
A hybrid particle swarm optimization model for the traveling salesman
problem

Thiago Rogalsky Machado, Heitor Silvério Lopes *

Laboratório de Bioinformática /CPGEI, CEFET-PR
Av. 7 de setembro, 3165 – 80230-901 Curitiba (PR), Brasil

e-mails: {tmachado, hslopes}@cpgei.cefetpr.br

* Corresponding author.

Abstract
This work presents a new hybrid model, based on Particle
Swarm Optimization, Genetic Algorithms and Fast Local
Search, for the blind traveling salesman problem. A detailed
description of the model is provided. The implemented
system was tested with instances from 76 to 2103 cities. For
instances up to 299 cities, results are less than 1% in excess
of the known optima. In the average, for all instances, results
are 3.8317 % in excess. These excellent results encourage
further research and improvement in the hybrid model

1 Introduction
This paper presents a new hybrid model for the
traveling salesman problem (TSP). The proposed
model is based on the Particle Swarm Optimization
(PSO) [1,2] heuristics and uses concepts of Genetic
Algorithms (GA) [3] and Fast Local Search (FLS) [4].
From PSO, the model uses local maximum, global
maximum and swarm movement. From GA, we used
the representation of the solution as a numerical vector
and the order crossover for moving particles across the
discrete search space. FLS is used to improve solutions
found during the search, by evaluating points close to
each particle.

2 Particle Swarm Optimization
PSO is a heuristic method for optimization proposed by
Eberhart and Kennedy [1,2], and is inspired in the
behavior of social agents. In nature, this behavior can
be observed in bird flocking, bee swarming, and fish
shooling, for instance.
The computational model is population-based, where
agents, called particles, change their position (state) in
the multidimensional search space of the problem,
according to own experience and the influence of the
neighboring particles. Each particle has a limited store
capability, keeping track only of information about its
current position, speed and quality (fitness regarding
the other particles), as well as its best position ever
visited (best local solution – BLS). Amongst the swarm
of particles, the one with best quality is referred as “the
best global solution” (BGS). At each time tick,
particles move, influenced by both BLS and BGS, to a

new position in the search space. This is an iterative
process, repeated until a stop condition is met, usually
a predefined number of iterations. BGS is updated
whenever a better solution than the previous is found.
This procedure is similar the principle of elitism,
common to most GA applications, since throughout
iterations the best solution is conserved. Although,
there is a subtle difference: BGS is a reference for all
particles in the same iteration (in GA, this would be
similar to say that all individuals would mate with the
best individuals). BLS is used only by a particle itself,
not sharing this information with other particles.
It is interesting that BLS would be a point with good
fitness but it would be better if this point is far enough
from the BGS to improve diversity. In population-
based heuristics diversity maintenance throughout
iterations is often a challenge, but it is a necessary
condition to assure a satisfactory exploration of the
search space. In PSO, when many BLS’s are somewhat
close to the BGS, there will be a particle crowding and
the search stagnates. A mechanism to avoid the
consequences of this unavoidable convergence will be
described later.
In the classical PSO model, the movement of a particle
is defined by Equation 1, where its next position (Xi+1)
is updated using the current position and a speed term
(Vi).

iii VXX +=+1 (1)

In fact, the speed term actually does not have the
dimension of velocity. It could be better defined as ∆Xi
but, for the sake of simplicity, it is called speed (Vi) [2].
The speed term is defined according to Equation 2:

dBGSrcdBLSrcVi 2211 += (2)

where: Vi is the current speed of particle i; r1 and r2 are
random values in the range [0..1]; c1 and c2 are the
weight of BLS and BGS, respectively (in percentage);
dBLS and dBGS are the distance between the current
position and BLS and the current position and BGS,
respectively.
The speed term, that is, the updating rate of the current
position, is directly proportional to the distance
between the current position to BLS and BGS.
Therefore, within few iterations the particle will be
attracted to either BLS or BGS. The speed term

hslopes
In: B.Ribeiro et al., Adaptive and Natural Computing Algorithms. Wien: SpringerWienNewYork, pp. 255-258, 2005.

controls the amount of global and local exploration of
the particle (that is, the balance between exploration
and exploitation). A high speed facilitates global
exploration, while small speed will encourage local
search. A user-defined upper bound (Vmax) is
established to limit the maximum speed of particles.
As mentioned before, when particles agglutinate, a
mechanism is necessary to avoid stagnation, and the
crowd is dissolved by an explosion, repositioning all
particles randomly in the search space. However, they
do not lose the information of BLS and BGS. A
variation of the classic PSO uses “mass extinction” [5],
where the population of particles becomes extinct at
regular time intervals. In our model, particle
agglutination is treated in a similar way, and will be
explained later.

3 Genetic Algorithms
A Genetic Algorithm (GA) is a search and optimization
heuristic based on the Darwinian principle of the
species evolution, where individuals better fitted to the
environment are able to survive longer and propagate
their genetic material to more descendants. A GA is
also a population-based method with individuals that
represent a possible solution for the problem. The
genetic load is usually represented by a string of
elements (genes). Individuals of a population are
chosen according to their quality (fitness) to reproduce.
Reproduction takes place by means of the application
of genetic operators (crossover and mutation, for
instance) to the selected pool of individuals, creating a
new population. In particular, crossover is a genetic
operator responsible for fostering local search,
recombining pieces of two (or more) individuals. For
permutation problems in combinatorial optimization,
many crossover operators were proposed (see [3], for
instance). In this work we used a strategy inspired on
the Order crossover (OX). This operator works as
follows: given two individuals, their genetic material is
aligned and two random cut points are selected. The
region of the chromosome between these two cut points
is called matching section and will be exchanged
between individuals. The remaining genes are mapped
according to the matching section and are submitted to
a sliding motion, so as to fill up the entire chromosome.
In section 6 it will be explained how OX is used in our
hybrid model.

4 Fast Local Search (FLS)
The FLS algorithm [4] an enhanced local search
procedure, also known as fast hill climbing. Although
FLS can achieve similar results than the classic hill
climbing (or neighborhood search), it is more efficient,
concerning processing time. The main characteristic of
FLS is the use of an activation bit for each position of
the of the current solution vector. At the initial
iteration, all bits of the binary activation vector are set

to 1. Whenever two points are selected, the
corresponding bits are reset. From the second iteration
on, only the bits corresponding to permutations of
higher fitness (than the previous one) are kept set. This
way, the number of permutations is greatly reduced,
since changes occur only for those positions where the
corresponding bit is set.

5 Traveling Salesman Problem
The TSP is a classical problem of combinatorial
optimization and its modeling is of great interest for
Computation and Engineering. For solving TSP, many
methods have been proposed, including heuristic ones
[3,4,6,7,8]. The simplest TSP considers a set of
interconnected cities with symmetric distances between
two points. The problem is to find the shortest path for
visiting all cities passing only once at each point and
returning to the initial city. There are many other
variations of the problem, such as asymmetric distances
between cities, capacitated vehicles, fuel/depot points
with mandatory passing, time-windows restrictions,
and so on. The blind TSP (BTSP) allows the starting
point to be in any city and it is defined by a symmetric
distance matrix between cities D=[dij] which gives the
distance between cities I and j. A tour (t) can be
represented as a cyclic permutation [4]. Let j be the
next city visited after city i, in tour t. The cost of a tour,
defined in Equation 3, represents the total distance
traveled, where NC is the number of cities.

∑
=

=
NC

i
ijdtg

1

)((3)

In the TSP library (TSPLIB), at the Internet1, it is
available a large collection of instances previously used
as a benchmark. Those instances are used for
evaluating performance of computational methods,
since the optimal tours are always known.

6 Methodology
The hybrid model proposed in this work can be defined
as a discrete PSO that uses explicit local search and
concepts from GA. The original PSO was devised to
cope with a continuous rather than discrete search
space. Therefore, some adaptations were necessary.
The hybridism of our model can be considered strongly
coupled, since the GA characteristic appropriated to
deal with the permutation problem (operator OX)
embodied in the model. In contrast, Shi et al. [9]
present a loosely coupled model, where two different
subsystems (GA and PSO) share only the final results.
The fusion of concepts from different paradigms in our
work can also be found elsewhere, such as [10], where
all components of the model interact in the same
context, with mutual dependency.

1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/

6.1 Initial swarm and particles
In our model, each particle represents a possible
solution for the BTSP (a complete tour). A given
particle is composed by the following information:
current position (CP), BLS, current speed (Vi), current
fitness of the particle (Cfitness) and fitness of BLS
(Mfitness). Besides the particle-related parameters,
other global parameters are defined: maximum number
of iterations (Nmax), number of particles (Np), minimum
distance for computing fitness (Dmin), number of cities
of the problem (NC), and matrix of distances between
cities (D=[dij]). Parameter NC determines the size of
vectors used in CP, BLS and BGS. The distance matrix
is generated using Euclidean coordinates in the plane
as default.
Fitness is computed by dividing Dmin by the cost of the
tour represented by the current solution,. Considering
the instances used in this work, Dmin is set to the
optimal value of the tour and, therefore, fitness values
represent the excess of distance relative to the known
optimum for the instance. When the value of optimum
tour is not known, Dmin can be set to 1. Therefore,
fitness is always inversely proportional to the cost of
the tour, as in a minimization problem.
The swarm represents a population of particles and, at
the startup, Np particles are generated (usually 20 ≤ Np
≤ 50). For each particle i, Vi is randomly initialized,
respecting Vmax and the vector CP is set with a
random, but valid, tour. For the first iteration, BLS
receives the value of CP. All just generated particles
will be in different points of the search space, and all of
them will have different values for CP. This represents
a good diversity for the initial population. Next, the
fitness of each particle is computed. The BGS and its
fitness receives the corresponding values of the first
generated particle and are updated as soon as any other
particle is better than the previous stored value.
The speed term of Equation 1 requests two parameters:
dBLS and dBGS. In the classic PSO, those parameters
are continuous. Therefore, the distance between
particles is calculated as the value of BLS or BGS
decreased by the CP value. However, in the BTSP,
each position of the search space represents a complete
tour (a vector of cities), thus requesting a new method
to compute the distance between particles, inspired on
the Hamming distance. Given two particles “A” and
“B” representing a tour, the distance between them is
computed comparing vectors departing from a common
city (point zero). Initially, the distance is null and, for
each position of the vector the corresponding values
are compared. Whenever they are different, the
distance is incremented by 1. In this way, the maximum
distance possible will be exactly equal to NC. This
computation may require a previous adjustment in one
of the vectors: it will be slid circularly until the initial
point of both vectors is the same. This last procedure
creates a new vector B’, but does not changes the

encoded information about the tour (recall that it refers
to a BTSP).

6.2 Diversity and movement
In every iteration, the average distance between
particles and the BGS is calculated. If this value is 5%
lower than NC (recall how the distance between
particles is computed), agglutination is characterized
and the swarm is exploded, as mentioned before. Also,
it is possible to have agglutination around the BLS of a
particle. In this particular case, all surrounding particles
will have its BLS value changed to a random value.
This procedure simulates a local explosion of the
swarm.This diversity maintenance procedure does not
affect the original number of iterations and is essential
for an efficient exploration of the search space.
The movement of particles is based on Equations 1 and
2 and the OX operator that recombines two possible
solutions. The OX operator is adapted as follows: only
one cut point (P1OX) is randomly chosen and it is the
same for the two particles. The second cut point
(P2OX), necessary to define the matching section, is
found traversing circularly S-1 positions of the solution
vector (tour represented by the particle). Operator OX
is applied to two sets of vectors: CP and BLS, and CP
and BGS, and the number of positions of the matching
section for each operation given by Equations 4 and 5,
where c1 and c2 are the same parameters of Equation 2.

idMSL VcS *1= (4)

idMSG VcS *2= (5)

This procedure generates new temporary solutions that
are evaluated according to their fitness. The solution
with best fitness will be considered the new CP of the
particle. The concept of speed in this work is the same
as in the classical PSO, and determines the level of
exploration of the search space by the particles. As
usual, after a particle has been moved in the search
space, its BLS is updated accordingly. An iteration is
defined by the movement of one particle and, after each
iteration BGS is updated, if necessary.

6.3 Local search with FLS
Refinement of solutions takes place together with the
search process. This refinement is accomplished by a
local search, exploring positions (of the search space)
surrounding to a given reference particle by means of
the FLS strategy. When two points of the activation
vector are selected the changes in the solution vector
(tour) is done using the 2-opt heuristics [7]. That is, the
sub-tour defined by these two points is inverted leading
to a different tour, but preserving its structure. This
newly created solution is stored in a temporary
memory. The remaining bits set of the activation vector
are browsed two-by-two and the same procedure as
above is repeated. As result, the temporary memory
holds several variations descendent of the current

solution. The best of them substitutes the current
particle and the remaining is discarded.
The 2-opt heuristics alone is not efficient [7], but its
combined use with FLS in our hybrid model can
enhance efficiency of the search, especially when the
problem has many local maxima.

7 Results
Preliminary tests were done exhaustively to adjust the
parameters of the model to maximum performance,
considering accuracy and processing time. These tests
used two instances (pr76 and pr299), and the
parameters shown in Table 1 were those that produced
the best results. In that table, the parameter “FLS rate”
is the probability of using local search in a given
iteration. Further tests were done using the following
instances of the blind TSP found in the TSPLIB: pr76,
rat195, pr299, pr439, d657, pr1002, d1291 and d2103,
for which the number cities ranges from 76 to 2103.
The model was implemented in ANSI C programming
language and tests were run in a PC-clone computer
with Athlon XP 2.4 processor and 512 Mbytes of
RAM. Results are presented in Table 2, where
“Excess” represent how far is the solution from the
known optimal value. Each value of this column is, in
fact, the average of 100 independent runs. Considering
all nine instances, the average excess was 3.8317%.

Table 1: Initialization parameters for all problems.

Parameter Value
Number of particles 20
Number of iterations 1200
C1 0.7
C2 0.3
Vmax 70% of the # of cities
FLS rate 0.15

Table 2: Results obtained for several instances.

Problem # of cities (%) Excess
pr76 76 0.0000
rat195 195 0.9834
pr299 299 0.5900
pr439 439 2.9561
d657 657 3.8490
pr1002 1002 6.6992
d1291 1291 4.5811
rl1304 1304 3.2456
d2103 2103 7.7493

8 Discussion and conclusions
As expected, the quality of solutions found by the
proposed model decreases as the size of the problem
increases. For instances up to 299 cities, we obtained
average results less than 1% of excess, and the model
was able to find the optimum at least once (recall that
results shown is the average of 100 runs).
There are many models devised to solve TSP,
including those that use PSO [8,9]. For instance, Wang,
et al. [9] relates the application their model small

instances (up to 14 cities). Real-world problems usually
have a much larger dimensionality, for which more
efficient models must be used, such as the one here
proposed.
Hybrid heuristic models are interesting for hard
problems since they combine good quality features
from several techniques in a single paradigm. The
concepts of GA and FLS embodied in the PSO
paradigm have lead to a robust and efficient model,
therefore justifying the need for hybridism. Results can
be considered excellent for an heuristic method, when
compared with other similar methods in the recent
literature. It is worth to emphasize the use of FLS with
2-opt. This strategy has enhanced solutions found by
the algorithm, but at the expense of a larger, but
acceptable, computational cost.
Results encourage further work that will comprise the
study of a less expensive FLS, as well as other
strategies that could improve the model, such as GA’s
concepts of niches and species [3] and breeding and
subpopulations [10].

References
[1] Eberhart R.C., Kennedy J. (1995) Particle swarm
optimization. In: Proc. IEEE Int. Conf. on Neural Networks,
vol. 4, pp. 1942-1948
[2] Eberhart R.C., Kennedy J. (2001) Swarm Intelligence,
Morgan Kaufman, San Francisco
[3] Goldberg, D.E. (1989) Genetic Algorithms in Search,
Optimization & Machine Learning, AddisonWesley, Reading
[4] Voudouris C., Tsang E. (1999) Guide local search and its
application to the traveling salesman problem. European
Journal of Operational Research 113: 469-499
[5] Xie, X., Zhang, W., Yang, Z. (2002) Hybrid particle
swarm optimizer with mass extinction. In: Proc. Int. Conf.
on Comm., Circuits and Systems, pp. 1170-1173
[6] Pepper, J.W., Golden, B.L. (2002) Solving the traveling
salesman problem with annealing-based heuristics: a
computational study. IEEE Transactions on System, Man,
and Cybernetics, Part A: Systems and Humans 32: 72-77
[7] Verhoeven, M.G.A., Aarts, E.H.L., Swinkels, P.C.J.
(1995) A parallel 2-OPT algorithm for the traveling salesman
problem. Future Generation Computer Systems 11: 175-182
[8] Wang, K.P., Huang, L., Zhou, C.G., Pang, W. (2003)
Particle swarm optimization for traveling salesman problem.
In: Proc. 2nd IEEE Int. Conf. on Machine Learning and
Cybernetics, pp. 1583-1585
[9] Shi, X.H., Wan, L.M., Lee, H.P., Yang, X.W., Wang, L.
M., Liang, Y.C. (2003) An improved genetic algorithm with
variable population size and a PSO-GA based hybrid
evolutionary algorithm. In: Proc. of 2nd IEEE Int. Conf. on
Machine Learning and Cybernetics, pp. 1735-1740
[10] Lvbjerg, M., Rasmussen, T. K., Krink T. (2001) Hybrid
particle swarm optimizer with breeding and subpopulations.
In: Proc. of Genetic and Evolutionary Computation
Conference, pp.469-476

