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Abstract. This paper presents an enhanced genetic algorithm for the protein 
structure prediction problem. A new fitness function, that uses the concept of 
radius of gyration, is proposed. Also, a novel operator called partial optimiza-
tion, together with different strategies for performance improvement, are de-
scribed. Tests were done with five different amino acid chains from 20 to 85 
residues long and better results were obtained, when compared with those in the 
current literature. Results are promising and suggest the suitability of the pro-
posed method for protein structure prediction using the 2D HP model. Further 
experiments shall be done with longer amino acid chains as well as with real-
world proteins. 

1   Introduction 

A protein is a chain of amino acid residues that folds into a specific native 3-
dimensional structure under natural conditions, just after being synthesized in the 
ribosome. The task of predicting this 3-D structure is called the protein structure 
prediction problem (PSP) and its resolution is of great importance for modern mo-
lecular biology. 

Exhaustive search of the entire conformational space of a protein is not possible, 
even for the small ones. Simplified models, where amino acids are laid on a 2- or 3-
dimensional lattice, have been proposed. Again, such models are feasible only for 
small proteins, due to its NP-completeness [1]. Consequently, heuristic optimization 
methods seem to be the most reasonable algorithmic choice to solve PSP, and, 
amongst them, many evolutionary computation approaches have been proposed [2], 
[3], [4], [5], and [6]. In this paper we present an improved genetic algorithm for PSP. 
Its most important feature is a new fitness function capable of directing the search 
towards good protein conformations. Using a benchmark, results show that our im-
plementation achieves optimal or quasi-optimal solutions for small proteins.  
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2   2D HP Model 

The 2D HP (2-dimensional Hydrophobic-Polar) model was introduced by [7] and it is 
the most widely studied discrete model for protein folding in the recent literature. It 
models the concept that the major contribution to the free energy of the native con-
formation of a protein is due to interactions among hydrophobic residues. They tend 
to form a core in the protein structure while surrounded by hydrophilic residues that 
interface to the environment. 

In the HP model, the 20 standard amino acids are divided into two types, according 
to its affinity to water: hydrophobic (H for non-polar) or hydrophilic (P for polar). As 
it is a lattice model, the amino acid chain is embedded in a 2- or 3-dimensional square 
lattice and the movements of the chain are restricted to angles of 90o. In a legal con-
formation, the adjacent residues in the sequence must be adjacent in the lattice and 
each lattice point can be occupied by only one residue. 

The free energy of a conformation is inversely proportional to the number of hy-
drophobic non-local bonds (or H–H bond). An H–H bond occurs if two hydrophobic 
residues occupy adjacent grid points in the lattice but are not consecutive in the se-
quence. Each such interaction contributes with –1 to the energy value. 

3   Implementation 

In this section, we describe in details the application of a genetic algorithm (GA) and 
the strategies proposed to improve its performance. 

3.1   Chromosome Encoding 

The dynamics and effectiveness of a GA is strongly influenced by the way solutions 
are represented. There are two ways of representing a chain in a lattice: either using 
absolute or relative coordinates. In the former, every amino acid uses Cartesian coor-
dinates to define its position in the lattice. In the latter, the definition of an amino acid 
position takes into account the position of the previous one, with relative movements. 
Based on the results presented by [8], our implementation uses internal coordinates. 
Due to the 2-dimensional lattice used, there are only three possible moves, regarding 
the previous amino acid of a chain: (R)ight, (L)eft and (F)orward. These moves indi-
cate that the next amino acid of the chain will be folded (together with the remaining 
forward chain) 90 degrees to the right, to the left or the chain will be stretched ahead. 

Therefore, the GA will have a population of individuals with a single chromosome, 
each one representing a complete conformation. The chromosome is composed by a 
number of genes corresponding to the number of amino acids in the chain minus one 
(the starting amino acid of the chain), and every gene is defined over the alphabet {R, 
L, F}. 
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3.2   Initial Population 

In this problem, a constraint to be handled is related to the self-avoidance of a con-
formation, i.e., whether illegal conformations are allowed during evolution or not. If 
not, it is necessary a procedure that guarantees the generation of only legal conforma-
tions in the initial population and in the application of the genetic operators. Another 
approach, called penalty method, allows the existence of unfeasible conformations 
during the evolution, but a penalty is added (to the fitness value of the individual) for 
every lattice point at which there is a collision of more than one amino acid. Our 
implementation uses the penalty method. 

According to [3], the encoding in relative internal coordinates exhibits the problem 
that initial populations (randomly created) tend to have an increasing number of colli-
sions as the length of the protein increases, making the GA waste efforts with illegal 
conformations before promising conformations can be found. Based on this state-
ment, a different strategy was used to create the initial population aiming to minimize 
the collisions while generating a larger initial genetic diversity. This strategy divides 
the population into two parts that are generated differently. The proportion of each 
part is established by a user-defined parameter called PopIniFull. The first part of the 
population is randomly generated, as usual, and this is the part that the percentage of 
the PopIniFull parameter indicates. The second part is generated considering each 
individual as totally unfolded and then applying a number of random mutations be-
tween 3 and the total number of genes in the chromosome, uniformly distributed. 
Using this method, there will be a certain amount of individuals having few mutations 
that increases the diversity of the initial population and allows that the unfolded parts 
of the individuals help the evolution process. 

3.3   Fitness Function 

To evaluate an individual, it is necessary to translate its genotypical encoding, de-
fined over the alphabet {R, L, F}, to obtain its Cartesian coordinates. This procedure 
allows knowing how the amino acids are disposed in the lattice, and then, the compu-
tation of an objective goodness measure of the conformation. In this work, we pro-
pose a new fitness function composed of three terms, as shown in Equation 1: 

PHH RGRGNLBFitness ××=  (1) 

where NLBH is the number of hydrophobic non-local bonds of the conformation and 
RGH and RGP are terms computed using the radius of gyration of the hydrophobic and 
hydrophilic residues, respectively, as explained below. The product of all terms in 
this equation indicates that all of them should be maximized. 

3.3.1   Hydrophobic non-local bonds 
It is believed that hydrophobic non-local bonds are the main force that drives the 
protein folding process. We are considering the problem as the maximization of the 
number of H–H bonds thus, for every hydrophobic non-local bond, NLBH is added by 
1. Since we are using a penalty method, NLBH is decreased whenever a collision oc-
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curs. The penalty term, decremented from NLBH, is composed by the number of grid 
points which are occupied by more than one residue, multiplied by the penalty weight 
which, in turn, is set according to the chain length: the longer the chain, the higher it 
is.  

3.3.2   Radius of gyration 
The original HP model uses only the hydrophobic non-local bonds term to evaluate 
an individual but, according to [8], without a modified energy function, there will 
exist large plateaus in the energy landscape on which local search cannot find a de-
scent direction, leading to a random search. This fact was also experienced in our 
preliminary implementation and, aiming to avoid this trap and enhance the fitness 
function, we propose the use of a new concept, called radius of gyration (RG).  

RG of a solid body is the radial distance from a given axis at which the mass of a 
body could be concentrated without altering the rotational inertia of the body relative 
to that axis [9]. Hopefully, using RG in the fitness function the fitness landscape can 
be changed in such a way that the fitness function rewards more compact conforma-
tions with the same number of H–H bonds, bringing the evaluation closer to reality. 

RG, in the scope of the PSP, indicates how compact a set of amino acids is: the 
more compact a conformation, the smaller is its radius of gyration. In this term of the 
fitness function, only hydrophobic residues were considered, rewarding the confor-
mations that have smaller values of radius of gyration. This term is presented in 
Equation 2: 
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where xi and yi are the Cartesian coordinates of the i-th hydrophobic residue, X and 
Y  are the mean values of all hydrophobic xi and yi, respectively; NH is the number of 
hydrophobic residues in the chain; and MaxRGH is the radius of gyration of the amino 
acid chain totally unfolded. The second part of Equation 2 represents the radius of 
gyration of hydrophobic residues related to the point given by the mean coordinates, 
and it is subtracted from MaxRGH in order to maximize RGH. 

The term related to the hydrophilic radius of gyration in the fitness function has the 
opposite purpose as RGH: it fosters the spreading of hydrophilic residues towards the 
edge of the conformation. This term is calculated in the same way as in Equation 2, 
except that, in this case, only hydrophilic residues are considered, and it is not sub-
tracted from any other value (as in Equation 2). Using RGH computed before, RGP 
can be obtained using Equation 3: 
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In Equation 3, DIFRG computes the difference between the hydrophilic and the 
hydrophobic radii of gyration. A positive difference for DIFRG means that the hy-
drophobic residues are buried inside the conformation, while the hydrophilic ones are 
outside. Such situation is desired and in this case, the hydrophilic radius of gyration 
has no influence in the fitness function. However, if the opposite is true, meaning that 
the hydrophobic residues are more spread than the hydrophilic, which is not desired, 
this conformation will be penalized, decreasing its fitness value. 

3.4   Genetic Operators and Local Improvement Strategies 

In GA, genetic operators are used to create new individuals by means of modifying 
existing ones. Therefore, it is necessary a method for choosing individuals from the 
current population in order to apply the genetic operators. We used the tournament 
selection method that randomly selects a number of individuals from the population. 
These individuals compete in a tournament and the best one is chosen for the applica-
tion of the operators. The first operator that is applied during the generation of a new 
population is the crossover operator. For this problem, this operator plays an impor-
tant role since a piece of structure (conformation) that has been adequately folded can 
be of further use in the construction of a complete solution [10]. Two types of cross-
over were implemented: 1- and 2-point crossover and both are applied with the same 
probability during the evolution. 

Another operator commonly used in GA is mutation. In this work, two different 
types of mutation were developed. The first is the simple mutation where each gene is 
tested, according to the mutation probability, to verify whether the actual value of the 
gene will be changed or not. The second type, called Improved Mutation, works as 
the simple mutation except by the fact that after each mutation is applied, the individ-
ual is reevaluated to check if its fitness has increased. In this case, the change is main-
tained, otherwise it is discarded. In order to guarantee some diversity during the evo-
lution, 40% of the mutations are simple and 60% are improved mutations. 

In our implementation, both crossover and mutation probabilities are not fixed dur-
ing generations. They have an initial and a final value, respectively for the first and 
the last generation. The exact probability value in a given generation is a linear inter-
polation of the initial and final values. 

A specially devised operator used in this work is named Partial Optimization. The 
basic idea of this operator is to randomly select two non-consecutive residues of the 
protein and fix their position in the lattice. Then, all the different possibilities of 
locating the intermediate residues maintaining the connectivity of the chain are calcu-
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cating the intermediate residues maintaining the connectivity of the chain are calcu-
lated. The conformation that gives the maximum fitness among all of them is kept. 
This operator was inspired in a generalization of the 2-opt heuristics proposed by [11] 
for the traveling salesman problem. The number of intermediate residues to be per-
mutated is a user-defined parameter named Partial Optimization size. 

In preliminary tests, the GA frequently got trapped in local minima. Thus, it was 
necessary to implement a strategy, called Decimation, to make the GA overrides this 
situation. After each generation, the fitness of the best individual is checked in order 
to verify whether or not it has changed from the previous generation. If not, a counter 
is increased by 1. If so, the new best fitness is kept and the counter is reset to 0. When 
the non-improvement counter reaches 10, the decimation strategy is applied. The idea 
is to eliminate all individuals of the current population, except the best, and generate 
again a new population (in the same way explained in section 3.2), including the best 
individual previously found. Applying this strategy makes the population to have a 
large genetic diversity, hopefully allowing further evolution. A point that needs to be 
taken into account is the fact that all the newly generated population probably will 
have very low fitness values compared to the best individual previously found. There-
fore, it is necessary to decrease the selective pressure giving more chance to all indi-
viduals to be selected. This is done by decreasing the tourney size in the selection 
method at the same time that the probability of applying the Improved Mutation is 
increased. This strategy decreases competitiveness between individuals and permits 
that all the population becomes, on average, a little better and contributes to the evo-
lution. When this strategy is applied, the non-improvement counter returns to 0 and 
the verification of the best fitness change proceeds until the last generation. 

4   Computational Experiments and Results 

Several experiments were performed with the same instances used in [12], for five 
amino acid chains with 20, 36, 48, 64, and 85 residues. Such instances are not real-
world proteins, but a benchmark for which the optimal folding with the 2D HP model 
is known. Despite of this, it would be interesting to evaluate our method comparing it 
with a similar one, over the same instances. According to [12], the maximum number 
of H–H bonds for those instances are: 9, 14, 23, 42, and 52, respectively. 

For all the experiments, the parameter set used is shown in Table 1. It was not 
done a combinatorial experiment so as to find the most efficient set of parameters 
within the possible range. Instead, we conducted some preliminary tests with different 
combinations of parameters using a single instance. The set of parameters that per-
formed best among the combinations tested was chosen as default. It is worth to note 
that possibly another set of parameters could perform better than those used here, but 
this investigation is subject of future research. 

As mentioned before, the penalty weight was (empirically) set according the length 
of the chain: 2, 2.5, 3, 3.5 and 4 for the 20-, 36-, 48-, 64- and 85-residue chains, re-
spectively. 

Tests were run 100 times and the individual with the highest number of hydropho-
bic non-local bonds from the last generation was considered the best of the run. The 
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overall best individual for each instance is shown in Table 2, together with the num-
ber of times this solution was found within 100 runs. The mean number of H–H 
bonds of the 100 best individuals was calculated and also presented in that table, 
together with the results obtained by [12], for the purpose of comparison.  Values in 
bold represents the best solutions. 

Table 1. Set of parameters for the genetic algorithm 

Parameters Values 
Population size 500 
Number of Generations 100 
PopIniFull 30% 
Tourney size 3% 
Elitism Yes 
Crossover probability (initial / final) 50% / 70% 
Mutation probability (initial / final) 5% / 10% 
Partial optimization probability 4% 
Partial optimization size 7 residues 

Table 2. Comparison of results. Numbers in parenthesis indicates how many times the best 
score was found in 100 different runs and the bold values indicate the best result for a given 

instance 

König and Dandekar [12] Our implementation Chain 
length Best solution Mean value Best solution Mean value 

20 9 (100×) 9.00 9 (100×) 9.00 
36 14 (8×) 12.40 14 (6×) 12.44 
48 23 (1×) 18.50 23 (2×) 20.06 
64 37 (1×) 29.30 40 (1×) 33.58 
85 46 (1×) 40.80 51 (2×) 45.74 

 
For the 20-residue chain, as the global minimum was always reached, the perform-

ance measure considered was the mean number of energy evaluations needed to find 
the global minimum. König and Dandekar’s implementation needed an average of 
11824 energy evaluations while ours took 10830. 

For the first three chains (namely, 20, 36 and 48 amino acids chains) our results 
were very similar to [12]. Both implementations were able to find the global optimum 
but, in average our implementation performed better for the 36- and 48-long amino 
acid chains.  For the 64- and 85-long amino acids chains, our implementation ob-
tained much better results than [12], either considering the best result or the mean 
value of energy function. For both instances, our best result was very close to the 
optimal solution known (42 and 52 H–H bonds, respectively). 

In general, our GA got similar results to [12] for the smaller chains and better re-
sults for the longer chains. It is important to consider that a difference of one bond 
from a conformation to another indicates a great improvement obtained by the algo-
rithm and jumping from the closest local minimum to the global minimum can be 
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considered a great achievement. From a solution to another with single bond more, it 
can mean a quite different folding. 

The two best results found for the 85-residue chain are presented in Fig. 1, where 
the black dots are the hydrophobic residues and the white dots, the hydrophilic. The 
biggest dot is the beginning of the chain. 

 

 
Fig. 1. Best conformations found for the 85-long amino acid chain 

5   Conclusions 

This paper presented novel strategies for using a genetic algorithm for the protein 
structure prediction problem using the 2D HP model. The use of the concept of radius 
of gyration in the fitness function took some smoothness to the fitness landscape, 
allowing better solutions to be found. Using this fitness function, two conformations 
with the same number of H–H bonds can be adequately discriminated. Also, the use 
of the partial optimization and improved mutation operators, together with the deci-
mation strategy have enhanced the GA, allowing it to escape from local minima.  

Besides the enhancements in the GA, it is important to emphasize the results ob-
tained. While for short chains the results got no significant improvements (compared 
with [12]), for the long ones, significant local minima were found, suggesting that 
there is room for further improvement with longer chains. This subject shall be ad-
dressed in further experiments. 

The two different solutions shown in Fig. 1 emphasize the difficulty of the PSP 
problem using a lattice model. The use of this model and the energy function based 
on the number of H–H bonds implicitly implicates a (strongly) multimodal fitness 
landscape with many equal-sized plateaus. This fact, by itself, requires efficient 
search strategies specially when using evolutionary computation techniques.  

Exhaustive experiments aiming to find the best parameter set for the GA were not 
performed, even though the results achieved were very promising. Finding such set of 
parameters is computationally intensive and care must be taken on its generalization. 
Experience suggests that not only the size of the amino acid chain is important, but 
also, some implicit characteristic of the folded structure. These research directions 
will be explored in the near future. 
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Overall, results encourage the continuity of the work towards a more complex lat-
tice model, and further tests with the use of real-world protein sequences. 
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