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Abstract: This paper describes a biomolecular classification methodology based on Multilayer Perceptron (MLP) 

neural networks. The developed system is used to classify enzymes found in the Protein Data Bank. The primary goal of 

classification, here, is to infer the function of an (unknown) enzyme by analysing its structural similarity to a given 

family of enzymes. A new codification scheme was devised to convert the primary structure of enzymes into a real-

valued vector. The system was tested with different number of neural networks, training set sizes and training epochs. 

For all experiments, the proposed system achieved a higher accuracy rate when compared with profile hidden Markov 

models (HMMs). Results demonstrated the robustness of this approach and the possibility of implementing fast and 

efficient biomolecular classification using neural networks. 
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Introduction 
Molecular biology is a field that has experienced dramatic developments in recent years. A large 

number of data are constantly being generated thanks to several genome-sequencing projects 

throughout the world. However, little information can be readily extracted from these data and, 

therefore, data analysis has became a central issue in molecular biology (Hu 1998). The analysis 

includes methods and algorithms for pre-processing, visualisation, knowledge discovery and data-

mining of genomic and proteomic data. 

A vertiginous increase in the rate at which new protein structures are discovered has taken 

place as a by-product of ongoing sequencing projects. Therefore, more efficient methods for protein 

analysis, including classification, are necessary. The protein classification problem lies not in 

predicting the function or the secondary/tertiary structure of a new protein. Instead, researchers seek 

to be able to classify a new protein as belonging to a given family with previously known 

characteristics. From this they hope to infer its function and structural characteristics. Most proteins 

share similar structures (in particular, their primary structures), since many of them have a common 



UNFORMATTED PREPRINT – Applied Bioinformatics, v. 3, n. 1, p. 41-48, 2004 

 2

evolutionary origin (Murzin et al 1995). On the other hand, proteins of unrelated families can also 

have structures in common. This two-fold nature of structure makes protein classification difficult. 

Enzymes are a subclass of proteins that are specialised in catalytic activity (Lehninger et al 

1998a). They are large and complex molecules, present in all living beings, and play an essential 

role in biochemical reactions. They control several vital functions, including many metabolic 

processes that convert nutrients into energy and into other products necessary to cell functioning. 

Artificial NNs (Fausett 1994) have been used to solve complex problems in several areas, 

such as engineering, computer science and bioinformatics (Narayanan et al 2002). Amongst other 

applications, NNs are particularly suitable for pattern recognition. In this work, we have developed 

a neural network (NN)-based system for enzyme classification using a Multilayer Perceptron 

(MLP).  

 

Background 
Molecular biology 
Proteins are composed of amino acids connected by peptide bonds. The primary structure of 

proteins is regarded as the linear sequence of amino acids in a polypeptide chain. Proteins can be 

grouped into families and these families into superfamilies according to features – such as 

hydrophobicity, composition, structure, length, three-dimensional shape, and electric charge (eg 

isoelectric point) (see Murzin et al 1995, Lehninger et al 1998a)  – with the objective of establishing 

the common biological functions.  

The amino acid sequence of a protein ultimately determines its function. Proteins usually 

have segments in their sequence of amino acids known as motifs (Attwood et al 1996) that are 

crucial for their biological functions, and that can be used for their identification. 

There are 20 different types of amino acids (see Table 1) that are combined in a linear 

sequence, which has the necessary information to generate a unique three-dimensional structure. 

Theoretically, the number of possible combinations of amino acids is infinite (Lehninger et al 

1998b). Amino acids, in turn, vary in the side chain. The physical and chemical properties of the 

side chains of the amino acids of a protein (for instance, the fact that some of them have affinity 

with water) are important for the folding of the protein and its function. Like the proteins that make, 

amino acids can be classified in several ways, such as by electric charge, molecular weight and 

hydrophobicity. Kyte and Doolittle (Kyte and Doolittle 1982) proposed a hydrophobicity scale for 

all 20 amino acids ranging from –4.0 (most hydrophilic) to +4.5 (most hydrophobic). This scale is 

shown in Table 1, where it can be seen that amino acids can be also categorised as hydrophobic, 

neutral or hydrophilic. 
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Protein databases and classification 
There are many molecular biology databases available in the Internet, such as Swiss-Prot, PIR, 

InterPro, ProDom, Protein Data Bank (PDB). In our study, we extracted the information about 

primary structure from PDB – an international repository of information about the three-

dimensional structure of biological macromolecules. The contents of this database come from X-ray 

crystallography and nuclear magnetic resonance imaging. Figure 1 shows an example of data 

extracted from a PDB file: the primary structure of the enzyme 1CBH (C-terminal domain of 

cellobiohydrolase I; code: E.C.3.2.1.91) that belongs to Hydrolase family of enzymes and has only 

36 amino acids. 

Although, as yet, there is not consensus about protein classification, several properties can 

be used for this purpose, such as composition, number of side chains, 3-D folding shapes or 

biological function (Lehninger et al 1998a). Another classification was proposed by (Murzin et al 

1995) that presents a model based on the protein domain. Many computational techniques have 

been used to classify proteins into families, such as structural transformations (Ohkawa et al 1996), 

data compression (Chiba et al 2001), genetic programming (Koza 1997) and Markov chains (Eddy 

1998). They have demonstrated limited applicability and results. However, few studies published in 

the recent literature have applied NNs to protein classification. This approach has gained some 

attention in the analysis of molecular sequences. For instance, Wang et al (2000) proposed a new 

technique to extract data from proteins with a Bayesian NN for classification. Wu et al (1990) 

explored the informative segments of sequences and used a three-layer NN with a backpropagation 

algorithm for classification.. 

 

Artificial neural networks 
An artificial NN is a computational model that mimics the functioning of the human brain by using 

a set of simple processing units. Every processing unit of an NN represents a neuron, which is 

interconnected with other neurons. A weight is assigned to each connection between neurons, and it 

represents the influence of one neuron on the other. Every neuron processes only local data received 

through its input connections and has a unique output that is fed to other neurons. The emergent 

intelligent behaviour of an NN comes from the interactions, between its processing units, that occur 

when it is presented with input data (Fausett 1994). 

A processing unit, as proposed by McCulloch and Pitts in 1943 (Figure 2), can be 

summarised in the following way. The inputs of the processing unit, X1, X2, ···, Xt, are  multiplied by 

weights W1, W2, ···, Wt that indicate the influence of each input on the output (Y) of the processing 

unit. Then, the weighted inputs are summed, producing an activity level for the processing unit. If 

this activity level exceeds a given threshold, the processing unity produces a predefined output 
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(usually, not zero). Most NN models have a training rule, such that the weights are iteratively 

adjusted according to the input (training) patterns. In other words, NNs usually learn by example. 

A typical NN architecture is shown in Figure 3, where a feedforward network of 

interconnected neurons (processing units) is organised in layers. The input layer is where input data 

is presented to the NN; hidden layers are where most processing effort takes place; the output layer 

is where the final result is available. An NN is specified by its topology (number of layers, number 

of processing units per layer and connectivity among them), by the transfer function of the 

processing units and by its training procedure. 

The training procedure is critical for the NN to accomplish its purpose. Usually, training is a 

supervised procedure, in which a set of input-output patterns (a training set) is presented to the NN 

and the computed result is compared to the actual value. The difference is used to update the 

weights of each layer using the generalised delta rule. This training algorithm is known as 

‘backpropagation’. After several training epochs, when the error between the actual output and the 

computed output is less then a previously specified value, the NN is considered trained. The 

knowledge learnt by an NN is effectively represented by the set of weights, that is, the strength of 

the connections between neurons. Once trained, the NN can be used to process new data, classifying 

them  according to its acquired knowledge. 

 

Sequence encoding 
The natural encoding of the primary structure of proteins is a string of letters. However, this 

encoding is not appropriate for NNs, since it demands numerical (and preferably, normalised) 

inputs. Therefore, proteins have to be encoded in a more suitable way. 

Proteins – including enzymes, in general, are composed by a variable number of amino 

acids, from tens to thousands. The encoding process proposed here allows differently sized enzymes 

to be processed by a predefined, fixed-size NN, as shown in the following sections. 

The core of the encoding procedure is the conversion of a string of amino acid symbols 

(letters) into a real-valued vector. This was accomplished using the Kyte and Doolittle 

hydrophobicity scale shown in Table 1. The converted values were normalised in the range 0.05 – 

1.00, in steps of 0.05. 

 

The neural network system 
Once the encoding scheme is defined, the next step is the construction of the NN system for 

classification. In this work, we consider that there can be n different classes (numbers of families of 

enzymes), and in each class there can be m cases (number of enzymes). The length of a given 
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sequence Sij is defined as   λij (i=1···n; j=1···m). For the sake of simplification, we considered that all 

classes in the training set (TS) have the same m. But, in the evaluation set (ES) this was not 

necessary, as will be shown. 

The proposed system uses not one, but a set of NNs for processing the inputs. Each NN of 

the set is responsible for a segment of the sequence. The architecture of the NNs is fixed and 

defined a priori as a three-layer perceptron (MLP). The number of NNs used is as a function of the 

length of the sequences of the training set and the partition size (t, number of amino acids into 

which the sequences will be broken) chosen for the problem. The size of t will also be the number 

of inputs per NN and is a user-defined parameter. Each sequence of the TS is divided into k subsets 

of amino acids, according to equation (1). 

k = t−1. max
i=1..n; j=1..m

λij( )                                                                        (1) 

The result of equation (1) is rounded down to the nearest integer. That is, the fraction related to the 

end of the sequence is ignored. The system also ignores any sequence whose length is smaller than  

t.  

The number of NNs of the neural system is k. Every NN will process data from the 

corresponding partition, so that the first partition of the sequences will be processed by the first NN, 

the second partition, by the second NN, and so on. 

This procedure determines the number of NNs and their size. The topology, as mentioned 

before, is fixed, using a MLP, and is represented by the ratio of three parameters x:y:z. The first 

parameter is the number of neurons in the input layer, here, t. The second parameter is the number 

of neurons in the hidden layer, set to 2t + 1, as usual (Fausett 1994). The last parameter is the 

number of neurons of the output layer, corresponding to the number of classes of the classification 

problem, that is, n. Figure 4 depicts the neural system proposed. 

Because sequences in the training set usually have different lengths, the number of training 

cases  (protein fragments) will be different for each NN of the neural system. Therefore, each NN 

will contribute differently to the final result. Accordingly, a classification weight (cw) is defined as 

a function of the number of training cases for each NN. Several schemes could be devised to 

compute cw for each NN. The easiest method is simply to count the number of protein fragments 

used for the training set. A higher number of instances in the training of a given NN, will merit 

more confidence to the classification. The set of cw will be used further in the classifier module 

during evaluation. 

Figure 5 shows an example of the approach. Suppose that there are two classes (n=2), each 

class with five sequences (m=5). Suppose, also, that the longest sequence (S12) has 285 amino acids. 

Using an arbitrary t, say 40, equation (1) gives the number of partitions (NNs, k) as 7. Therefore, 

the neural system for this example is composed by 7 NNs, with topology 40:81:2. If the set of 
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sequences of Figure 5 were used as the training set, the first NN (k=1) would be trained with 10 

protein fragments (5 of each class); the second NN with 8; the third NN with 7, and so on. As 

mentioned before, each NN contributes differently to the final result of the classifier, therefore 

justifying the classification weights (cw) in the last line of Figure 5. 

The output vector of an NN is the current activations of the neurons in the output layer, for a 

given input pattern. Here, all NNs were trained with a backpropagation algorithm that considered 

outputs as binary. That is, for the example of Figure 5, an input pattern belonging to the first class 

should have an output vector (1 0); conversely, if the input pattern belongs to the second class, the 

output should be (0 1). 

 

The classifier module 
The test of the neural system (as part of training), as well as the classification of new, unseen 

proteins was done as follows. First, it was assumed that the proteins are codified in the same way as 

the training set. Then, the sequence was partitioned into segments of t amino acids. The first 

segment was submitted to the first NN, the second segment to the second NN, and so on. If, for a 

given sequence, the length of the sequence was longer than k · t (Sij  > k · t), then all amino acids 

after the k · t-th position were ignored. The output vector of all NNs was the input to the classifier 

module. The set of all NNs outputs was considered to be a single, n x k matrix, called Y, where 

column i represented the output vector of the i-th NN. Also, the set of all classification weights 

were considered as an n x 1 vector (cw). The final classification performed by the classifier module 

is given by equation (2), and is the maximum value of the product between matrix Y  and vector cw: 
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Enzyme classification 
A number of experiments were done to test the performance of the NN system in the protein 

classification problem. The following issues were investigated: the classification performance of the 

proposed system using a large dataset (of enzymes); the influence of the size of the training set in 

the learning process of the NNs; the number of NNs necessary for a satisfactory balance between 

computational time and classification performance. 
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For all experiments related, we used the same topology for all neural networks: a 40:81:6 

MLP using backpropagation. Every NN was trained for 300 epochs with a learning rate (α) of 0.1. 

The NN system was implemented using MATLAB® version 5.3 (MathWorks Inc, Natick, MA, 

USA) and the classifier software was written using the Delphi programming language, version 5.0 

(Borland Corp, Scotts Valley, CA, USA). The commented source code in MATLAB® is available 

in http://bioinfo.cpgei.cefetpr.br/en/softwares.htm. The source of data for the experiments was the 

primary structure of proteins found in PDB (http://www.rcsb.org/pdb/), release 102 (october/2002). 

 

Classification performance 
For this experiment, we used a whole enzyme superfamily extracted from PDB. A total of 8339 

enzymes were used, divided into six families. Table 2 summarises the data used for the TS and the 

ES. 

All the results reported were obtained by performing a modified five-fold cross-validation 

procedure (Hand 1997). First, a given number of proteins were randomly drawn from the dataset 

(see TS in Table 2) for each of the six families. The sum of these samples constituted the TS (600). 

All the other proteins were allocated to the evaluation set (7739). Then, the neural system was 

trained and later evaluated using this partition. The accuracy rate on the ES was computed as the 

ratio of the number of correctly classified proteins to the total number of proteins, as is standard in 

the literature. Next, a new sampling was taken from the dataset to form another TS and ES, and the 

training and evaluation processes were repeated. This procedure was repeated five times and the 

final results were reported as the averaged accuracy rate over these five runs. 

The performance of our proposed neural system was compared with a classification 

procedure based on hidden Markov models (HMMs). For this purpose, we used the software 

package HMMER 2.2 (http://hmmer.wustl.edu/) that uses HMMs (Eddy 1998). HMMs are a well-

known statistical modelling technique frequently applied to the analysis of time series and 

biological sequences (Eskin et al 2003). We stress that our neural system and the HMMER were 

given exactly the same training and evaluation sets in each of the five runs of the cross-validation 

procedure, making the comparison as fair as possible. 

The use of HMMER for protein classification encompasses three steps. First, a multiple 

sequence alignment is done using the TS. For this purpose we used the software ClustalX, version 

1.81 (http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html), for generating six files (one for 

each class) with the multiple alignment of the proteins. The second step is building a HMM that 

represents each class of the TS. This was done using as input the pre-aligned file mentioned before 

and the module HMMBUILD. This program creates a ‘profile HMM’ for the family based on the 

examples given. Additionally, we used HMMCALIBRATE to optimise the generated models, so as 
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to improve the classification performance. Finally, the third step is the classification of the ES using 

the profile models generated. This was done using HMMPFAM. 

The results of these experiments, regarding classification accuracy, are shown in Tables 3 

and 4 for our neural system and for HMMER, respectively. The last column of these tables shows 

the averaged accuracy rate for the fivefold cross-validation, together with the standard deviation. 

The number of NNs trained in the five partitions was different, as expected, owing to the different 

lengths of the enzymes in each partition. The number of NNs for each partition, according to the 

procedure explained in section on The Neural Network system, was (in order) 240, 145, 145, 344 

and 245. 

The use of accuracy rate to assess classification performance is standard in the classification 

literature (Hand 1997), but sometimes this measure can be misleading since it does not discriminate 

between positive and negative cases. That is, the accuracy rate is the sum of the correctly classified 

cases. Another useful way to measure a system’s classification performance is using ‘sensitivity’ 

and ‘specificity’, two indicators commonly used in medical and life sciences. These measures are 

frequently used in two-class problems, but can be readily adapted for multiclass problems, as will 

be shown. 

When using a system for classifying a protein of unknown class, depending on the class 

predicted by the system and on the actual class of the protein, one of the following four types of 

result can be observed: 

• True positive (TP) – the system predicts that the protein belongs to a given class and the protein 

really does belong to that class;  

• False positive (FP) – the system predicts that the protein belongs to a given class but, in fact, it 

does not belong to it; 

• True negative (TN) – the system predicts that the protein does not belong to a given class, and 

indeed it does not belong to it;  

• False negative (FN) – the system predicts that the protein does not belong to a given class but, 

in fact, the protein does belong to it. 

Based on these parameters, sensitivity (Se) and the specificity (Sp) can be defined as 

follows: 

)/( FNTPTPSe +=                                          (3) 

)/( FPTNTNSp +=                                                           (4) 

Sometimes sensitivity and specificity are called true positive rate and true negative rate, 

respectively. Sensitivity measures the ability of the classifier system to correctly assign a protein to 

its real class. In the other hand, specificity measures the ability of the system to reject a given 

protein as belonging to a class to which it does not belong. 
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Using the same data partitions and cross-validation as before, sensitivity and specificity 

were computed for both our NN system (Table 5) and HMMER (Table 6). According to the results, 

the proposed NN system can be successfully applied to the task of biomolecular data classification, 

showing, on average, better results when compared with HMMs, regarding predictive accuracy. The 

high standard deviation values for most classes using HMMs reveal that this method is strongly 

dependent on the training set and has a reduced generalisation capability, one of the strengths of the 

NNs system. 

For both approaches, specificity values were always higher than sensitivity. This means that 

both systems are more efficient at predicting when a given protein does not belong to a class than 

the opposite. Again, the NN system performed better than HMMER, when the values for both 

sensitivity and specificity are taken into account. 

 

Training set sizing 
Since the NN system demonstrated satisfactory performance in classifying proteins with the enzyme 

dataset, a further study was done to analyse the influence of the size of the training set. A significant 

amount of effort is spent in training an NN. The main parameter that affects the training time of an 

NN is the number of proteins in the training set. Therefore, efforts to reducing its size are worthy, 

provided the accuracy performance is kept at a satisfactory level. 

In the experiments of the previous section, the size of the training set for each family was 

100 proteins (see Table 2). The experiments were repeated, using the enzymes dataset with the 

same number of partitions, but with only 50 proteins per family in the TS, extracted at random from 

PDB, and the rest were assigned to the evaluation set. Results of this experiment are shown in Table 

7, and can be compared with those reported in Table 3. 

 

Neural system sizing 
As mentioned previously, the number of NNs in our neural system is a function of the length of the 

sequences being processed (equation (1)). In the previous experiments, we used from 145 to 344 

NNs. Since the computational time for training the NNs is a function of the number of NNs 

themselves, we were interested in investigating the decrease in performance of the system when the 

number of NNs is arbitrarily decreased. 

Using the same data and partitions shown in Table 2, we calculated the average length for 

each partition of the training set, as shown in Table 8. Using the average size of the proteins, we 

divided this value by the number of input neurons in our NNs (note that we used a fixed topology of 

40:81:6). Therefore, the suggested number of NNs in the neural system was 20 (rounded up). The 

same experiments reported in Table 3 were repeated (with 100 proteins per class), but now using 
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only 20 NNs for the neural system. When the results from those experiments (presented in Table 9) 

were compared with those in Table 3, there was no significant difference in performance when 

fewer NNs were used. 

 

Conclusions 
This paper we presents a new approach for the protein classification problem using NNs and 

information from the primary structure of proteins. In this system, proteins are encoded into a real-

valued vector using the Kyte and Doolittle hydrophobicity scale. Another key point is that we used 

a set of NNs and a weighting system. 

The accuracy rate of the NN system was compared with HMMER for a dataset with six 

classes of enzymes. For all classes, the NN system outperformed HMMER (74.6 % versus 44.5 %, 

on average). Considering sensitivity and specificity, both systems (NN system and HMMER) were 

consistent, displaying better performance at identifying negative cases (proteins not belonging to 

the class being considered) than positive ones. Notwithstanding, the average sensitivity and 

specificity of the proposed NN system were better than HMMER. As expected, HMMs are very 

sensitive and dependent on the TS. For our experiments, they had poor generalisation capability, 

one of the evident advantages of the NN system. 

The accuracy rate of the system decreased from 74.6 % (on average) to 63.6 % when the 

number of training proteins was decreased from 100 to 50. This experiment shows how sensitive the 

proposed system is to the size of the TS. It is possible that the use of larger TSs can lead to better 

results, but this was not possible with the current dataset (see Table 2). 

Also, the robustness of the system was tested when a small number of NNs (20) was used, 

instead of the number calculated by equation (1). The accuracy rate of the system under these 

conditions was not significantly decreased. The main reason for the good performance was the 

weighting system used, which balanced the importance of the output of each NN for the final 

classification. 

Further research will include more experiments using other datasets (drawn from SwissProt, 

for instance) and the study of the NN system’s performance with a growing number of classes. We 

speculate that further use of the system here described could include determining the functional 

class of a recently discovered protein, without prior knowledge of its structural aspects. Also, in the 

emerging field of de novo protein design, a NN system like the one described herein could be 

useful, either alone or ‘in tandem’ with other methods such that proposed by Wei et al (2003). 
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Figure 1  Primary structure of enzyme 1CBH, belonging to Hydrolase family, with only 36 amino acids. 
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Figure 2  McCulloch and Pitts (1943) processing unit for NNs. 

 

 
Figure 3  Feedforward NN organised in layers. 
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Figure 4  Generic representation of the neural system built with k three-layer NNs. Each NN has t neurons in 

the input layer, n in the output layer, and 2t+1 neurons in the hidden layer (topology t:2t+1:n). 

 

 
Figure 5  Example of the training set, showing how the number of partitions and the classification weights 

(cw) are obtained for neural networks with an arbitrary number of inputs (t). 
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Table 1  Kyte and Doolitle (K&D) hydrophobicity scale and the normalised scale used in the neural system 

Amino acid 

name symbol 

K&D 

scale 

Normalised 

value 

Type 

Isoleucine I +4.5 0.05 Hydrophobic 

Valine V +4.2 0.10 Hydrophobic 

Leucine L +3.8 0.15 Hydrophobic 

Phenylalanine F +2.8 0.20 Hydrophobic 

Cysteine C +2.5 0.25 Hydrophobic 

Methionine M +1.9 0.30 Hydrophobic 

Alanine A +1.8 0.35 Hydrophobic 

Glycine G -0.4 0.40 Neutral 

Threonine T -0.7 0.45 Neutral 

Serine S -0.8 0.50 Neutral 

Tryptophan W -0.9 0.55 Neutral 

Tyrosine Y -1.3 0.60 Neutral 

Proline P -1.6 0.65 Neutral 

Histidine H -3.2 0.70 Hydrophilic 

Glutamine Q -3.5 0.75 Hydrophilic 

Asparagine N -3.5 0.80 Hydrophilic 

Glutamic acid E -3.5 0.85 Hydrophilic 

Aspartic acid D -3.5 0.90 Hydrophilic 

Lysine K -3.9 0.95 Hydrophilic 

Arginine R -4.0 1.00 Hydrophilic 

 

Table 2  Size of the training set (TS) and evaluation set (ES)  of the enzyme families used in the experiments 

Class Family TS ES Total 

1 Oxidoreductases 100 1383 1483 

2 Transferases 100 1666 1766 

3 Hydrolases 100 3725 3825 

4 Lyases 100 575 675 

5 Isomerases 100 281 381 

6 Ligases 100 109 209 

Total 600 7739 8339 

 

 

 

 

 

 



UNFORMATTED PREPRINT – Applied Bioinformatics, v. 3, n. 1, p. 41-48, 2004 

 16

Table 3  Classification results for the NNs system 

Accuracy rate (%) 

Partition Family 

1 2 3 4 5 
Mean ± sd 

Oxidoreductases 85.7 86.7 84.3 80.8 72.4 81.9 ± 5.8 

Transferases 75.8 73.1 75.0 64.4 71.7 72.0 ± 4.5 

Hydrolases 74.4 73.7 77.2 76.6 64.6 73.3 ± 5.0 

Lyases 75.6 77.0 81.9 62.9 71.3 73.7 ± 7.1 

Isomerases 71.5 79.0 84.6 78.2 67.6 76.1 ± 6.6 

Ligases 76.1 79.8 56.8 68.8 70.6 70.4 ± 8.7 

Average 74.6 ± 7.02 

 
Table 4 Classification results for HMMER 

Accuracy rate (%) 

Partition Family 

1 2 3 4 5 
Mean ± sd 

Oxidoreductases 18.0 40.4 0.8 56.9 85.9 40.4 ± 33.2 

Transferases 30.4 19.9 34.4 31.9 0.78 23.5 ± 13.8 

Hydrolases 46.3 51.3 64.5 62.8 31.4 51.3 ± 13.4 

Lyases 63.4 40.0 27.1 32.3 29.2 38.4 ± 14.8 

Isomerases 68.6 66.5 49.8 50.5 58.0 58.7 ± 8.7 

Ligases 67.8 48.6 65.1 48.6 44.0 54.8 ± 10.8 

Average  44.5 ± 20.1 

 

Table 5  Sensibility and specificity for the NN system 

Family Sensitivity Specificity 

Oxidoreductases 82.0 ± 5.8 91.2 ±1.1 

Transferases 72.1 ± 4.6 92.5 ±3.3 

Hydrolases 73.3 ± 5.1 95.4 ±1.9 

Lyases 73.8 ± 7.1 95.7 ±0.9 

Isomerases 76.2 ± 6.7 96.9 ± 0.8 

Ligases 70.5 ± 8.8 97.2 ± 0.6 

Average 74.65 ± 7.0 94.82 ± 2.7 
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Table 6  Sensibility and specificity for HMMER 2.2 

Family Sensitivity Specificity 

Oxidoreductases 40.5 ± 33.2 73.6 ± 23.5 

Transferases 23.5 ± 13.9 93.1 ± 5.3 

Hydrolases 51.3 ± 13.5 82.6 ± 12.2 

Lyases 38.4 ± 14.8 95.2 ± 4.3 

Isomerases 58.7 ± 8.8 94.7 ± 5.3 

Ligases 54.9 ± 10.8 88.3 ± 15.9 

Average 44.50 ± 20.1 87.9 ± 14.3 

 

Table 7  Classification results for the NN system using 50 proteins per family in the training set 

Accuracy rate (%) 

Partition Family 

1 2 3 4 5 
Mean ± sd 

Oxidoreductases 55.5 72.8 75.5 65.3 61.0 66.0 ± 8.2 

Transferases 68.3 43.0 48.0 57.5 61.1 55.5 ± 10.1 

Hydrolases 59.6 59.3 56.7 68.7 51.4 59.1 ± 6.2 

Lyases 72.1 79.0 62.5 75.5 70.8 71.9 ± 6.1 

Isomerases 65.5 59.8 69.1 80.6 61.3 67.3 ± 8.3 

Ligases 65.4 66.7 57.8 69.8 48.4 61.6 ± 8.6 

Average 63.6 ±9.1 

 

Table 8  Average length of the proteins in the training set 

Partition 

1 2 3 4 5 
Average 

734.99 743.8 789.63 767.42 773.86 761.94 

 

Table 9  Classification results using 20 neural networks 

Accuracy rate (%) 

Partition Family 

1 2 3 4 5 
Mean ± sd 

Oxidoreductases 84.2 85.3 83.5 79.2 72.4 80.9 ± 5.2 

Transferases 76.2 74.2 75.8 65.0 71.8 72.6 ± 4.5 

Hydrolases 75.0 74.7 78.0 77.0 65.2 73.9 ± 5.0 

Lyases 74.2 77.7 82.2 64.0 72.0 74.0 ± 6.8 

Isomerases 71.8 79.0 85.0 77.9 66.1 75.9 ± 7.2 

Ligases 76.1 77.9 56.8 66.0 69.7 69.3 ± 8.4 

Average 74.4 ± 6.8  

 


