
A distributed approach for a multiple sequence alignment algorithm
using a parallel virtual machine

Heitor S. Lopes and Guilherme L. Moritz

Abstract— Multiple sequence alignment is a central topic
of extensive research in computational biology. Basically, two
or more protein sequences are compared so as to evaluate
their similarity. This work reports a methodology for par-
allel processing of a multiple sequence alignment algorithm
(ClustalW) in an environment of networked computers. A
detailed description of the modules that compose the distributed
system is provided, giving special attention to the way a dynamic
programming algorithm can be executed in parallel. Extensive
experiments were done to evaluate performance and scalability
of the method. Results show that the proposed method is
efficient and offers a real advantage for large-scale multiple
protein sequence alignment.

I. INTRODUCTION

In biological systems, proteins are the most abundant and
functionally diverse molecules and almost all vital processes
depend on these macromolecules, which are composed by
amino acids chains. The common 20 different types of
amino acids can be combined in a linear sequence having
the necessary information for the generation of a unique
tri-dimensional structure. The comparison of two protein
sequences (or a group of them) is known as alignment.
It consists in the systematic comparison of the amino
acids compounding the sequences throughout their whole
extension (or only definite regions), and then computing
a similarity score. From the computational viewpoint, the
multiple alignment of sequences (proteins or DNA) is a
very difficult task and it is NP-complete [2]. However,
alignment is the most important tool for discovering and
representing similarities between sequences, and can unravel
the evolutionary history, critical preserved motifs, details
of the tertiary structure or important clues about function.
Therefore, multiple sequence alignment is a central topic of
extensive research in computational biology [1]. There are
known computational algorithms that allow finding suitable
alignments among sequences (local/global alignment; pair-
wise/multiple alignment). The main difference between them
is the quality of the alignment. Frequently, algorithms that
give good alignments are computationally expensive or even
unfeasible for a large number of sequences. In this work, a
methodology for parallel multiple sequence alignment was
developed. It was designed to address both the quality of
the alignment and the processing speed. For this purpose,
we choose an efficient algorithm, Clustal [3], and a parallel

This work was supported by the Brazilian National Research Council –
CNPq, under grants 350053/03-0 and 475049/03-9.

H.S. Lopes and G.L. Moritz with Bioinformatics Laboratory/CPGEI,
Federal Center for Technological Education of Parana, Av. 7 de setembro,
3165 – 80230-901 Curitiba, Brazil hslopes@cpgei.cefetpr.br
and moritz@cpgei.cefetpr.br

processing environment using networked computers, PVM
(Parallel Virtual Machine) [4].

PVM is a software library that offers message-passing
support and allows the exploitation of distributed computing
across a network of heterogeneous computers [4]. PVM is
efficient and easy to use and, thanks to its explicit communi-
cation model and process-based computation, it has become
a standard in parallel computation.

A. The ClustalW algorithm

The Clustal algorithm [3] is based on a progressive align-
ment of sequences, using a distance tree between related
alignments. In this work, we used a further improvement
of the Clustal algorithm: the ClustalW [5].The algorithm is
divided into three basic steps, as follows: The first step is
the pairwise alignment, where a pair of sequences is aligned
using the well-known dynamic programming algorithm for
global alignment. It builds a m×n matrix (m and n are the
length of the two sequences) and computes a score by means
of a backward walk in the matrix, looking for the minimal
cost associated with substitutions, insertions and deletions.
This step is repeated iteratively for all n(n − 1)/2 pairs
of sequences to be aligned. The computed score is meant
as the similarity degree between two sequences. The scores
are computed as evolutionary distances using the model of
Kimura [6]. In the next step a distance tree (a kind of phylo-
genetic tree) is constructed using all pairs of alignments. This
tree shows the evolution of the sequences, grouped in pairs
of minimum distances (scores) using the neighbor-joining
clustering algorithm by Saitou and Nei [7]. This tree is a
profile of the order in which sequences should be aligned
for maximal efficiency of the next step. Finally, a progressive
alignment of the previous alignments is done, traversing the
distance tree in order of decreasing similarity: sequence-
sequence, sequence-profile, and profile-profile alignment,
thus reaching the final result. This result does not have a
score and it is not necessarily the best possible alignment for
the sequences under study. The optimum multiple sequence
alignment can be obtained with multidimensional dynamic
programming, but the time complexity is O(2NLN), where
N is the number of sequences and L the average length of
the sequences [1][8].

II. METHODOLOGY

A. Architecture of the system

The proposed architecture is based on a Master-Slaves
approach. At the low level, the system is divided into
modules. A central module (Manager), running in the Master

Proceedings of the 2005 IEEE
Engineering in Medicine and Biology 27th Annual Conference
Shanghai, China, September 1-4, 2005

0-7803-8740-6/05/$20.00 ©2005 IEEE. 2843

computer, controls the PVM environment and the data flow
to and from the Slaves, and constructs the distance tree
(see below). The Manager enquires Slaves cyclically for
completion of every task allowing a dynamical adaptation of
the system to the load. In the Slaves, the running modules
are:

• ReceiveX: It manages the computation of pairwise
scoring in each Slave host.

• ReceiveP: It receives two files that can be either se-
quence files (to be aligned) or alignment files. The latter
file type is used by Pairwise-aligner and Din2 modules
to create a new alignment.

• Pairwise-scorer: This module operates over a pair of
sequences and returns only the score of the alignment.

• Pairwise-aligner: A modified version of the dynamic
programming algorithm that operates over a pair of
sequences, but returning a file with the alignment itself.

• Din2: This module is responsible for managing the
parallelization of the Smith-Waterman algorithm [8],
using up to three hosts. It is he heart of the system
and shall be explained later.

B. Scoring Pairwise Alignments

When the Manager is started in the Master host, it will
seek for the Slaves hosts added to the PVM environment that
are up to run [4]. It initializes the ReceiveX and Pairwise-
scorer modules on the Slaves. In principle, the system will
use all available Slave hosts. Following, the Manager sends
to the Slaves a file with all the sequences to be aligned. Next,
it computes the total number of score-computing operations,
that is, the number of all possible pairs of sequences. This
value is divided by the current number of Slaves up to be
allocated. Therefore, each Slave will receive a vector of N
ordered pairs, corresponding to the sequences the current
host is in charge of aligning. N is obtained according to
equation 1:

N = int

{
NProc

NSlaves
× [1 ± rand(0.1)]

}
(1)

where: int{.} is a function that returns the integer part of
the argument; NProc is the number of processes; NSlaves is
the number of available hosts to perform the computations,
except the host where Manager runs; and rand(0.1) is a
random generated number in the range 0 to 0.1. The small
variation in N , that is, ±10%) is aimed at giving a small
different load distributed between hosts, so as to avoid Slaves
finish their jobs about at the same time, thus overwhelming
the communication with the Master.

In the sequence, Manager gets idle waiting for further
communication from Slaves. ReceiveX modules on Slaves
sends a pair of sequences (pointed by the vector of ordered
pairs) to the Pairwise-scorer module. Recall that Pairwise-
scorer is based on the first step of CLUSTALW algorithm
[5], when dynamic programming is used to compute the pair-
wise evolutionary distance between two sequences using the
Kimura approach [6]. The computed evolutionary distance is
returned back to ReceiveX module.

This process is repeated until all pairs of sequences are
processed. Then, ReceiveX contacts the Manager and sends
back a triplet composed by: a vector containing the same
N ordered pairs previously received and the corresponding
evolutionary distance for each pair. After sending those data,
the Slave gets idle. After receiving all replies from Slaves,
Manager has all information necessary to build a score
matrix.

C. Distance Tree Building

The next step of the ClustalW algorithm is the construction
of the distance tree. This procedure is essentially sequential
and, fortunately, it is not computationally intensive, even for
a large number of sequences. Therefore, it is executed by the
Master. The result of this step is a guide to the successive
alignments of the next step (Profile Alignment).

There are two possible ways to construct the distance
tree. The construction of the branches of the tree follows
the decreasing order of scores obtained before. Therefore,
the highest scores will be leaf nodes of the tree. Next,
the branches of this level are analyzed to find the nearest
ones, which, in turn, will constitute an internal node of
the tree, at a higher level. This process is repeated until
all branches converge to the root. Constructing the distance
tree in this way enables the parallelization of the profile
alignment (next step), since each pair of leaf nodes can
be processed separately in a Slave, and several processes
can be done in parallel. Notwithstanding, this procedure
imposes an important drawback. As the process advances,
the size of the profiles to be aligned increase, since more
sequences are added. Sequences to be aligned are added
(2n − 1) by (2n − 1), where n is the depth of the node
in the tree. This fact makes the computational effort grows
exponentially and become unfeasible even for a moderate
number of sequences. Another way to construct the tree is the
one used by ClustalW. The two most similar sequences are
connected by the first branch of the tree. The next sequence
most similar to the previous ones is then connected by the
second branch and so on until reaching the root. By using
this procedure, the computational effort grows linearly with
the number of sequences but, on the other hand, only one
process can be run at a time, since it branch depends upon
the previous one.

D. Profile Alignment

Profile alignment uses the distance tree built in the previ-
ous step. It is divided into phases that use different modules
based on the dynamic programming algorithm adapted for
profile alignment, as follow.

1) Dynamic programming for profile alignment: The
dynamic programming algorithm is based on the Smith-
Waterman algorithm [8] and it is base on a H × W matrix,
where H is the length of the profile that was placed in the
column and W is the length of the profile sequence that was
placed in the line, both with an added gap in the first cell. The
elements of the matrix (M(i, j)) are computed sequentially,
due to the data dependency inherent to the algorithm. The

2844

computation of M(i, j) is based on the sum of all evolu-
tionary distances between all possible combinations between
amino acids of the line and the column. In this work we used
BLOSUM62 [9] as the evolutionary distance matrix.

2) Parallelizing the dynamic programming algorithm: For
the leaf nodes of the distance tree constructed in section II-
C, several processes run in parallel, each one in a Slave
host. For the remaining levels of the tree, besides the regular
parallelizing approach, a single process can be run in more
than one host. In the beginning, the Manager starts modules
ReceiveP and Pairwise-aligner in all the available Slave
hosts. When all leaf nodes of the tree are already processed,
the Pairwise-aligner is deactivated. In the subsequent levels
of the tree (inner branches), a new way to process multiple
sequences is accomplished by means of module Din2.

3) Partition of the dynamic programming matrix: The
construction of the dynamic programming matrix for pro-
file alignment is a recursive process (following [8]) and,
therefore, direct parallelization is not possible. In this section
we show how the matrix can be partitioned so as to allow
concomitant processes to compute it.

Figure 1-left shows how the matrix can be partitioned in
three regions. In region 1 (in white), cells in the borders
must be calculated first. Next, cell M(2, 2) is computed.
At this point it is possible to start two additional parallel
processes, for computing cells in regions 2 and 3 at the same
time. Using such approach, up to three processors can be
employed, exploiting the potential of parallel computation.
When these processes are started, the first processor takes
control of the task division and computation of the cells
necessary for the recursivity (top row, leftmost column and
main diagonal) and other two are responsible for computing
cells in regions 2 and 3.

Fig. 1. Partition of the dynamic programming matrix for parallel processing
(left). Steps for computing cells of the matrix (right).

4) Din2 module: In the original algorithm, sequences to
be aligned were added (2n − 1) by (2n − 1), where n is
the reverse depth of the node in the tree. This fact makes
the computational effort grows exponentially. To circumvent
such problem, it is necessary to change the scheme used
before and, therefore, module Din2 was developed. Actually,
this module applies the dynamic programming algorithm
in parallel, adapting itself dynamically to the availability
of processors for the current level of the distance tree.
This module can start up to three processors to do the
task, as explained before, and behaves transparently to the
Manager. For the progressive alignment, cells marked with

“a” are computed first (see figure 1-right), by the Din2
module started the host. As soon as cell marked with “b”
is computed, two parallel processes (in the Slaves) can be
started, just to compute either cells in the column (marked
with “c”) or those in the row (marked with “d”). As soon as
the first elements of column and row are computed, the next
diagonal cell can be processed (marked with “e”) and so on.

III. COMPUTATIONAL EXPERIMENTS AND RESULTS

Several experiments were done to evaluate the perfor-
mance of the proposed system. Experiments focused on
the number of sequences to be aligned and their length.
The reduction of processing time due to parallelism was
also investigated. Although PVM supports heterogeneous
networks, we used a homogeneous set of computers in
this work, formed by desktop PC computers with AMD
Athlon �XP 2.4+ processors and 512 MB RAM, running
Microsoft Windows 2000-SP4, connected in a switched 100
Mbps local area network. Since PVM uses the Remote Shell
protocol (RSH) (native for the UNIX operating system),
some adaptations in the environment were needed to run
under Windows 2000.

The first experiments are aimed at discovering how the
number of sequences affect the performance of the system,
as a function of the number of hosts available for processing
the Pairwise-score module. It should be noted that a minimal
system comprises 2 hosts: the Master and one Slave, because
the former does not process (just manages) and the latter does
not process without the first. In this experiment, the number
of sequences to be aligned (Nseq) was varied between 40 to
800, and the length of profiles were arbitrarily fixed in 1200
columns. Processing time was recorded for 2, 3 and 4 hosts.
Figure 2 shows how the use of parallel computation speeds
up the process, by using 3 and 4 hosts, relative to a basic
2-hosts system.

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000

N

T
im

e
[s

]

Fig. 2. Processing time of Pairwise-score as function of the number os
sequences, for 2 hosts (upper line), 3 hosts (middle line) and 4 hosts (lower
line).

The next experiments investigated how the processing
time is affected as the number of sequences per profile
grows. Again, the length of profiles were arbitrarily fixed in
1200 columns and the number of sequences in each profile
was changed between 20 and 1000. The results for this
experiment is shown in figure 3, where N is the number
of sequences per group to be aligned. The time needed by

2845

the parallel process using two hosts besides the Master was
about the same as when using one host and the Master (lower
line in figure 3).

0

50

100

150

0 200 400 600 800 1000

T
im

e
[x

 1
00

0
s]

N

Fig. 3. Processing time of Din2 as function of the number of sequences
per profile, using only the Master host (upper line) and using one or two
hosts besides the Master (lower line).

The next experiments investigated how the processing time
was affected as the length of the profiles grow. For these
experiments, the length of both profiles were changed and the
number of sequences per profile was kept constant in 50 (that
is, two profiles of 50 sequences each were aligned at a time).
Profiles used in this experiment come from the previous step
of the multiple sequence alignment process, and so, they do
not represent the final alignment. Results are presented in
figure 4, for profile lengths in the range 50 to 2500. This
figure shows the time needed by the sequential process, and
the time needed by the parallel process simulated in a single
host.

0

500

1000

1500

2000

500 1000 1500 2000 2500
Profile Length

T
im

e
[s

]

Fig. 4. Processing time as function of the length of profiles, running
sequentially (upper line) and simulating parallel processing in a single host
(lower line).

IV. DISCUSSION AND CONCLUSIONS

We have proposed a methodology for parallelizing a
multiple sequence alignment algorithm using a network of

PCs. This system self-adjusts to the number of available hosts
(from one to three), managing all necessary operations for
the global alignment of sequences.

For a small number of sequences to be aligned (say,
<200), there is no significant difference between parallel
and sequential processing. The same holds for profile length
and number of sequences per profile. This is due to the
communication overhead between hosts, necessary for data
and control flow. For all experiments, as the size of the
problem increases (that is, the number os sequences, or
length of profiles), the difference in performance along the
number of available hosts become more significant. A deeper
analysis of this performance reveals that this improvement
by using the parallel algorithm can achieve almost 50% of
speed-up, when compared with the sequential processing.
In fact, the speed-up does not grows monotonically as the
problem size grows.It displays a asymptotic behavior, tend-
ing to a maximum gain of around 50%. Future investigation
will address this issue. Furthermore, curves shown indicate
that running the algorithm with three hosts, the processing
time tends to grow polynomially as the size of the problem
increases (complexity analysis is not shown here). This is a
remarkable fact, since for large-scale problems, processing
time can become prohibitive.

Multiple sequence comparison by alignment is an impor-
tant, and still opened question, in computational biology. We
believe that the proposed algorithm is a useful contribution to
the area of research. In the next future we intend to do more
extensive experiments and put the system freely available for
research purposes.

REFERENCES

[1] A.R. Leach, Molecular Modelling: Principles and Applications, 2nd

ed. Prentice-Hall, Dorset, 2001.
[2] L. Wang and T. Jiang, On the complexity of multiple sequence

alignment, J. Comp. Biol., vol. 1, 1994, pp. 337-348.
[3] D.G. Higgins and P.M. Sharp, CLUSTAL: a package for performing

multiple sequence alignments on a microcomputer, Gene, vol. 73,
1988, pp. 237–244.

[4] A. Geist, A. Beguelin, J. Dongarra et al. PVM - Parallel Virtual
Machine, MIT Press, Cambridge, 1994.

[5] Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTALW: improving
the sensitivity of progres-sive multiple sequence alignment through
sequence weighting, position specific gap penalties and weight matrix
choice, Nucl. Ac. Res., vol. 22, 1994, pp. 4673-4680.

[6] M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge
University Press, New York, 1983.

[7] N. Saitou and M. Nei, The neighbor-joining method: a new method
for reconstructing phylogenetc trees, Mol. Biol. Evol., vol. 4, 1987,
pp. 406-425.

[8] T.F. Smith and M.S. Waterman, Comparision of bio-sequences. Adv.
Appl. Math., vol. 2, 1981, pp. 482-489.

[9] S. Henikoff and J.G. Henikoff, Amino acid substitution matrices from
protein blocks, PNAS, vol. 89, 1992, pp. 10915-10919.

2846

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

