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Abstract. This paper presents an enhanced genetic algorithm for the protein 
structure prediction problem. A new fitness function, that uses the concept of 
radius of gyration, is proposed. Also, a novel operator called partial optimiza-
tion, together with different strategies for performance improvement, are de-
scribed. Tests were done with five different amino acid chains from 20 to 85 
residues long and better results were obtained, when compared with those in the 
current literature. Results are promising and suggest the suitability of the pro-
posed method for protein structure prediction using the 2D HP model.  

1   Introduction 
A protein is a chain of amino acid residues that folds into a specific native tertiary 
structure under natural conditions. The task of predicting this tertiary structure is 
called the protein structure prediction (PSP) problem and its resolution is of great 
importance for modern molecular biology. 

Although many other techniques have already been applied to this problem, heuris-
tic optimization methods seem to be the most reasonable algorithmic choice to solve 
this problem due to its NP-completeness, and, amongst them, many evolutionary 
computation approaches have been proposed [1], [2], and [3].  

The 2D HP model was introduced by [4] and is the most widely studied discrete 
model in recent literature. It models the concept that the major contribution to the free 
energy of the native conformation of a protein is due to interactions among hydro-
phobic residues, which tend to form a core in the protein structure while being sur-
rounded by hydrophilic residues that interface the environment. In this model, the 
chain is embedded in a 2D square lattice and each lattice point can be occupied by 
only one residue. In a legal conformation, the adjacent residues in the sequence must 
be adjacent in the lattice. The free energy of a conformation is inversely proportional 
to the number of hydrophobic non-local bonds (or H–H contacts) where a H–H con-
tact occurs if two hydrophobic residues occupy adjacent grid points in the lattice but 
are not consecutive in the sequence.  
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3   Implementation 
The dynamics and effectiveness of a GA is strongly influenced by the way solutions 
are represented. Based on the results presented by [5], our implementation uses inter-
nal coordinates, where the definition of an amino acid position takes into account the 
position of the previous one, with relative movements where there are only three 
possible moves: (R)ight, (L)eft and (F)orward. 

Our implementation uses a penalty method, which allows the existence of unfeasi-
ble conformations during the evolution, but a penalty is added for every lattice point 
at which there is a collision of more than one amino acid. Based on results of [6], a 
different strategy was used to create the initial population that tends to minimize the 
collisions while generating a greater initial genetic diversity. This strategy divides the 
population into two parts that are generated differently. The proportion of each part is 
established by a user-defined parameter called PopIniFull. The first part of the popu-
lation (indicated by parameter PopIniFull) is randomly generated, as usual, and the 
second is generated considering each individual as totally unfolded, and then apply-
ing a number of random mutations that varies between 3 and the total number of 
genes in the chromosome, uniformly distributed.  

To evaluate an individual it is necessary to translate its genotypical encoding so as 
to obtain its Cartesian coordinates. In this work, we propose a new fitness function 
composed of three terms, as shown in Equation 1: 

F i tn e s s H n L B R g H R g P= × × , (1) 

where HnLB is the number of hydrophobic non-local bonds of the conformation and 
RgH and RgP are terms computed using the radius of gyration of the hydrophobic and 
hydrophilic residues, respectively, as explained below. 

It is believed that hydrophobic non-local bonds are the main force that drives the 
protein folding process. We are considering the problem as the maximization of the 
H–H contacts, thus for every hydrophobic non-local bond, HnLB is added by 1. Since 
we are using a penalty method, HnLB is decreased by a penalty term whenever a 
collision occurs. The penalty term is composed by the number of grid points which 
are occupied by more than one residue, multiplied by the penalty weight which, in 
turn, is set according to the chain length: the longer the chain, the higher it is.  

The original HP model uses only the hydrophobic non-local bonds term to evaluate 
an individual but, according to [5], without a modified energy function, there will 
exist large plateaus in the energy landscape on which local search cannot find a de-
scent direction, leading to a random search. Thus, we propose the use of a new con-
cept, called radius of gyration (Rg) that, in the scope of the PSP problem, estimates 
the compactness of a set of amino acids: the more compact a conformation is, the 
smaller is its radius of gyration. In this term of the fitness function, only hydrophobic 
residues were considered. This term is presented in Equation 2, where xi and yi are the 
Cartesian coordinates of the i-th hydrophobic residue, X and Y  are the mean values 
of all hydrophobic xi and yi, respectively; NH is the number of hydrophobic residues 
in the chain; and MaxRgH is the radius of gyration of the chain totally unfolded. The 
second part of Equation 2 represents the radius of gyration of hydrophobic residues 
related to the point given by the mean coordinates. 
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The term related to the hydrophilic radius of gyration in the fitness function has the 
opposite purpose as RgH: it fosters the spreading of hydrophilic residues towards the 
edge of the conformation. This term is calculated in the same way as in Equation 2, 
except that in this case only hydrophilic residues are considered and it is not sub-
tracted from any other value, generating the hydrophilic radius of gyration value RgP. 
Using the calculated RgP, this value is redefined according to Equation 3, in order to 
penalize conformations where the hydrophobic residues are more spread than the 
hydrophilic: 
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After individuals are chosen by the tournament selection method, genetic operators 
are applied to generate a new population. We used the regular two-point crossover, 
the regular mutation and an improved mutation. This last operator works as the sim-
ple mutation except by the fact that after each mutation is applied, the individual is 
reevaluated to check if its fitness has increased. In this case, the change is maintained, 
otherwise it is discarded. Another especially devised operator used in this work is 
named partial optimization. The idea of this operator is to randomly select two non-
consecutive residues of the protein and fix their position in the lattice and find the 
best path that connects both residues. 

A strategy called Decimation was also implemented in order to avoid getting 
trapped in local minima. After 10 generations without improvement of the best indi-
vidual, all the population is killed, except the best, and generated again from scratch. 

4   Computational Experiments and Results 
The tests were performed based on the same instances used by [7], for five amino 
acid chains with 20, 36, 48, 64, and 85 residues. The known maximum number of H–
H bonds for those instances are: 9, 14, 23, 42, and 52, respectively. 

The parameters used in the algorithm were chosen after several tests with different 
combinations of parameters. They were those that performed best among the combi-
nations tested. The main parameters used were: population size (500), number of 
generations (100), PopIniFull (30%), tourney size (3%), elitism (yes), crossover 
probability (50% to 70%), mutation probability (5% to 10%), partial optimization 
probability (4%) and partial optimization size (7 residues). Tests were run 100 times 
and the best individual of each run was considered. The results are compared in Table 
1. For the 20-residue chain, the mean value column represents the average of evalua-
tions to find the global minimum. For the first three chains our results were very 
similar to [7], and our GA got better results for the longer chains. 



Table 2. Comparison of results 
König and Dandekar Our implementation Chain 

length Best Score Mean Value Best Score Mean Value 
20 9 (100×) 11824 9 (100×) 10830 
36 14 (8×) 12.40 14 (4×) 11.89 
48 23 (1×) 18.50 23 (1×) 18.69 
64 37 (1×) 29.30 39 (1×) 31.19 
85 46 (1×) 40.80 51 (1×) 44.18 

5   Conclusions 
This paper presented novel strategies for using a genetic algorithm for the protein 
structure prediction problem. The use of the concept of radius of gyration in the fit-
ness function took smoothness to the fitness landscape, allowing better solutions to be 
found. Also, the use of the partial optimization and improved mutation operators, 
together with the decimation strategy have enhanced the GA, allowing it to escape 
from local minima. Results encourage the continuity of the research towards a more 
complex lattice model, and further tests with other real-world biological sequences. 
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