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Abstract 
 

Fuzzy systems were designed to compute with 
uncertainties and linguistic information and allow us 
to develop mathematical tools for information 
processing. Artificial immune systems (AIS) consist of 
methods inspired by the biological immune system and 
designed for solving real-world problems. This work 
integrates these two kinds of systems, proposing a 
novel AIS for discovering fuzzy classification rules 
from data. The results of the proposed algorithm are 
compared with the results of C4.5Rules, a very popular 
algorithm for discovering classification rules.  

 
1. Introduction 
 

Data mining consists of extracting knowledge from 
real-world data sets, and it is the subject of extensive 
research [1]. This work focuses on the classification 
task of data mining, where the goal is to predict the 
class of an example (record) – out of a predefined set 
of classes – based on the values of attributes for that 
example. This work involves artificial immune systems 
(AIS) and fuzzy systems (FS). FS are inspired by the 
theory of fuzzy sets, introduced by Zadeh [2], and they 
have a fundamental role in a wide range of information 
processing areas, bridging the gap between numerical 
and symbolic processing [3]. AIS originated from 
attempts to model and apply immunological principles 
to the development of novel computational tools, and 
they have also been used in a wide range of areas, 
ranging from failure and anomaly detection to 
optimization and control to machine learning and data 
mining [4]. 

This work proposes a method based on AIS to 
discover fuzzy classification rules from data. The AIS 
obtains, via an evolutionary process extended with data 
mining procedures (such as rule pruning), a classifier 
consisting of fuzzy rules of the form: IF (fuzzy 

conditions) THEN (class). The interpretation of each 
rule is that, if an example satisfies the fuzzy 
conditions, then the example is assigned the class 
predicted by the rule. This knowledge representation 
has the advantage of being intuitively comprehensible 
to the user, and the use of fuzzy conditions improves 
the comprehensibility of the rule and the rule’s ability 
to cope with uncertainties typically found in real-world 
data. 
 
2. Theoretical background 
 
2.1. Fuzzy systems  
 

The theory of fuzzy systems uses symbols, called 
linguistic terms, which have well-defined semantics. 
After being converted into membership functions of 
fuzzy sets, linguistics terms allow the numerical 
processing of the corresponding symbols or concepts. 
Fuzzy systems are very effective in expressing the 
ambiguity and subjectivity of human reasoning. 

The membership functions determine to which 
degree a given object belongs to a set. In a fuzzy 
system, this degree varies continuously in the range 
[0…1]. Membership functions can take different 
shapes, from the simplest ones (triangular functions) to 
more complex functions (parameterized by the user). 

In a classification problem with c classes and n 
attributes, fuzzy rules can be written as [5]: 
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where  ) ,..., ( 1 nxx=x  is an n-dimensional pattern vector; 

 is an antecedent linguistic value such as small or 
large (i=1,…,n); C

 Ai
1

j is a consequent class; and N is the 
number of fuzzy IF-THEN rules. The antecedent part 
of each rule is specified by a combination of linguistic 
values, produced by the partition of the universe (i.e., 
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the domain of each attribute) into a set of linguistic 
terms. 

In this work only the rule antecedents are evolved 
by the AIS. (The rule consequent (predicted class) is 
fixed for all rules during an AIS run, as will be 
explained later.) The partition of the universe is fixed 
and specified a priori by the user. The number of rules 
and the number of conditions per rule are 
automatically determined by the AIS. This flexibility is 
essential in data mining, where the best values for 
these numbers are not know a priori for the data being 
mined. 

 
2.2. Artificial immune systems (AIS) 
 

AIS is a relatively new computational intelligence 
paradigm [6]. AIS are inspired by the biological 
immune system and are designed to solve real-world 
problems [4]. The biological immune system is a 
complex system that involves distinct “agents” 
(antibodies) interacting with each other, with the 
function of protecting the organism from damage 
caused by invading agents (antigens), such as bacteria 
and viruses.  

Some important characteristics of the immune 
system from a computational viewpoint are as follows 
[6]: 
• The immune system can recognize and classify 

different patterns and produce selective responses. 
In addition, it uses a combinatorial process to 
generate a diverse set of lymphocyte receptors, in 
order to increase the chance that at least some 
lymphocytes recognize a given antigen; 

• The system learns, by experience, the structure of 
a given antigen. When B cells are activated, some 
of them become memory cells, with an extended 
lifetime. These cells help the organism to produce 
a faster immune response when the same antigen 
is encountered in the future. The system 
automatically determines a balance between 
economy and performance, maintaining 
approximately just the sufficient number of these 
cells.  

• The mechanisms of immune response are self-
regulated by nature. There is no central organ 
controlling the immune system. The regulation of 
the immune response can be local or systemic, 
depending on the kind of antigen and its location; 

• The immune response and the proliferation of 
immune cells occur under determined affinity 
thresholds (strength of the binding between 
antibody and antigen); 

• The processes of clonal expansion and somatic 
hypermutation produce immune cells with high 
affinity to the invading antigen. These are the 
processes on which the AIS proposed in this paper 
is based, and so they are explained next. 

 
The process of clonal expansion is a form of natural 
selection. When a B-cell is activated, by binding – to 
some degree – to an antigen, it produces several 
clones. These clones undergo mutation, which changes 
their ability to recognize (bind to) the antigen. The 
clones that best recognize the antigen will have a 
higher proliferation rate, whereas clones that are bad at 
recognizing the antigen will die. Hence, the process is 
adaptive. The proliferation rate of a B-cell is 
proportional to the affinity between the B-cell and the 
antigen; whereas the mutation rate is inversely 
proportional to that affinity. As a result of clonal 
selection and somatic hypermutation, the system will 
produce B-cells that are highly adapted to recognize 
the target antigen. 
 
3. Description of IFRAIS 
 

The goal of the proposed AIS algorithm, called 
IFRAIS (Induction of Fuzzy Rules with an Artificial 
Immune System), is to evolve fuzzy conditions for a 
classification rule’s antecedent, in order to maximize 
the classification accuracy of the rule. In essence, the 
algorithm maintains a population of antibodies, each of 
them representing a candidate classification rule 
antecedent (see section 3.1). Each antigen corresponds 
to an example (record) to be classified. The algorithm 
is based on the previously-explained processes of 
clonal selection and somatic hypermutation. It also 
uses a stochastic rule pruning procedure. This 
procedure incorporates some “knowledge” of the task 
being solved (classification) into the algorithm, which 
usually improves the performance of an evolutionary 
algorithm. Note that the principles of clonal selection 
and somatic hypermutation have been used to design 
other AIS algorithms [4,7] but IFRAIS is the first AIS 
for discovering fuzzy classification rules based on 
those principles. 

  
3.1. Encoding issues and affinity function 

 
Recall that each antibody represents a rule 

antecedent. Each rule antecedent is formed by a 
conjunction of conditions, each of them involving a 
continuous or categorical attribute. Continuous 
attributes are fuzzified, by dividing their universe 
(attribute domain) into three linguistic terms – low, 



medium, high. These terms are represented by 
triangular functions, for the sake of simplicity. The 
antibody genotype can contain irrelevant conditions 
(indicated by a flag), which are not expressed in the 
decoded rule antecedent and therefore are ignored 
when computing the affinity between the antibody 
(rule antecedent) and an antigen (example to be 
classified). When decoding the antibody, there is a 
natural restriction that the number of conditions in the 
decoded rule has to be at least 1. The flexibility to 
represent rules with different number of conditions is 
essential in data mining, where the optimal number of 
conditions for each rule is not know a priori.   

Figure 1 shows the antibody representation, where 
the index i denotes the i-th attribute of the data set 
being mined, Vi denotes the value assigned to the i-th 
attribute, and Bi denotes a Boolean flag indicating 
whether or not the corresponding condition will be 
expressed in the decoded rule antecedent. The figure 1 
also shows that each value Vi is associated with a 
triangular membership function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                            

Each run of the algorithm discovers one fuzzy 
classification rule, so that the algorithm has to be run 
multiple times to discover multiple rules. This is 
obtained by using a sequential covering (SC) 
procedure (often used in data mining), as follows. The 
SC procedure starts with an empty set of discovered 
rules. Then it performs a loop over the classes. For 
each class, the algorithm will be run as many times as 
necessary to discover rules covering all or almost all 
the examples belonging to that class. More precisely, 
for each class the procedure initializes a variable TS 
with the set of all examples in the training set, and then 
calls the AIS algorithm (described in Figure 2) to 
discover a classification rule predicting the current 
class. The AIS returns the best evolved rule, which is 
added to the set of discovered rules. Next, the SC 
procedure removes from TS the examples that are 
correctly covered by the discovered rule, i.e. the 
examples that satisfy the rule antecedent (to a degree 
greater than Lj, as explained in section 3.1) and have 
the class predicted by the rule. Then the AIS algorithm 
is called again, to discover a rule from the reduced 
training set, and so on. This iterative process is 
repeated until the number of uncovered examples of 
the current class is smaller than a small threshold, 
called MaxUncovExamp (maximum number of 
uncovered examples) and set to 5 in our experiments. 
This avoids that the AIS tries to discover a rule 
covering a very small number of examples, in which 
case the rule would not be statistically reliable. This 
process is repeated for all the classes, producing a set 
of fuzzy classification rules covering almost all 
training examples. Examples that are not covered by 

Figure 1. Relation antibody ↔ fuzzy rule. 
 
The affinity (degree of matching) between an 

antigen and an antibody represents the degree to which 
the example satisfies the rule antecedent. This affinity 
is measured by a fuzzy AND of the degrees of 
matching (µA(xn)) for all the rule conditions decoded 
from the antibody. In this work we use the standard 
fuzzy AND, given by the min operator, so that the 
affinity between an antigen and an antibody is given 
by Equation (2):  
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Each rule j is associated with an activation 
threshold Lj. An example is said to satisfy a rule 
antecedent (or the rule is said to cover the example) if 

the affinity between the example and the rule 
antecedent is greater than Lj. Intuitively, this threshold 
can have a great influence in the performance of the 
algorithm. Hence, this work proposes a procedure that 
automatically chooses the best value of this threshold – 
out of a range of values – for each rule. This relieves 
the user from the difficult task of specifying this 
threshold and it increases the flexibility of the system, 
since different rules can have different values of this 
threshold, depending on the conditions in the rule 
antecedent. More precisely, the procedure considers m 
uniformly distributed values of Lj in the range 
[0.5,…,0.7]. In this work m = 20 (a value chosen to 
represent a reasonably large range of values), so that 
the procedure considers all values of Lj in {0.50, 0.51, 
… 0.69, 0.70}. The procedure chooses, out of those 
values, the value Lj that maximizes the fitness of the 
antibody (computed as will be explained later). 

 
3.2. Evolutionary Process 
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any rule are simply classified by a default rule (see 
section 3.3). At the end of this training phase, the 
fitness of all rules is recomputed by considering the 
entire training set, in order to have a better estimate of 
rule quality to be used in the classification of test 
examples (section 3.3). 

  
3.2.1 Rule evolution based on clonal selection 

 
The evolution of fuzzy rule antecedents is performed 
by an AIS based on the clonal selection principle 
(section 2.2). The pseudocode of the algorithm 
(version 1.1) is shown in Figure 2. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. AIS based on clonal selection. 
 

The AIS starts by randomly creating an initial 
population of antibodies, where each antibody 
represents the antecedent of a fuzzy classification rule. 
For each rule (antibody), the system prunes the rule – 
using the rule pruning procedure proposed by [8] – and 
computes the fitness of the antibody, according to 
equation 4, as described in section 3.2.2. Rule pruning 
has a twofold motivation: reducing the overfitting of 
the rules to the data and improving the simplicity 
(comprehensibility) of the rules. The basic idea of the 
rule pruning procedure used in this work is that, the 
lower the predictive power of a rule condition, the 
more likely it will be removed from the rule. The 
predictive power of a condition is estimated by its 
information gain, a very popular heuristic measure of 
predictive power in data mining [9].   
      After rule pruning, the outer FOR loop starts by 
initializing NUMCLONES to 0 and performing a 

tournament selection procedure, in order to select the 
winner antibody that will be cloned in the next step. 
Tournament selection is well-known and often used in 
evolutionary algorithms [10]. Once the winner 
antibody  has been selected, the algorithm performs its 
core step, which is inspired by the clonal selection 
principle of the natural immune system. First, for each 
antibody  to be cloned the algorithm produces C 
clones. The value of C is proportional to the fitness of 
the antibody. The number of clones increases linearly 
with the antibody fitness when 0 < Fit(Ab) < 0.5, and 
any antibody with a fitness greater than or equal to 0.5 
will have MAXNUMCLONES clones. We set the 
value of MAXNUMCLONES to just 10 to prevent the 
clone population from being very large, which would 
not only be inefficient but also possibly lead to 
overfitting of the rules to the data. Tournament 
selection and clonal expansion are performed while the 
total number of clones generated does not exceed N-1 
(where N is the population size). This part of the 
pseudocode is different from the version 1.0 of the 
algorithm [11], where the number of tournaments was 
a user-specified parameter. The current version (1.1) 
avoids the need for that parameter and produced 
slightly better results. 

Create initial population (of size N) of antibodies at random; 
Prune each rule antecedent in a stochastic way; 
Compute fitness of each antibody; 
 
FOR i = 1 to Number of Generations 
   NUMCLONES = 0; 
   WHILE NUMCLONES =< (N - 1) 
       Perform tournament selection, getting the winner to be

cloned; 
      Produce C clones of the antibody, where C is proportional to

the antibody’s fitness and 1 < C <= MAXNUMCLONES; 
      NUMCLONES = NUMCLONES + C; 
   END WHILE 
   FOR EACH produced clone 
      Mutate clone with a rate inversely proportional to its fitness;
      Prune each clone’s rule antecedent in a stochastic way; 
      Compute fitness of the clone; 
   END FOR EACH clone; 
   Elitism - maintain the best antibody in the population 
   Population update - replace the other N – 1 antibodies in the

population by the N – 1 just-produced clones; 
END FOR I; 
Return the rule whose antecedent consists of the antibody with
the best fitness among all antibodies produced in all generations

       Next, each of the just-produced clones undergoes 
a process of hypermutation. This process follows the 
basic idea of [4], where the mutation rate is inversely 
proportional to the clone’s fitness (i.e., the fitness of its 
“parent” antibody). In other words, the lower the 
fitness (the worse a clone is), the higher its mutation 
rate. More precisely, the mutation rate for a given 
clone cl, denoted mut_rate(cl), is given by Equation 3: 
 

)))(1()(()(_ clfitclratemute −∗−+= αβα            (3) 
 
where α and β are the smallest and greatest possible 
mutation rates, respectively, and fit(cl) is the fitness of 
clone cl. The fitness of a clone is a number normalized 
between 0 and 1, as will be explained later, so that the 
above formula collapses to α when the clone has the 
maximum fitness of 1, and it collapses to β when the 
clone has the minimum fitness of 0. In our experiments 
we have set α and β to 20% and 50%, respectively – 
empirically-determined values. These numbers 
represent the probability that each gene (rule 
condition) will undergo mutation. Once a clone has 
undergone hypermutation, its corresponding rule 
antecedent is pruned. Finally, the fitness of the clone is 
recomputed, using the current training set. 

The next step consists of population updating. With 
the exception of the best antibody, which is preserved 
in the population by elitism, all the other N – 1 



antibodies in the current population are replaced by the 
just-generated N – 1 clones, in order to keep the 
population size constant. The population size was set 
to N = 50, and the number of generations was set to 50. 
These values were empirically determined. Finally, the 
algorithm returns the best evolved rule, which will 
then be added to the set of discovered rules. The best 
evolved rule consists of the rule antecedent (“IF part” 
of the rule) represented by the antibody with the best 
fitness, across all antibodies produced in all 
generations, and of the rule consequent (“THEN part” 
of the rule) containing the class associated with all the 
antibodies in the current AIS run.  

Note that the population updating method is 
essentially a generational one with elitism. This 
population updating method is often used in genetic 
algorithms, and it has the advantage of being a simple 
way to keep a constant population size. The algorithm 
also borrows from evolutionary algorithms the idea of 
tournament selection. However, it is an AIS that does 
not use crossover, is based on the immune-inspired 
principles of clonal selection and somatic 
hypermutation, and uses not only a fitness function but 
also an affinity function. In addition, it is an AIS 
tailored for discovering classification rules: not only its 
antibody encoding and fitness function are tailored for 
this task, but it also uses a stochastic rule pruning 
procedure which is very specific to this task. 
   
3.2.2 Fitness computation 
 
We now turn to the fitness function used by the AIS 
algorithm. The fitness of an antibody Ab, denoted by 
fit(Ab), is given by Equation 4:  

FPTN
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where the variables TP, FN, TN and FP have the 
following meaning:  
• TP = number of true positives, i.e. number of 

examples satisfying the rule and having the same 
class as predicted by the rule;  

• FN = number of false negatives, i.e. number of 
examples that do not satisfy the rule but have the 
class predicted by the rule; 

• TN = number of true negatives, i.e. number of 
examples that do not satisfy the rule and do not 
have the class predicted by the rule; 

• FP = number of false positives, i.e. number of 
examples that satisfy the rule but do not have the 
class predicted by the rule. 

 
This fitness function was proposed by [12] and has 

also been used by other evolutionary algorithms for 

discovering classification rules [8,13]. However, in 
most projects using this function the discovered rules 
are crisp, whereas in our work the rules are fuzzy. 
Hence, in this work the computation of the TP, FN, TN 
and FP requires, for each example, measuring the 
degree of affinity (fuzzy matching) between the 
example and the rule, as described in section 3.1.  
 
3.3. Classifying examples in the test set 

 
The rules induced from the training set are used to 

classify new examples in the test set (unseen during 
training) as follows. For each test example, the system 
identifies the rule(s) activated for that example. Recall 
that a rule j is activated for example k if the affinity 
between j and k is greater than the affinity threshold 
for rule j.  

When classifying a test example, there are three 
possible cases. First, if all the rules activated for that 
example predict the same class, then the example is 
simply assigned to that class. Second, if there are two 
or more rules predicting different classes activated for 
that example, the system uses a conflict resolution 
strategy consisting of selecting the rule with the 
greatest value of the product of the affinity between 
the rule and the example (Equation 1) by the fitness of 
the rule (Equation 4), i.e., it chooses the class C given 
by Equation 5: 

)(max jjjj FitAfinCC ×==      (5) 

Third, if there is no rule activated for the example, 
the example is classified by the “default” rule, which 
predicts the most frequent class in the training set.  

 
4. Computational results 

 
The proposed algorithm was evaluated in 6 public 

domain data sets: BUPA, CRX, Wisconsin Cancer, 
Votes, Hepatities, Ljubljana Cancer. These data sets 
are available from the well-known UCI repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html). 
The experiments used a well-known method for 
estimating predictive accuracy, namely 5-fold cross-
validation [9]. 

Table 1 shows the number of continuous and 
categorical attributes for each data set (recall that only 
continuous attributes are fuzzified). Note that the 
Votes data set does not have any continuous attribute 
to be fuzzified. This data set was included in the 
experiments to evaluate IFRAIS’ performance in the 
“degenerated” case of discovering crisp rules only.  

Table 2 shows the average accuracy rate in the test 
set (computed by cross-validation) for IFRAIS and for 
C4.5Rules, a very popular data mining algorithm for 



discovering (crisp) classification rules [14]. The 
numbers after the “±” symbol are the standard 
deviations. For each data set, the highest accuracy rate 
between the two algorithms is shown in bold.  
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