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Abstract 
This work presents a new hybrid model, based on Particle 
Swarm Optimization, Genetic Algorithms and Fast Local 
Search, for the blind traveling salesman problem. A detailed 
description of the model is provided. The implemented 
system was tested with instances from 76 to 2103 cities. For 
instances up to 299 cities, results are less than 1% in excess 
of the known optima. In the average, for all instances, results 
are 3.8317 % in excess. These excellent results encourage 
further research and improvement in the hybrid model 

1 Introduction 
This paper presents a new hybrid model for the 
traveling salesman problem (TSP). The proposed 
model is based on the Particle Swarm Optimization 
(PSO) [1,2] heuristics and uses concepts of Genetic 
Algorithms (GA) [3] and Fast Local Search (FLS) [4].  
From PSO, the model uses local maximum, global 
maximum and swarm movement. From GA, we used 
the representation of the solution as a numerical vector 
and the order crossover for moving particles across the 
discrete search space. FLS is used to improve solutions 
found during the search, by evaluating points close to 
each particle. 

2 Particle Swarm Optimization 
PSO is a heuristic method for optimization proposed by 
Eberhart and Kennedy [1,2], and is inspired in the 
behavior of social agents. In nature, this behavior can 
be observed in bird flocking, bee swarming, and fish 
shooling, for instance.  
The computational model is population-based, where 
agents, called particles, change their position (state) in 
the multidimensional search space of the problem, 
according to own experience and the influence of the 
neighboring particles. Each particle has a limited store 
capability, keeping track only of information about its 
current position, speed and quality (fitness regarding 
the other particles), as well as its best position ever 
visited (best local solution – BLS). Amongst the swarm 
of particles, the one with best quality is referred as “the 
best global solution” (BGS). At each time tick, 
particles move, influenced by both BLS and BGS, to a 

new position in the search space. This is an iterative 
process, repeated until a stop condition is met, usually 
a predefined number of iterations. BGS is updated 
whenever a better solution than the previous is found. 
This procedure is similar the principle of elitism, 
common to most GA applications, since throughout 
iterations the best solution is conserved. Although, 
there is a subtle difference: BGS is a reference for all 
particles in the same iteration (in GA, this would be 
similar to say that all individuals would mate with the 
best individuals). BLS is used only by a particle itself, 
not sharing this information with other particles. 
It is interesting that BLS would be a point with good 
fitness but it would be better if this point is far enough 
from the BGS to improve diversity. In population-
based heuristics diversity maintenance throughout 
iterations is often a challenge, but it is a necessary 
condition to assure a satisfactory exploration of the 
search space. In PSO, when many BLS’s are somewhat 
close to the BGS, there will be a particle crowding and 
the search stagnates. A mechanism to avoid the 
consequences of this unavoidable convergence will be 
described later. 
In the classical PSO model, the movement of a particle 
is defined by Equation 1, where its next position (Xi+1) 
is updated using the current position and a speed term 
(Vi).  

iii VXX +=+1                           (1) 

In fact, the speed term actually does not have the 
dimension of velocity. It could be better defined as ∆Xi 
but, for the sake of simplicity, it is called speed (Vi) [2]. 
The speed term is defined according to Equation 2: 

dBGSrcdBLSrcVi .... 2211 +=                  (2) 
 
where: Vi is the current speed of particle i; r1 and r2 are 
random values in the range [0..1]; c1 and c2 are the 
weight of BLS and BGS, respectively (in percentage); 
dBLS and dBGS are the distance between the current 
position and BLS and the current position and BGS, 
respectively.  
The speed term, that is, the updating rate of the current 
position, is directly proportional to the distance 
between the current position to BLS and BGS. 
Therefore, within few iterations the particle will be 
attracted to either BLS or BGS. The speed term 
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controls the amount of global and local exploration of 
the particle (that is, the balance between exploration 
and exploitation). A high speed facilitates global 
exploration, while small speed will encourage local 
search. A user-defined upper bound (Vmax) is 
established to limit the maximum speed of particles. 
As mentioned before, when particles agglutinate, a 
mechanism is necessary to avoid stagnation, and the 
crowd is dissolved by an explosion, repositioning all 
particles randomly in the search space. However, they 
do not lose the information of BLS and BGS. A 
variation of the classic PSO uses “mass extinction” [5], 
where the population of particles becomes extinct at 
regular time intervals. In our model, particle 
agglutination is treated in a similar way, and will be 
explained later. 

3 Genetic Algorithms 
A Genetic Algorithm (GA) is a search and optimization 
heuristic based on the Darwinian principle of the 
species evolution, where individuals better fitted to the 
environment are able to survive longer and propagate 
their genetic material to more descendants.  A GA is 
also a population-based method with individuals that 
represent a possible solution for the problem. The 
genetic load is usually represented by a string of 
elements (genes). Individuals of a population are 
chosen according to their quality (fitness) to reproduce. 
Reproduction takes place by means of the application 
of genetic operators (crossover and mutation, for 
instance) to the selected pool of individuals, creating a 
new population. In particular, crossover is a genetic 
operator responsible for fostering local search, 
recombining pieces of two (or more) individuals. For 
permutation problems in combinatorial optimization, 
many crossover operators were proposed (see [3], for 
instance). In this work we used a strategy inspired on 
the Order crossover (OX). This operator works as 
follows: given two individuals, their genetic material is 
aligned and two random cut points are selected. The 
region of the chromosome between these two cut points 
is called matching section and will be exchanged 
between individuals. The remaining genes are mapped 
according to the matching section and are submitted to 
a sliding motion, so as to fill up the entire chromosome. 
In section 6 it will be explained how OX is used in our 
hybrid model. 

4 Fast Local Search (FLS) 
The FLS algorithm [4] an enhanced local search 
procedure, also known as fast hill climbing. Although 
FLS can achieve similar results than the classic hill 
climbing (or neighborhood search), it is more efficient, 
concerning processing time. The main characteristic of 
FLS is the use of an activation bit for each position of 
the of the current solution vector. At the initial 
iteration, all bits of the binary activation vector are set 

to 1. Whenever two points are selected, the 
corresponding bits are reset. From the second iteration 
on, only the bits corresponding to permutations of 
higher fitness (than the previous one) are kept set. This 
way, the number of permutations is greatly reduced, 
since changes occur only for those positions where the 
corresponding bit is set. 

5 Traveling Salesman Problem 
The TSP is a classical problem of combinatorial 
optimization and its modeling is of great interest for 
Computation and Engineering. For solving TSP, many 
methods have been proposed, including heuristic ones 
[3,4,6,7,8]. The simplest TSP considers a set of 
interconnected cities with symmetric distances between 
two points.  The problem is to find the shortest path for 
visiting all cities passing only once at each point and 
returning to the initial city. There are many other 
variations of the problem, such as asymmetric distances 
between cities, capacitated vehicles, fuel/depot points 
with mandatory passing, time-windows restrictions, 
and so on. The blind TSP (BTSP) allows the starting 
point to be in any city and it is defined by a symmetric 
distance matrix between cities D=[dij] which gives the 
distance between cities I and j. A tour (t) can be 
represented as a cyclic permutation [4]. Let j be the 
next city visited after city i, in tour t. The cost of a tour, 
defined in Equation 3, represents the total distance 
traveled, where NC is the number of cities. 
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In the TSP library (TSPLIB), at the Internet1, it is 
available a large collection of instances previously used 
as a benchmark. Those instances are used for 
evaluating performance of computational methods, 
since the optimal tours are always known.  

6 Methodology 
The hybrid model proposed in this work can be defined 
as a discrete PSO that uses explicit local search and 
concepts from GA. The original PSO was devised to 
cope with a continuous rather than discrete search 
space. Therefore, some adaptations were necessary. 
The hybridism of our model can be considered strongly 
coupled, since the GA characteristic appropriated to 
deal with the permutation problem (operator OX) 
embodied in the model. In contrast, Shi et al. [9] 
present a loosely coupled model, where two different 
subsystems (GA and PSO) share only the final results. 
The fusion of concepts from different paradigms in our 
work can also be found elsewhere, such as [10], where 
all components of the model interact in the same 
context, with mutual dependency. 

                                                           
1 http://www.iwr.uni-heidelberg.de/groups/comopt/software/ 
TSPLIB95/ 



6.1  Initial swarm and particles 
In our model, each particle represents a possible 
solution for the BTSP (a complete tour). A given 
particle is composed by the following information: 
current position (CP), BLS, current speed (Vi), current 
fitness of the particle (Cfitness) and fitness of BLS 
(Mfitness). Besides the particle-related parameters, 
other global parameters are defined: maximum number 
of iterations (Nmax), number of particles (Np), minimum 
distance for computing fitness (Dmin), number of cities 
of the problem (NC), and matrix of distances between 
cities (D=[dij]). Parameter NC determines the size of 
vectors used in CP, BLS and BGS. The distance matrix 
is generated using Euclidean coordinates in the plane 
as default. 
Fitness is computed by dividing Dmin by the cost of the 
tour represented by the current solution,. Considering 
the instances used in this work, Dmin is set to the 
optimal value of the tour and, therefore, fitness values 
represent the excess of distance relative to the known 
optimum for the instance. When the value of optimum 
tour is not known, Dmin can be set to 1. Therefore, 
fitness is always inversely proportional to the cost of 
the tour, as in a minimization problem. 
The swarm represents a population of particles and, at 
the startup, Np particles are generated (usually 20 ≤ Np 
≤ 50). For each particle i, Vi is randomly initialized, 
respecting Vmax and the vector CP is set with a 
random, but valid, tour. For the first iteration, BLS 
receives the value of CP. All just generated particles 
will be in different points of the search space, and all of 
them will have different values for CP. This represents 
a good diversity for the initial population. Next, the 
fitness of each particle is computed. The BGS and its 
fitness receives the corresponding values of the first 
generated particle and are updated as soon as any other 
particle is better than the previous stored value. 
The speed term of Equation 1 requests two parameters: 
dBLS and dBGS. In the classic PSO, those parameters 
are continuous. Therefore, the distance between 
particles is calculated as the value of BLS or BGS 
decreased by the CP value. However, in the BTSP, 
each position of the search space represents a complete 
tour (a vector of cities), thus requesting a new method 
to compute the distance between particles, inspired on 
the Hamming distance. Given two particles “A” and 
“B” representing a tour, the distance between them is 
computed comparing vectors departing from a common 
city (point zero). Initially, the distance is null and, for 
each position of the vector the corresponding values 
are compared. Whenever they are different, the 
distance is incremented by 1. In this way, the maximum 
distance possible will be exactly equal to NC. This 
computation may require a previous adjustment in one 
of the vectors: it will be slid circularly until the initial 
point of both vectors is the same. This last procedure 
creates a new vector B’, but does not changes the 

encoded information about the tour (recall that it refers 
to a BTSP). 

6.2  Diversity and movement 
In every iteration, the average distance between 
particles and the BGS is calculated. If this value is 5% 
lower than NC (recall how the distance between 
particles is computed), agglutination is characterized 
and the swarm is exploded, as mentioned before. Also, 
it is possible to have agglutination around the BLS of a 
particle. In this particular case, all surrounding particles 
will have its BLS value changed to a random value. 
This procedure simulates a local explosion of the 
swarm.This diversity maintenance procedure does not 
affect the original number of iterations and is essential 
for an efficient exploration of the search space. 
The movement of particles is based on Equations 1 and 
2 and the OX operator that recombines two possible 
solutions. The OX operator is adapted as follows: only 
one cut point (P1OX) is randomly chosen and it is the 
same for the two particles. The second cut point 
(P2OX), necessary to define the matching section, is 
found traversing circularly S-1 positions of the solution 
vector (tour represented by the particle). Operator OX 
is applied to two sets of vectors: CP and BLS, and CP 
and BGS, and the number of positions of the matching 
section for each operation given by Equations 4 and 5, 
where c1 and c2 are the same parameters of Equation 2. 

idMSL VcS *1=                                      (4) 
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This procedure generates new temporary solutions that 
are evaluated according to their fitness. The solution 
with best fitness will be considered the new CP of the 
particle. The concept of speed in this work is the same 
as in the classical PSO, and determines the level of 
exploration of the search space by the particles. As 
usual, after a particle has been moved in the search 
space, its BLS is updated accordingly. An iteration is 
defined by the movement of one particle and, after each 
iteration BGS is updated, if necessary.  

6.3  Local search with FLS 
Refinement of solutions takes place together with the 
search process. This refinement is accomplished by a 
local search, exploring positions (of the search space) 
surrounding to a given reference particle by means of 
the FLS strategy. When two points of the activation 
vector are selected the changes in the solution vector 
(tour) is done using the 2-opt heuristics [7]. That is, the 
sub-tour defined by these two points is inverted leading 
to a different tour, but preserving its structure. This 
newly created solution is stored in a temporary 
memory. The remaining bits set of the activation vector 
are browsed two-by-two and the same procedure as 
above is repeated. As result, the temporary memory 
holds several variations descendent of the current 



solution. The best of them substitutes the current 
particle and the remaining is discarded.  
The 2-opt heuristics alone is not efficient [7], but its 
combined use with FLS in our hybrid model can 
enhance efficiency of the search, especially when the 
problem has many local maxima.  

7 Results 
Preliminary tests were done exhaustively to adjust the 
parameters of the model to maximum performance, 
considering accuracy and processing time. These tests 
used two instances (pr76 and pr299), and the 
parameters shown in Table 1 were those that produced 
the best results. In that table, the parameter “FLS rate” 
is the probability of using local search in a given 
iteration. Further tests were done using the following 
instances of the blind TSP found in the TSPLIB: pr76, 
rat195, pr299, pr439, d657, pr1002, d1291 and d2103, 
for which the number cities ranges from 76 to 2103.  
The model was implemented in ANSI C programming 
language and tests were run in a PC-clone computer 
with Athlon XP 2.4 processor and 512 Mbytes of 
RAM. Results are presented in Table 2, where 
“Excess” represent how far is the solution from the 
known optimal value. Each value of this column is, in 
fact, the average of 100 independent runs. Considering 
all nine instances, the average excess was 3.8317%. 

Table 1: Initialization parameters for all problems. 

Parameter Value 
Number of particles 20 
Number of iterations 1200 
C1 0.7 
C2 0.3 
Vmax 70% of the # of cities 
FLS rate 0.15 

Table 2: Results obtained for several instances. 

Problem # of cities (%) Excess 
pr76 76 0.0000 
rat195 195 0.9834 
pr299 299 0.5900 
pr439 439 2.9561 
d657 657 3.8490 
pr1002 1002 6.6992 
d1291 1291 4.5811 
rl1304 1304 3.2456 
d2103 2103 7.7493 

8 Discussion and conclusions 
As expected, the quality of solutions found by the 
proposed model decreases as the size of the problem 
increases. For instances up to 299 cities, we obtained 
average results less than 1% of excess, and the model 
was able to find the optimum at least once (recall that 
results shown is the average of 100 runs).  
There are many models devised to solve TSP, 
including those that use PSO [8,9]. For instance, Wang, 
et al. [9] relates the application their model small 

instances (up to 14 cities). Real-world problems usually 
have a much larger dimensionality, for which more 
efficient models must be used, such as the one here 
proposed.  
Hybrid heuristic models are interesting for hard 
problems since they combine good quality features 
from several techniques in a single paradigm. The 
concepts of GA and FLS embodied in the PSO 
paradigm have lead to a robust and efficient model, 
therefore justifying the need for hybridism. Results can 
be considered excellent for an heuristic method, when 
compared with other similar methods in the recent 
literature. It is worth to emphasize the use of FLS with 
2-opt. This strategy has enhanced solutions found by 
the algorithm, but at the expense of a larger, but 
acceptable, computational cost. 
Results encourage further work that will comprise the 
study of a less expensive FLS, as well as other 
strategies that could improve the model, such as GA’s 
concepts of niches and species [3] and breeding and 
subpopulations [10]. 
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