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Abstract.Amongst the many problems in logistics, there is the Capacitated Vehicle Rout-
ing Problem – CVRP. This problem is present in many daily activities such as garbage
collection, mail delivery, school bus transportation. CVRP includes not only the opti-
mization of a path, but many of them simultaneously, since a fleet of evenly-capacitated
vehicles have to deliver goods to geographically-distributed customers with variable de-
mand, travelling the least distance as possible. This paper presents the first results of
an ongoing project, related to the implementation of an Ant Colony Algorithm for the
CVRP. This heuristic method is inspired in the behavior of real ants in the search for
food. We devised a two-level optimization scheme so as to accomplish both global and
local optimization. We applied the system to several benchmark instances of CVRP and
the results obtained so far were very promising. Further work will include more tests to
find optimized running parameters as well as experiments with other instances.
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1. INTRODUCTION

In both Engineering and Computer Science, there are many problems for which there
is no deterministic algorithm to find a solution or, when it is available, it is computation-
ally inviable. Hence, assuming that an approximated solution is acceptable (according
to a given satisfiability criteria), a wide range of possibilities is opened, based on new
paradigms. The quest for computational methods that are, at the same time, simple (easy
implementation), robust (good performance for many different instances of a problem),
flexible (useful for many different problems) and efficient (capable of finding satisfactory
solutions) have gained focus in the research community related to engineering, operations
research and computer science. Consequently, many heuristic methods of optimization
have appeared and gained widespread usage. Amongst them, there are those based on
Evolutionary Computation (B̈ack et al., 2000) and Swarm Intelligence (Bonabeau et al.,
1999).

Around a decade ago, a new heuristic method for search and optimization has emerged.
This method was created by Dorigo and coleagues (Dorigo and Gambardella, 1997;
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Dorigo and Sẗutzle, 2004) and is based on an analogy with the way real ants establish a
trail between the nest and a food source. This method, known as Ant Colony Optimization
(ACO), belongs to a group of heuristic techniques collectively known as Swarm Intelli-
gence. ACO has been successfully applied to a number of complex real-world problems,
such as: data mining (Parpinelli et al., 2002; Tsai et al., 2004), bioinformatics (Perretto
and Lopes, 2005), combinatorial optimization (Bu et al., 2004) and several problems in
logistics (Silva et al., 2003; Dorigo and Stützle, 2004).

Amongst the many problems in logistics, there is the multiple vehicle routing prob-
lem. A particular case of such problem is when vehicles have a limited capacity (Toth
and Vigo, 2001). This problem is present in real-world organizations, such as hauliers
and goods distributors. There are many daily tasks that can be modelled as this kind
of problem, for instance: trash collection, school transportation and mail home delivery.
This problem includes not only the optimization of one path, but many of them at the
same time. In general, the task begins with a set of stop point that must be visited (con-
sumers). By using some methodology, such set of points is divided into subsets, each
one corresponding to a complete path. Next, the set of points for each path have to be
ordered in such a way that the total travelled distance is minimized. The final objective is
to minimize the sum of all travelled distances over all paths.

2. ANT COLONY OPTIMIZATION

The ACO (Dorigo and Stützle, 2004) heuristics is a distributed and cooperative search
method that imitates the behavior of real ants in its the search for food. The observation
of such behavior inspired the development of this optimization algorithm.

Basically, the ACO replicates the way ants promptly establish the shortest path be-
tween the nest and a food source (Bonabeau et al., 1999). Ants begin the search for food
randomly around the nest. As they move, a chemical compound, named pheromone, is
dropped to the ground over the path. The deposit of pheromone creates a trail and serve
as an indirect way of communication between ants. Such mechanism is known as stig-
mergy. When a food source is found, the ant takes the food and returns back to the nest,
leaving pheromone in the return path. Other ants that are randomly walking are attracted
by this pheromone trail in the proportion of the amount deposited (and not evaporated
yet). By following the trail, ants deposit even more pheromone. The larger the amount
of pheromone, the larger the probability of the trail to be found (and followed) by other
ants. However, there is also a small probability of an ant doesn’t follow an attractive
pheromone trail along all its extension. A small detour may cause a new trail that can
(or cannot) be shorter than the former. Another ants can detect this new (shorter) trail
and follow it. Pheromone continuously evaporates. Once the pheromone level falls down
under a threshold, ants are not influenced to follow the trail. Therefore, if a trail is not
used for a time, it tends to disappear. This autocatalytic phenomenon of positive feedback
is the key point for establishing the shortest path from nest to food source (Beckers et al.,
1992).

Based on this behavioral mechanism, the ACO (Dorigo and Stützle, 2004) was de-
veloped to solve combinatorial problems, making artificial ants search the shortest path
(smaller cost) in the search space of problem’s solutions. An adaptive memory simulates
the pheromone trails by means of graphs, and a fitness function measures the quality of
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the solutions found as an analogy to the distance between food source and nest.

3. THE TRAVELLING SALESMAN PROBLEM AND VEHICLE ROUTING

The Travelling Salesman Problem (TSP) is a classical problem in Computer Sci-
ence/Operations Research, and can be stated as follows. Given a set of fully intercon-
nected cities, the traveller must visit all of them and return to the starting point, visiting
any city only once and making the tour the smallest as possible. Figure 1 presents a sim-
ple instance of TSP with five cities (ABCDE), represented by a graphG(V,E), in which
each vertex (or node)vi ∈ V represents a city, and each edge (or arc)eij ∈ E represents
a path between a pair of cities. In this figure, a possible tour would beABCDEA, at a
cost of 12 length unities. Such cost is the sum of the weights of the edges of the corre-
sponding graph of the tour. Notice that it is possible to find another tour of smaller cost,
for instance,ABCEDA with cost 11.

Figure 1: An example of symmetric TSP with five interconnected cities.

The problem of vehicle routing is a central issue in distribution logistics. In particular,
the Capacitated Vehicle Routing Problem – CVRP can be defined as follows. Departing
from a central depot (for some instances there are several depots), a number of consumers
must be served with different demands of a single product, by means of a fleet of vehicles
of finite and equal capacity. It is aimed to find the set of tours of minimal cost (trav-
elled distance) that satisfies demands of all customers (Toth and Vigo, 2001). The basic
constraints in this problem are:

• each customer is served only once by only one vehicle;

• the total demand covered by a vehicle cannot exceed its capacity;

• all individual tours begin and ends at the central point (depot);

• the total distance travelled in a tour cannot exceed the limited vehicle’s autonomy.
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Figure 2 shows an example of CVRP with a central depot and 10 customers. In
this example, to supply demand, three tours are enough (dashed lines). Tours depart
from depot, visit some cities and return to the depot, with the smallest possible distance
travelled.

Figure 2: An example of CVRP with a central depot, 10 consumers and three tours.

The CVRP isNP -hard (Lenstra and Rinnooy Kan, 1981), since it contains one or
more TSP as subproblems. Obviously, a CVRP is more difficult to solve than a TSP,
because it requires a two-level solution. First, it is necessary to find which consumers will
be aggregated in tours (without knowinga priori the minimum number of tours). Second,
for each tour, it is necessary to find the permutation of customers that will represent
the shortest path. Generally speaking, the first level can be understood as a bin-packing
problem, while the second, as a TSP.

Formally, the CVRP can be defined as follows. Given a directed graphG(V,E),
whereV is the set of verticesV = {v0, v1, . . . , vn} andE is the set of edgesE = {eij},
whereeij = edge(vi, vj)∀vi, vj, i 6= j. Considering the depot located atv0, we haveV

′
=

V − {v0} as the set of destinations (customers). To each vertexvi ∈ V
′
, an associated

valuedi ∈ < represents its demand. For each edgeeij ∈ E there is an associated cost
cij corresponding to the distance between verticesvi andvj. For a given vehicleXi with
load capacityCx, vectorRXi contains the set of segments compounding the tour of this
vehicle – that is, the set of customers served by vehicleXi. The solution for the CVRP is
the set of vectorsRXi for which the sum of costs of the tours is minimal.

4. METHODOLOGY

The proposed algorithm divides the CVRP in two levels. At the first level, ants search
for a set of tours. Each ant works as if it was the whole fleet. That is, each ant establishes
several independent tours, and the set of tours cover all consumers. At the second level,
each tour is submitted to a new population of ants which, in turn, runs the original ACO
algorithm for the TSP (Dorigo and Gambardella, 1997). At this level, the algorithm is run
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for a fixed number of cycles (in our experiments, 20 cycles), aiming at a local optimization
of the tour. The two-level process is repeated until a stopping criterion is met, in our case,
a fixed number of optimization cycles. In the final cycle, the best ever solution found is
submitted to 100 iterations of the ACO/TSP, for a final fine-tuning of the solution.

Since the second level is reduced to a TSP for each isolated tour, from the conceptual
point of view, this methodology balances global exploration (distribution of consumers
in tours, satisfaction of constraints) and local exploitation (minimizing tours). This two-
level strategy is consistent with the way the CVRP is described. In this sense, our work
is similar to the approach of (Bullnheimer et al., 1997), but they differ in the way trails
are created by ants. In the same way, our work is different from (?)bell2004) in the
way the ACO is structured to deal with the problem. Also, (Gambardella et al., 1999)
have developed a multiple ant colony system for a more complex version of the CVRP.
Their approach used two ant colonies to optimize a multiple objective function: the first
colony minimizes the number of vehicles while the second colony minimizes the travelled
distances.

4.1 Trail and tour construction

Following the basic idea of the ACO paradigm (see section 2.), ants construct pher-
omone trails iteratively, first constructing valid tours and, then, complete solutions. As
soon as an ant obtains a solution (set of tours), a given amount of pheromone is granted
to this solution. This amount of pheromone (τ ) is inversely proportional to the cost of the
complete solution (S), according to equation 1:

τ(S) =
u

c(S)
(1)

where:u is the unit amount of pheromone to be deposited on a trail, andc(S) is the cost
of the solutionS, given by the sum of the Euclidean distances between points of ther
permutations (P ) that defines the set of tours of the solution.

For thei-th tour of the solution (i = 1..r), the amount of pheromone deposited is
defined as a product of two terms: the proportion of pheromone by the cost of the tour,
and the proportion of demand serviced by this specific tour, according to equation 2:

τ(Ti) =
τ(S).D

c(Ti)
(2)

where: τ(Ti) is the amount of pheromone deposited throughout the tourTi; c(Ti) is the
cost of tourTi; andD is the demand serviced, proportional to the total demand. Therefore,
the pheromone deposited is inversely proportional to its distance and directly proportional
to the demand serviced. Consequently, for each pair of nodes (i, j) of the graph, there will
be an associated amount of pheromoneτij contributed by all ants of the colony.

Time is discrete and corresponds to the steps of ants. Ants move collectively on
the tour paths and, after each iteration, the network of tours is updated accordingly.
Pheromone evaporates as a function of time, according to an user-defined parameter.
Therefore, at the end of a cycle, pheromone trails are updated according to the previ-
ous equations and decremented according to the pheromone evaporation rate. Another
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user-defined parameter, the residual pheromone, defines minimum value of pheromone to
be perceived by an ant. Once the pheromone level falls down under such threshold, the
trail does not attract ants anymore.

In the first cycle, when there is no pheromone trail, ants choose the next step (cus-
tomer) at random. In the remaining cycles, once an ant is at a given node of the graph,
it chooses another unvisited node taking into account both the accumulated experience
(given by the pheromone trail,τ ) and an heuristic term depending on the cost of the tour.
This approach follows the method proposed by (Perretto and Lopes, 2005). When antk
is at nodei, the probability that nodej is chosen to be added to the current partial tour is
given by equation 3:

pk
ij =

(τij)
alpha.(1/cij)

beta

∑
i,j∈Ti

{(τij)alpha.(1/cij)beta} (3)

where:τij is the amount of pheromone in the edge between nodesi andj, Ti is thei-th
tour,cij is the cost of edgeij, alpha andbeta are user-defined constants.

Only unvisited nodes are considered for the next step of an ant, thus avoiding the
construction of invalid tours. Parametersalpha andbeta of equation 3 follows the ter-
minology proposed by (Dorigo and Stützle, 2004), and control the amount of global and
local exploration, respectively. In words, these parameters weights the probability of an
ant to choose the next customer, when at a given point of the tour, considering the amount
of pheromone already in the tour (alpha) or the inverse of the distance to be travelled to
reach the customer (beta).

The capacity of the vehicle is not checked when the tour is being constructed. This
may lead to unfeasible solutions. However, due to the nature of the ACO algorithm, a
given unfeasible solution can evolve to a feasible solution in few cycles, as the pheromone
trails are updated.

4.2 Implementation

The system was developed using Java and, therefore, it is compatible with many
different platforms. The system accepts as input, text files in the format usually available
in benchmarks. Such files have information about the instance (e.g., dimension, maximum
number of vehicles, vehicle’s capacity, etc), a section with the Euclidean coordinates of
consumers, a section with the consumers’ demands and a section with the depot location
(the current version of the system works with single-depot instances).

An user-friendly interface shows a dynamic map with customers, depot and current
tours created by ants, as shown in figure 3. This interface allows user to follow the evolu-
tion of the solution, as well as to interrupt the run and change control parameters. User can
set the following control parameters of the ACO: pheromone evaporation rate, maximum
number of unity pheromone deposited in a given tour, percent of residual pheromone,
alpha andbeta, number of ants, and drawing scale. User can also access the name of the
file under execution and the total cost of the best solution found up to the current iteration.
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Figure 3: User interface of the developed ACO-CVRP system.

5. COMPUTATIONAL EXPERIMENTS AND RESULTS

To evaluate the proposed system, several instances of CVRP were used. Such in-
stances were previously used as benchmark for other published works and are available
in the Internet1. Table 1 shows details of the instances used. For each instance, the
number after “n” represents the problem dimension (the total number of customers to be
served), and the number after “k” represents the maximum number of vehicles to be used
for serving customers. The initial letter relates to the authors who first introduced these
benchmarks, respectively, “A”, “C” and “F”, for (Augerat et al., 1998), (Christofides and
Eilon, 1969) and (Fisher, 1994).

For each instance, many experiments were run, so as to evaluate the performance
of the system under different sets of control parameters. For the results reported here,
the following parameters were used for all instances: number of cycles: 500,alpha=10,
beta=1, number of pheromone unities dropped: 10. Other parameters were changed in
the following ranges: pheromone evaporation rate: 0.15-2.0, number of ants: 40-250.

It is worth to note that parametersalpha andbeta were adjusted empirically in such
a way to favour global exploration relative to local exploitation, in a 10:1 relation. When
the algorithm was run with small values foralpha (relative tobeta), we observed that
convergence was too fast and towards low quality solutions. This phenomenon occurred
even if we compensate with a decrement in the unity amount of pheromone deposited or
even with an increment in the evaporation rate. Possibly, the reason for this behavior is in
the way the system was conceived, in two levels of optimization.

In table 1, we show the best results found by our system, as well as the best known
solution. In this table, column “Difference” represents the relation (in percent) between
the best solution found and the best known solution.

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/vrpand
http://neo.lcc.uma.es/radi-aeb/WebVRP/data/instances/Augerat
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Table 1: Test instances used in the experiments and results obtained by the proposed ACO.
Instance Optimum Best result Difference (%)
A-n32k5 784 798.29 1.82
A-n37k6 949 984.24 3.71
A-n53k7 1010 1043.13 3.28
A-n60k9 1408 1420.43 0.88
A-n80k10 1764 1886.13 6.92
E-n101k8 825 899.13 8.98
F-n135k7 1165 1234.42 5.96

The best solutions found for two instances are shown in figures 4 and 5. These
instances are those for which our system obtained the best (0.88% above the optimum)
and the worst (8.98% above the optimum) performance. The remaining solutions found,
as well as the visual comparison between solutions found and the optima, are not shown
here due to space limitations.

Figure 6 shows the evolution curve of the algorithm for two instances, A-n60k9 and
E-n101k8. It can be observed that the convergence is fast in the beginning of the run
and, later, it slows-down, reflecting some stagnation. Even so, some improvement can
be obtained by means of the local search performed at the second level. The reason for
the fast convergence is that, in the beginning of the process, there is a high probability
of finding a shorter tour (than the one currently found) by an ant, since there are many
alternative tours to be explored. Therefore, even considering the stochastic behavior of the
algorithm, convergence will takes place fast in the first cycles. As the iterations increase,
and the current “best” solution is improved (towards the global optimum), and the number
of changes in the tour that can lead to some improvement decreases. Consequently, the
probability that a random choice of an ant takes to some improvement, reduces very fast.

The use of ACO to optimize the TSP level, that is, the individual tours of each vehicle,
promoted a small, although important, improvement. Although during evolution it is
not possible to distinguish clearly the effect of such improvement, we believe that this
procedure was essential to allow the algorithm to escape from most local optima. Also,
at the end of the run, one can see some small improvement – see, for instance the plot of
figure 6. This suggests, at least, that local search can be useful for fine-tuning the best
solution found during run.

6. CONCLUSIONS AND FUTURE WORK

This work presented the application of the Ant Colony Optimization heuristic to a
relevant problem in logistics, the capacitated vehicle routing problem. The proposed ap-
proach divides the problem in two levels of optimization. First, ants search for interesting
tours, by dividing the set of customers into groups. Next, each individual tour is optimized
as a travelling salesman problem.

The system was applied to a benchmark of 7 CVRP instances, with 32 to 135 cus-
tomers (n) and 5 to 10 vehicles (k). Results obtained were very promising for a heuristic
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Figure 4: Best solution found for instance A-n60k9.

Figure 5: Best solution found for instance E-n101k8.
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Figure 6: Evolution curve of the ACO for two CVRP instances: A-n60k9 (left) and E-
n101k8 (right).

method, considering that no serious effort was done to optimize control parameters of
the ACO. We observed that the control parameters have a very significant influence in
the performance of the algorithm. Depending on how they are set, the algorithm can be
taken to stagnation in few iterations. Future work will include a sensitivity analysis of the
running parameters using more instances, so as to determine an optimized set of control
parameters. Also, it would be interesting to investigate a self-adaptive strategy, similar to
that of (Maruo et al., 2005), in order to release user of setting parameters in advance and
adjusting them during the evolutionary search.

Based on the experiments reported here, it was not possible to identify a clear rela-
tionship between the size of an instance (that is,n andk) and the hardness for finding sat-
isfactory solutions. However, as expected, the quality of the solutions found is inversely
proportional to the size of the instance.

In general, results suggest that the proposed methodology is viable and efficient for
tackling with the CVRP. This project shall be continued towards the improvement of the
algorithm. Future research will include modifying the algorithm in such a way that each
ant simulates a single vehicle. Hence, a population ofk ants would represent the fleet
of k vehicles. We suppose that with this approach the way cities are selected for the
tours will be more efficient, and thus leading to better solutions. Another direction to be
investigated could be to emphasize the first level of optimization with ACO and leaving
the second level for an exhaustive search. This proposal is based on the fact that the
individual tours are often small, thus justifying an enumerative method (at expense of a
large computational cost) that guarantees the optimal tour. For the second level, methods
such branch-and-bound could be also considered.
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