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Abstract 
 

This work reports the use of neural networks for 
pattern recognition in electroencephalographic signals 
related to intermittent photic-stimulation. Due to the low 
signal/noise ratio of this kind of signal, it was necessary 
the use of a spectrogram as a predictor and a chain of 
LVQ neural networks. The efficiency of this pattern 
recognition structure was tested for many different 
configurations of the neural networks parameters and 
different volunteers. A direct relationship between the 
dimension of the neural networks and their performance 
was observed. Results so far encourage new experiments 
and demonstrate the feasibility of the proposed system for 
real-time pattern recognition of complex signals. 
 
1. Introduction 
 

The identification of patterns in 
electroencephalographic (EEG) signals related to evoked 
potentials by intermittent photic-stimulation is a method 
for building a prosthetic keyboard. A prosthetic keyboard 
is a kind of  brain-computer interface (BCI) that permits 
seriously handicapped people to interact with the world 
using the few movements that he/she still has, sometimes 
only the eyes movement [6][10]. 

The use of intermittent photic-stimulation as the 
modulation factor of a BCI system [8] is possible thanks 
to a special characteristic of the retina: it concentrates the 
light sensitive cones in its central part (fovea). Also, the 
response of the visual cortex is larger for stimuli with 
spatial angle less than 2’ from the fovea. It is not possible 
to determine the color or the geometry of visual stimuli 
only by analysis of the EEG signal, but the presence of a 
dynamic stimulus is observable [10]. The problem is the 
automatic identification of such patterns in real-time. 

In the pattern classification of EEG signals, one of the 
factors that most influence the performance of the 
recognition system is the quality of the acquired signals. 
For complex signals with low signal/noise rate, like those 
from intermittent photic-stimulation, the recognition 
cannot be accomplished only with simple signal 

processing techniques. It is necessary to use more 
sophisticated non-linear techniques, such as neural 
networks. 

Techniques like averaging increases the signal/noise 
rate [7], evidencing the patterns to be recognized. 
However, these techniques usually cannot be applied to 
build real-time classification systems. In this paper it is 
shown the use of a spectrogram as a predictor and a chain 
of learning vector quantization (LVQ) artificial neural 
networks for recognition of the underlying patterns. 

Artificial neural networks have been widely used in 
pattern recognition of EEG signals [9]. However, the 
parameters to be used in training the neural networks are 
dependent of the nature and quality of these signals, as 
well as the purpose of the neural networks. For the 
determination of these parameters, an experimental 
procedure was conducted, training/validating the neural 
networks with several different configurations.  
 
2. Methodology 
 

A dedicated software for signal analysis, neural 
networks training and validation was developed using the 
Borland C++ Builder environment.  This software is able 
to analyze EEG signals of any length and sample rate, and 
allows the use of a chain of LVQ neural networks of any 
size with any frequency associated to each neural network. 
It also includes four different clustering methods. These 
features automate the project of a classification system for 
real-time operation. In the following, it will be presented 
the methodology for EEG signals processing and analysis. 
 
2.1. EEG Signal Acquisition 

 
The EEG signals were acquired from electrodes 

placed on volunteer“s scalp. The electrodes positioning 
were according to 10-20 electrodes system, recommended 
by the EEG International Federation [4]. Signals were 
acquired in differential mode using electrodes O2 and OZ 
with right ear lobe as reference. 

The data acquisition system used was composed by a 
signal amplifier and filter, a 10 bits, 16 channel data 



acquisition digital board model AT-MIO-16E-10 
(National Instruments, Austin), and a Windows-based 
synchronization and management acquisition software, 
developed in C++ language. Sampling rate was 512Hz. 

 
2.2. Spectrogram Computation 
 

A spectrogram represents the variation of the 
frequency spectrum of a signal along time. The 
spectrogram is computed using the Fast Fourier Transform 
(FFT) module of a rectangular window of 2N samples. 
This window is slid along time in s samples. A new FFT is 
calculated each time the window slides, compounding the 
spectrogram. For a signal of L samples with sample rate 
FS, the number IT of intervals presented in the spectrogram 
is given by equation 1, as well as the smallest frequency 
interval RF, given by equation 2. 
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Equations 1 and 2 show that there is a tradeoff 

between the time domain and the frequency domain 
accuracies. The bigger the FFT window size, the greater 
the accuracy in frequency domain, but the spectrogram 

will be divided in less time intervals. Conversely, if the 
number of points of the FFT decrease, the accuracy in the 
frequency domain will decrease, however, the 
spectrogram will have a greater number of smaller time 
intervals.  
 
2.3. LVQ Neural Network Organization 
 

Initially, the spectrogram of the EEG signal related to 
the intermittent photic-stimulation session is calculated. 
For each frequency component, a LVQ neural network is 
built to recognize the neurological activity present in the 
spectrogram, as shown in Figure 1. 

The training data for each LVQ neural network is 
obtained by a sliding window along time over the 
spectrogram, with a configurable size of m samples (for 
reference, 10 < m < 100). For each frequency component, 
in each instant of time, the m samples obtained with this 
window will compose an m-dimensional input vector to 
the corresponding neural network. These m-dimensional 
vectors, with their associated class (”with pattern„ class or 
”without pattern„ class) are used for training the neural 
network corresponding to the input frequency.  

Thus, the output of the neural networks can be 
combined so that the system gives a single information of 
which frequency component of the signal presents 
relevant neurological activity in each instant of time. 
 

 

m-dimensional
LVQ Neural Net

Frequency 0

m-dimensional
LVQ Neural Net

Frequency 1

m-dimensional
LVQ Neural Net

Frequency 2

m-dimensional
LVQ Neural Net

Frequency n

m-point
sliding
window

Combination
of the Neural
Nets Outputs

Recognized
Frequency

... ... ...

Spectrogram

Time

Fr
eq

ue
nc

y

Neural Nets Chain

Recognized
Patterns

...

...

...

...

Frequency 0

Frequency 1

Frequency 2

Frequency n

 
Figure 1 긔 Classifier structure 



 

2.4. Subclustering 
 

Clustering algorithms cannot be applied when the 
input samples were already classified. This is the case of 
EEG signals related to intermittent photic-stimulation 
where each segment of the training vectors is previously 
classified into two classes: ”with pattern„ and ”without 
pattern„. If a clustering algorithm were applied directly, 
this initial classification would be lost. Thus, it is 
necessary to cluster each class one by one. This method 
we call subclustering. 

The subclustering method consists in isolating the 
samples of a class in a new space, where they will be 
normally clustered with any regular algorithm. The 
software developed includes four different clustering 
algorithms: Threshold Order Dependent, Max-Min 
Distance Method, c-Means Iterative and ISODATA [2] 
[11]. For each cluster created in this new space it is given 
an attribute related to the class to which the samples 
belong. In the training process of the LVQ neural 
networks, each subcluster is considered an independent 
cluster. However, in the classification and performance 
evaluation phase, the cluster attribute is used to evaluate 
the neural networks efficiency. 

Therefore, it is possible to create a better decision 
surface for the classes, while using the same clustering 
and training algorithms for the neural networks. 

 
2.5. Experiments 
 

The intermittent photic-stimulation sessions related to 
the signals used in these experiments were composed by 
four different frequencies, all of then generated at the 
same time. To generate these stimuli an 8x8 LED matrix 
was used. This matrix was divided in 4 quadrants (one for 
each frequency), connected to a host computer, which 
generate appropriate time intervals to the matrix. 
Volunteers were instructed to stare at each quadrant for 4 
seconds, following a given order, composing a 16 second 
session. This procedure was repeated 20 times for each 
volunteer so as to have a large amount of data for training 
the neural networks. 

Figure 2 shows typical spectrograms of a signal to be 
analyzed, where axes x, y and z are, respectively, 
frequency, time and amplitude (of the FFT module). In 
this example, the volunteer was submitted to the following 
frequencies: 10Hz, 12Hz, 14Hz and 16Hz. 

 

  
(a) (b) 

Figure 2 긔  Spectrograms of a volunteer submitted to four windows (4 second each) of intermittent 
photic-stimulation: (a) average of 20 signals and (b) a single signal. 



 

The spectrogram showed in Figure 2a represents the 
average of 20 signals in the time domain. As can be seen, 
it presents well-defined peaks in the stimulation 
frequencies. However, for implementing a real-time 
system, it is not possible to use such averaging, but a 
single signal at a time. However, for a single signal as 
shown in Figure 2b (it corresponds to the same stimulation 
session of Figure 2a), it is not possible to distinguish the 
peaks using a simple threshold analysis. Considering that 
the signals to be analyzed in a real-time system are usually 
like that of Figure 2b, it is necessary to use a more 
efficient method to recognize the frequency patterns, such 
as the method presented here. 

Signals acquired in a session are divided into small 
files, each one containing data of only one stimulation 
frequency at a time, so as to form the training vector of the 
neural networks. To load these data into the software, each 
file is associated to its stimulation frequency, composing a 
table. According to this table, the data are then applied in 
the neural networks as described before. 

A subclustering algorithm is then applied (see section 
2.4) to compose the reference vector for each neural 
network. In our experiments, the c-Means method was 
used because it allows the prior determination of the 
desired number of clusters and also due to the 
performance attained in previous experiments.  

Finally, the neural networks are ready to be trained. 
The algorithm used to train the nets is the well-known 
LVQ1 method [1] [3] [5]. The learning factor was not 
decremented during epochs. Instead, it was set to a fixed 
low value (0.001). Previous experiments demonstrated 
that large number of epochs just caused an oscillation in 
the performance of the system. Therefore, the number of 
training epochs was limited to 50. The final result of the 
training is the subclusters set that gave the best 
performance throughout the training process (instead of 
the last subclusters set). 

 
3. Results 
 

The analyses were made in sessions with stimulation 
frequencies of 10Hz, 12Hz, 14Hz and 16Hz (similar to 
Figure 2) for 5 different volunteers. For one of the 
volunteers, two more different sessions were made, one 
with frequencies of 11Hz, 13Hz, 15Hz and 12Hz, and 
other with 11Hz and 15Hz alternately. Each session 
contains 20 files for each frequency. These files were 
randomly partitioned in two sets: 12 for training and 8 for 
validation.  

For each file, the spectrogram was computed for 1s 
windows (512 points), with sliding of 8 samples (with 
overlapping) and averaging a number of samples along 
time to eliminate noise (for reference, 0, 10, 20 and 50 
samples). This averaging causes a delay in the system, but 
can be easily accomplished in real-time.  

Several different configurations of neural networks 
were tested, changing each of the parameters individually 
for all signals of all volunteers. The ranges of parameters 
used were: 
• Dimension (input vector size): 10, 20, 50 and 100; 
• Subclusters per class: 5, 10, 20 and 40; 
• Averaged points in the spectrogram: 0, 10, 20 and 50. 

The combination of these parameters gives 64 
different possibilities. All these possibilities were tested in 
each of the 7 sessions of the 5 volunteers (recall that one 
volunteer had 3 sessions). Therefore, a total of 448 neural 
networks chains were trained. As explained before, each 
neural network chain has 4 neural networks, 
corresponding to the 4 frequencies present in each session 
(except for that volunteer that had 3 sessions, which had 
one session with only two frequencies). This gives a total 
of 1664 neural networks. All trainings were made by 50 
epochs with learning factor of 0.001. In the valuating 
procedures, the spectrograms were calculated with the 
same parameters of window size and averaging. 

For all volunteers, the results were analyzed plotting 
performance versus the variation of one of the three 
parameters described at a time, resulting in one graphic 
for each neural net of each chain. These results were 
averaged so as to evaluate the general performance of the 
system. 

Figure 3 shows the behavior of the average 
performance of the neural networks for one of the 
volunteers, related to frequencies 10Hz, 12Hz and 14Hz 
of a session similar to that in Figure 2. The same behavior 
of the curve is present in the analysis of results of almost 
all signals of all volunteers. 

 

 
Figure 3 - Variation of average performance 

against the dimension of the neural networks 

The other parameters analyzed in this work (number 
of subclusters per class and averaged samples on the 
spectrogram) did not present any significant change on the 
performance of the neural network chain. 

The increment in the dimension of the neural 
networks seems to decrement the influence of the number 
of subclusters per class in their performance, as the 



 

standard deviation of the performances decreases as the 
dimension increases. However, this behavior, reported in 
the majority of the neural networks, was not observed in 
neural networks associated with noisy components of the 
analyzed signals. 
 
4. Conclusions 
 

The EEG signals used in the experiments reported 
here were not acquired specifically for this purpose. In 
particular, the filter used in the EEG signals amplifier had 
a very irregular frequency response. As a consequence, 
the amplitude of the signal is not even for each frequency 
component. Possibly, this effect can explain the fact that 
some neural networks reported quite different 
performances for testing vectors (ranging from 50% to 
100%), when it was expected a much shorter variation. 
Therefore, it was difficult to observe a behavior pattern in 
the performance analysis of the neural networks with the 
variation of different parameters.  Overall, this situation 
stresses the necessity of a data acquisition system having 
the same frequency response for all stimulating 
frequencies of interest (flat transfer curve).  

Notwithstanding, it was possible to have preliminary 
results. The dimension of the neural networks turns out to 
be a very important parameter for the performance, 
showing that it is necessary to analyze a window with 
hundreds of milliseconds for a good performance. The 
number of subclusters per class had influence in neural 
networks of small dimensions, but has no effect in larger 
ones (50 or more dimensions). 

The neural network chains have demonstrated to be a 
good structure for the analysis of EEG signals related to 
intermittent photic-stimulation.  

As soon as more high quality data will be available, 
more experiments will be conducted mainly to investigate 
the influence of the other parameters in order to determine 
the best configuration of the LVQ neural networks. In the 
sequence, the next functional block that combines the 
result of all neural networks will be implemented. 
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