances up to
only 14 cities. Real-world problems usually have a much
larger dimensionality, for which more efficient models must
be used, such as the one here proposed.

Hybrid heuristic models are interesting for hard prob-
lems since they combine good quality features from several
techniques in a single paradigm. The concepts of GA and
FLS embodied in the PSO paradigm have lead to a robust
and efficient model, therefore justifying the need for hy-
bridism. Results can be considered very good for an heuris-
tic method, in comparison with other similar methods in the
recent literature. It is worth to emphasize the use of FLS
with 2-opt. This strategy has enhanced solutions found by
the algorithm, but at the expense of a larger, but acceptable,
computational cost. Our results confirm the fact that most
of successful heuristic approaches for the TSP do rely on
hybrid strategies that include some kind of local search.

Results encourage further work that will comprise the
study of a less expensive FLS, as well as other strategies
that could improve the model, such self-adaptive parameters
[10], GA’s concepts of niches and species [8] and breeding
and subpopulations [9].
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