
Object detection for computer vision using a
robust genetic algorithm

Tania Mezzadri Centeno, Heitor Silvério Lopes,
Marcelo Kleber Felisberto, Lúcia Valéria Ramos de Arruda

CPGEI/CEFET-PR, Av. 7 de setembro, 3165,
CEP: 80230-000 Curitiba-PR-Brazil

{mezzadri, hslopes, mkf, arruda}@cpgei.cefetpr.br

Abstract. This work is concerned with the development and implementation of
an image pattern recognition approach to support computational vision systems
where is necessary to automatically check the presence of specific objects on a
scene, and, besides, to describe their position, orientation and scale. The devel-
oped methodology involves the use of a genetic algorithm to find target patterns
in the image. The proposed approach is fast and presented a robust performance
in several test instances including multiobject scenes, with or without partial
occlusion.

1 Introduction

Detecting and describing how a specific object appears in an image using traditional
matching procedures usually involves hard computational effort, particularly when
rotation, translation and scale factors are necessary. In addiction, the complexity of the
object recognition problem increases when it is possible to have the target object par-
tially occluded [1].

This work reports the development and implementation of an image matching
method, based on a genetic algorithm, aimed at supporting a robust computational
vision system. The final objective is to check automatically the presence of specific
objects in a scene, describing their position, orientation and scale.

In the proposed approach, image processing techniques are used to extract proper-
ties from an object image in order to construct a compact object model representation.
Then, a genetic algorithm manages the search for occurrences of the known object
model in other images. Next, using the results found by the genetic search, the recog-
nized objects are correctly extracted from the tested images. Thanks to the compact
object representation form in our approach, few amount of data are processed and,
consequently, less computational effort is spent in the search process.

In this work the identification of specific components in the images is treated as an
object verification problem, a particular image analysis case. The goal is to find where
and how an object model appears in the input image. According to [1] matching pro-
cedures, such as template matching, morphological approaches and analogical meth-

ods, offer feasible solutions for the problem. However, the implementation of a fast
search algorithm for this problem is indeed a hard task, since the object can appear in
different rotational angles and scales in the image. In this way, this problem can easily
fall into an exhaustive search [1].

1.1 Related Work

Fitzpatrick, Grefenstette, and Van Gucht [2][3] faced a similar problem, when they
implemented a system for comparison of medical X-ray images to identify dye-coated
region in arteries, after the dye injection. The problem, however, was to align both
images for comparison by means of images subtraction. The solution was to imple-
ment a genetic algorithm to find the best image transformation parameters, in order to
align the pre-injection and post-injection images to compare themselves.

According to [4], genetic algorithms are especially appropriate for optimization in
large search spaces, where exhaustive search procedures are not feasible. They pro-
pose a solution, based on genetic search, for partial image matching problem, applied
for medical images.

Bhanu and Peng [5] proposed a method for adaptive image segmentation. They
implemented a genetic algorithm to search a set of parameters for image edge-
detection. The parameters set were evaluated based on the performance of an object
recognition system.

2 Methodology

The first steps in the proposed approach are the definition of the object model repre-
sentation and the search objective. Next, the genetic algorithm parameters shall be
detailed, with special emphasis in the encoding and the computation of the fitness
function.

2.1 Object Model Representation

Here we describe the steps of the procedure to encode the image model, representing
the pattern, in a compact object representation form, in such a way that a reference
matrix and two distances, dx and dy, fully represents the object model.
a. The image (Fig. 1a) is sliced by n horizontal lines evenly spaced by dy pixels,

where dy = number of image lines / (n+1).
b. Similarly as before, the image is sliced by n vertical lines evenly spaced by dx

pixels, where dx = number of image columns / (n+1).
c. Crossing lines define points that are named reference points, and are represented by

Pij, where i = 0, 1, …, n –1, and j = 0, 1, …, n – 1.
d. The point P0 at coordinates (x0 , y0), with x0=y0=(n-1)/2, is named the central refer-

ence point.

e. A function f(Pij) assigns to each reference point the mean value of the pixels in the
Pij neighborhood, as defined by the delimited region shown in Fig. 1b.

f. All the computed f(Pij) values are normalized in the integer range [0..99] and repre-
sented as a n × n matrix, called reference matrix (Mref).

Fig. 1. (a) The image model sliced by seven horizontal and seven vertical lines with the central
reference point (Po); (b) Neighborhood of a generic point Pij.

2.2 Genetic Algorithms

2.2.1 Individual Encoding

In our approach, five parameters are necessary to describe a simple individual: a
threshold value t for the input image, a scale factor s, a rotation angle θ, and the pair
of coordinates (x0’; y0’) for the central reference point (P0’) in the input image. Hence,
the k-th individual of the population will be represented by the 5-tuple (x0’k , y0’k , sk ,
θk , tk), whose ranges are shown in the Table 1.

For the tests, detailed later, we shall use images with no more than 2047 lines or
columns. Therefore, 11 bits will be enough to represent the central reference point
coordinates. For the sake of simplicity, we used the same length for the remaining
parameters, t, s and θ. Therefore, an individual will have 44 bits long, leading to a
search space >1016.

Table 1. Ranges of parameters encoded in an individual k.

Parameter Range
Po’ column 0 ≤ x0’k ≤ 2047
Po’ lines 0 ≤ y0’k ≤ 2047
scale factor 0.5 ≤ sk ≤ 2.0
rotation angle 0 ≤ θk ≤ 2π rad
threshold 0 < tk < 255

2.2.2 Objective and Fitness Functions

Firstly, the input image is binarized, based on the threshold value tk. For the pixels of
the image with value less than tk is assigned the value 0 (black) and, for the remainder
pixels, 255 (white).

Based on the parameters encoded in an individual, the coordinates of a generic
point (Pij’) in the input image is given by Equations 1 and 2, considering translation
and rotation [6], respectively:

]sin).(cos)..[(000 θθ yyxxsxx iii −+−+′=′

]sin).(cos)..[(000 θθ xxyysyy iii −+−+′=′

(1)

(2)

where: xi and yi are the coordinates of point Pij relative to point P0 (in the object
model image), and the xi’ and yi’ are the coordinates of the point Pij’ (projection of
point Pij in the input image). For the central reference point P0’, Equations 1 and 2
give P0’ = (x0’; y0’).

For instance, suppose that the individual represented by vector (23; 311; 6.28; 1,
56) has been generated as a possible solution for the search of the object model in Fig.
1. The reference points would be located as shown in Fig. 2a, for that input image. For
better visualizing the result, Fig. 2b shows the object model projection over the input
image matched with the proposed solution. Also, in Fig. 2a, it is shown that it is pos-
sible some reference points fall off the image limits. Such points are called invalid
points, and the result of f(Pij’) is represented by an asterisk. The total of invalid points
is denoted by n*.

Fig. 2: (a) Reference points plotted in a test image, for individual (23; 311; 6.28; 1, 56); (b)
The object model projection in the input image matched with the proposed solution.

Once reference points have been located, a new reference matrix can be generated
for the proposed solution, by following steps (e) and (f) of section 2.1. Such matrix,
for the k-th individual, is denoted by Mref’ (x0’k ; y0’k ; sk ; θk ; tk).

Equation 3 is the objective function that measures the distance between Mref’ and
Mref. It is based on the sum of the quadratic errors and, the small the distance SSQE(k),
the better is a given solution k.

By default, the fitness function of a genetic algorithm deals with a maximization
problem. Since it is searched for a given solution k (x0’k ; y0’k ; sk ; θk ; tk) that mini-
mizes SSQE (k), a new fitness function is defined in Equation 5:

MAXSQE

SQEMAXSQE

S
kSS

kfit
−

− −
=

).(
)((5)

where:
2*))(99(nnnS MAXSQE −×⋅=− (6)

Here, n×n is the Mref dimensions and n* is the number of invalid points of refer-
ence.

Since SSQE-MAX ≥ SSQE (k) for any feasible solution k, the fitness function values will
be defined within the range [0...1].

A restriction to the maximum number of invalid points was incorporated in the fit-
ness function definition to limit the maximum number of n* occurrences. Therefore,
the fitness function is redefined, as follows, considering the index “WR” as the fitness
value with restriction:













=⇒

=⇒
×

>

0)(

)()(
2

n*

kfitOtherwise

kfitkfitnnif

WR

WR

(7)

2.2.3 The Genetic Search

The genetic search starts with the random generation of the initial population of z
individuals: (x0’1 ; y0’1 ; s1 ; θ1; t1), (x0’2 ; y0’2 ; s2 ; θ2; t2), … , (x0’z ; y0’z ; sz ; θz; tz).
Each individual of the population is evaluated by the fitness function, and the prob-
ability of each individual to be selected for reproduction increases proportionally to its
fitness value. An appropriated selection method [7] is used to select candidates for
crossover and mutation. Such genetic operators will generate new individuals to form
a new population. Some population generating strategies include elitism that means to
copy some of the fittest individuals of the current population to the next one. Basically
these same procedures are used to generate the following populations until some stop
criterion is met. Usually a maximum number of generations or a satisfactory fitness
value reached is used as stop criterion.

3 Implementation

The system was implemented in C++ object-oriented programming language on
Microsoft Windows 2000 platform. For the image processing routines we used the
Dilabiem 6.11 package [8], and for the GA implementation, the GAlib genetic algo-
rithm package [9]. Fig. 3 shows a block diagram that illustrates the information flow
through the system components, which are described as follows
a) The parameters updating block is used to modify running parameters of the GA.
b) The model construction block applies operators to the object model image in

order to construct the object model representation (Mref, dx, dy), as explained be-
fore.

c) The genetic search block uses a GA to find a promising region of the input image
that supposedly contains the object model. Such solution is represented by a vec-
tor as described in Section 2.2.1.

d) The object image extraction block makes a decision based on the fitness value of
the current solution. For a fitness value less than a fixed fitness threshold (tFIT), the
solution is just discarded and the search stops. Otherwise, the object is extracted
from the input image and saved as a new image denominated object image i (i=1…
j). Besides, the result of the image subtraction (input image – object image i) is
feed-backed to the genetic search block, for a new search.

The loop between the blocks genetic search and object image extraction allows the
system to find further copies of the same object in the input image.

5 Experiments and Results

Several experiments were done using images of chess pieces. An image of a single
object was used as model. Fig. 4 shows the object model image used in the experi-
ments and its reference matrix (Mref), generated by the model construction block (Fig.
3). Other images, where the same object appears in different orientations and positions
was tested, as well as multiobject scenes and partial occlusion occurrences.

During the GA run, the number of solutions generated and evaluated is z × g = 100
× 1000 = 105. The search space, considering a typical 512 × 512 pixels image, 3600
possible values for the rotation angle (0.0°, 0.1°, 0.2°,…, 359.9°), and 101 scale fac-
tors (0.500, 0.515, 0.530, …, 2.000), is larger than 9.53×1010. Consequently, the ge-
netic algorithm can find an acceptable solution testing less than 0.0002 % of that huge
search space.

Fig. 5 shows one of the images used in the experiments, where the target object ap-
pears in three different locations and positions in the same image. Table 2 shows the
search results for the experiments using the image of Fig. 5 as input. Each table col-
umn shows the object extracted from the original input image, followed by the pa-
rameters found in the genetic search, and the fitness value for the current solution.
These results show that all occurrences of the target object in Fig. 5 were found. Note
that the partially occluded object (object image #1), in the right side of the image (Fig.
5), was also detected and correctly extracted from the image.

.
Fig. 3. Block diagram of the proposed system showing its components and the corresponding

information flow.

Fig. 4. (a) Object model image used in the experiments. (b) Corresponding reference matrix.

Fig. 6 shows another test image used, where the target object appears in a multiob-
ject scene. Fig. 7 shows the result of the object model matching with the solution pro-
posed by the system.

Table 3 shows the results for the experiments using as input the image shown in
Fig. 6. Note that the Table 3 shows the two next solutions that would be found by the
system if the fitness threshold value tFIT would decrease from 0.85 to 0.80.

Fig. 5. Images used in the experiments.

Table 2. Results obtained using the image of the Fig. 5 as an input.

object image #1 object image #2 object image #3

P0’ = (528 , 150) P0’ = (80, 113) P0’ = (245 , 144)
s = 1.523926 s = 0.934570 s = 0.747803
θ = 1.386719 rad θ = 6.273985 rad θ = 0.033748 rad
t = 140 t = 160 t = 118
fitness = 0.902464 fitness = 0.894589 fitness = 0.907113

Fig. 6. Multiobject image used in the experiments.

Fig. 7. Matching of the first solution proposed by the GA, using as input the image in Fig. 6.

Table 3. Results obtained using as input the image shown in Fig. 7.

object image #1 Discarded solution #1 discarded solution #2

P0’ = (555 , 152) P0’ = (433 , 169) P0’ = (321 , 138)
s = 0.983545 s = 0.983545 s = 1.222607
θ = 0.000000 rad θ = 0.012272 rad θ = 6.258645 rad
t = 128 t = 125 t = 238
fitness = 0.881313 fitness = 0.832775 fitness = 0.844708

6 Conclusions

This work proposed an image pattern recognition approach based on a genetic algo-
rithm. The implemented system is the core of an upcoming computer vision system.
This approach is useful in many cases where it is necessary to check the presence of
specific objects in a scene, and, further, to describe their position, orientation and
scale.

During the reported experiments, the system displayed a good performance for all
test sets, demonstrating its robustness. However, it was observed that, for most cases,
the solutions presented by the system were not the optima, but something very close to
the optimum value (see, for instance, Fig. 7). The developed system is computation-
ally efficient, obtaining good solutions in few seconds, for all test images.

Despite the good results, future work will focus accuracy, including the implemen-
tation of some local search strategy in order to fine-tune results from the genetic
search, leading to even more accurate results.

Acknowledgements

This work has been partially supported by Agência Nacional do Petróleo (ANP) and
Financiadora de Estudos e Projetos (FINEP) - ANP/MCT (PRH10-CEFET-PR).

References

1. Jain R, Kasturi R and Schunck BG (1995) Machine Vision. McGraw-Hill, New York
2. Fitzpatrick JM, Grefenstette JJ and Van-Gucht D (1984) Image registration by genetic

search. In: Proc Southeastcon, vol. 84, pp. 460–464
3. Grefenstette JJ and Fitzpatrick JM (1985) Genetic search with approximate function evalua-

tions. In: Proc Int Conf on Genetic Algorithms and their Applications, pp. 112–120
4. Simunic KS and Loncaric S (1998) A genetic search-based partial image matching. In: Proc

2nd IEEE Int Conf on Intelligent Processing Systems, pp. 119-122
5. Bhanu B and Peng J (2000) Adaptive integrated image segmentation and object recognition.

IEEE T Syst Man Cy C 30(4):427–441
6. Gonzalez RC and Wintz P (1987) Digital Image Processing, Addison-Wesley, Boston
7. Bäck T and Hoffmeister F (1991) Extended selection mechanisms in genetic algorithms.

In: Proc 4th Int Conf on Genetic Algorithms, pp. 92–99
8. Osowsky J (2004) DILabiem Image Processing Package. Technical Report vs. 6.11,

CPGEI/CEFET-PR
9. Wall M (2003) GAlib A C++ Library of Genetic Algorithm Components vs. 2.4.5.

http://lancet.mit.edu/ga/.

