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Abstract—This paper proposes an algorithm for data mining on the values of some attributes (called predictor attributes) for
called Ant-Miner (ant-colony-based data miner). The goal of Ant- the case.
Miner is to extract classification rules from data. The algorithm is In the context of the classification task of data mining, dis-

inspired by both research on the behavior of real ant colonies and d k ledae is oft din the f "
some data mining concepts as well as principles. We compare the COVEre€a KNowledge Is often expressed in the TornFerHEN

performance of Ant-Miner with CN2, a well-known data mining  rules, as follows:

algorithm for classification, in six public domain data sets. The re-

sults provide evidence that: 1) Ant-Miner is competitive with CN2 IF < conditions > THEN < class > .
with respect to predictive accuracy and 2) the rule lists discovered
by Ant-Miner are considerably simpler (smaller) than those dis-

covered by CN2. The rule antecedentif part) contains a set of condi-

tions, usually connected by a logical conjunction operator
_Ir!dex Terms—Ant_ colony optimization, classification, data (AND). We will refer to each rule condition as a term, so
mining, knowledge discovery. that the rule antecedent is a logical conjunction of terms
in the form IF terml AND term2 AND.... Each term
|. INTRODUCTION is a triple < attribute, operator, value >, such as
S < Gender = female >.
N ESSENCE, the goal of data miningis to extract knowledge 1, 1 q consequentiyeN part) specifies the class predicted

frqm data. Data mining 1S an |nt_erd|SC|pI|r_1ary f'e@ \_Nhos% cases whose predictor attributes satisfy all the terms speci-
core is at the intersection of machine learning, statistics, 3094 in the rule antecedent. From a data-mining viewpoint, this
da\t:/\basesh 76 thatin d - lik lassical kind of knowledge representation has the advantage of being in-
e emphasize thatin data mining—uniike, e.g., classica Stt?ﬁtively comprehensible for the user, as long as the number of

tistics—the goal s to dlscovgr knowledge that is not only a%iscovered rules and the number of terms in rule antecedents are
curate, but also comprehensible for the user [12], [13]. Co ot large

Erehenji;:)ility Is impprtant(;/vht_aneverdidsc%vere: knowledge'\&vlll To the best of our knowledge, the use of ACO algorithms
€ used for supporting a ecision made by a human user. —[11] for discovering classification rules, in the context of
all, if discovered knowledge is not comprehensible for the us

. 4 . . ) ata mining, is a research area still unexplored. Actually, the
he/she will not be able to interpret and validate it. In this casg ly ant algorithm developed for data mining that we are aware

probably the user will not have sufficient trust in the discovere is an algorithm for clustering [17], which is a very different

knowled_g_e to use it for decision making. This can lead to InCOﬂ'ata-mining task from the classification task addressed in this
rect decisions. aper

There are several data mining tasks, including classificaticﬁ'l, e believe that the development of ACO algorithms for data

regression, clustering, dependencg modeling, etc. [12]. Eac }:\i/ng is a promising research area. ACO algorithms involve

these ta§k§ can be regarded as akind of.problem'to be .SOIYe@, ple agents (ants) that cooperate with one another to achieve

a data mining algpnthr_n. Thergfore, t_he first step in de_5|gn|ng h emergent unified behavior for the system as a whole, pro-

data mining algorithm is to define which task the algorithm wil ucing a robust system capable of finding high-quality solutions

addres_s. Lo for problems with a large search space. In the context of rule dis-
In this paper, we propose an ant colony optimization (AC overy, an ACO algorithm has the ability to perform a flexible

?lgtzr'tklm I[<l?£1 [11] flo'r t?e cla.SS|f|cat|?1n task obeat? mmmgrobust search for a good combination of terms (logical condi-
n ¢ IS ast, N g(l)a IS otasf3|gn tea:c: c?jsef_ (Odjef ’ recorb 1i8h ) involving values of the predictor attributes.
Instance) to one class, out of a set of predefined classes, bas e rest of this paper is organized as follows. Section I

presents a brief overview of real ant colonies. Section IlI dis-
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II. SocIAL INSECTS ANDREAL ANT COLONIES 3) When an ant has to choose between two or more paths, the
| | f ial i ; h s b d path(s) with a larger amount of pheromone have a greater
n a colony of social insects, such as ants, bees, wasps, an probability of being chosen by the ant.

termites, each insect usually performs its own tasks mdepen-AS aresult, the ants eventually converge to a short path, hope-

dently from othe_r memb_ers of the colony. However, the t""Sliﬁlly the optimum or a near-optimum solution for the target
performed by different insects are related to each other E

) PPoblem, as explained before for the case of natural ants.
such a way that the colony, as a whole, is capable of solvi

. VINg|, essence, the design of an ACO algorithm involves the spec-
complex problems through cooperation [2]. Important SUNVIVale . ~tion of 2]

i
lated bl h lecti d picki teri lf
refatec probiems SUCH as selecing and picking up ma erlas'1) an appropriate representation of the problem, which al-

and finding and storing food, which require sophisticated I th tstoi all truct/modi luti
planning, are solved by insect colonies without any kind of ows the ants to Incrementatly constructimo ify solutions
through the use of a probabilistic transition rule, based

supervisor or centralized controller. This collective behavior th t of oh in the trail and local
which emerges from a group of social insects has been called on the amount of pheromone in the trail and on a loca
“swarm intelligence” [2]. problem-dependent heuristic;
Here, we are interested in a particular behavior of real ants,z) aemigot('jotr?s?ﬁ;?:ri fgeafpnn;:;ug;? c())frl\(/jas“'? Z?gj:ggf_’
namely, the fact that they are capable of finding the shortest path \-€., SOl gatinthe real-w tuatl
responding to the problem definition;

between a food source and the nest (adapting to changes in th o X

environment) without the use of visual information [9]. This in- S) &grol?;i:n'gﬁf:mngfaér f:rzlzgcggggg?o)fr::tchrigit”ZTtial
triguing ability of almost-blind ants has been studied extensively | cz ] y P

by ethologists. They discovered that, in order to exchange in-4) ;Saorldlf?(’)r heromone undatina. which specifies how to
formation about which path should be followed, ants communi- modify thep heromone tlroa'lr()' 9 P

cate with one another by means of pheromone (a chemical sub- ' P ',

stance) trails. As ants move, a certain amount of pheromone iss) a probaplllgtlc transmon rule based on the value of
the heuristic functionsf) and on the contents of the

dropped on the ground, marking the path with a trail of this sub- X . . )

star?ci:)e. The mogr]e ants follow g giveFr)1 trail, the more attractive pherqmone rail{) that is used to iteratively construct a

this trail becomes to be followed by other ants. This process can _sfo_lut|on. S

be described as a loop of positive feedback, in which the prob_ArtlflmaI ants have several characteristics similar to real ants,

ability that an ant chooses a path is proportional to the numBEMely:

of ants that have already passed by that path [9], [11], [23]. 1) artificial ants have a probabilistic preference for paths
When an established path between a food source and the ants’  With a larger amount of pheromone;

nest is disturbed by the presence of an object, ants soon try to g&) shorter paths tend to have larger rates of growth in their

around the obstacle. First, each ant can choose to go around to amount of pheromone;

the left or to the right of the object with a 50%—-50% probability 3) the ants use an indirect communication system based on

distribution. All ants move roughly at the same speed and de- the amount of pheromone deposited on each path.

posit pheromone in the trail at roughly the same rate. Therefore,

the ants that (by chance) go around the obstacle by the shortest V. ANT-MINER—A NEW ACO ALGORITHM

path will reach the original track faster than the others that have FOR DATA MINING

followed longer paths to circumvent the obstacle. As a result

pheromo_ne accumulates faster in the_shor.ter path around theéjgbrithm for the discovery of classification rules, called

stacle. Since ants prefer to follow trails with larger amounts o

|qt-Miner. The section is divided into five sections, namely,
pheromone, eventually all the ants converge to the shorter paf general description of Ant-Miner, heuristic function, rule

pruning, pheromone updating, and the use of the discovered
l1Il. ANT COLONY OPTIMIZATION rules for classifying new cases.

'In this section, we discuss in detail our proposed ACO

An ACO algorithm is essentially a system based on agems General Description of Ant-Miner
that simulate the natural behavior of ants, including mechanism
of cooperation and adaptation. In [10], the use of this kind T
S-‘/Stefn as anew _m(_ataheunstlc was prop_osed in order to SH¥&blem is the discovery of classification rules. As discussed in
combinatorial optimization problems. This new metaheurist fie introduction. each classification rule has the form
has been shown to be both robust and versatile—in the sense '

that it has been applied successfully to a range of different comyy; < terml AND term2 AND ... > THEN < class > .
binatorial optimization problems [11].

SnanACO algorithm, each antincrementally constructs/mod-
es a solution for the target problem. In our case, the target

ACO algorithms are based on the following ideas. Each term is a triplec attribute, operator, value >, where
1) Each path followed by an ant is associated with a candialue is a value belonging to the domain aifsribute. The op-
date solution for a given problem. erator element in the triple is a relational operator. The current

2) When an ant follows a path, the amount of pheromomnersion of Ant-Miner copes only with categorical attributes, so
deposited on that path is proportional to the quality of thihat the operator element in the triple is always™Continuous
corresponding candidate solution for the target problenfreal-valued) attributes are discretized in a preprocessing step.
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A high-level description of Ant-Miner is shown in Algo-  pheromone evaporation);
rithm 1. Ant-Miner follows a sequential covering approach to IF ( R, is equal to  R,_;) /* update convergence
discover a list of classification rules covering all, or almost all, test
the training cases. At first, the list of discovered rules is empty THENj = j + 1;
and the training set consists of all the training cases. Each ELSE j = 1;
iteration of thewHILE loop of Algorithm I, correspondingtoa END IF
number of executions of thREPEAT-UNTIL loop, discovers one ¢ =1+ 4 1;
classification rule. This rule is added to the list of discoveredNTIL (¢ > No_of_ants) OR (j > No_rules_converg)
rules and the training cases that are covered correctly by th@hoose the best rule Ryee among all rules R,
rule (i.e., cases satisfying the rule antecedent and having theonstructed by all the ants;
class predicted by the rule consequent) are removed from theld rule R,... to DiscoveredRuleList;
training set. This process is performed iteratively while theTrainingSet=TrainingSet-{set of cases correctly
number of uncovered training cases is greater than a user-specevered by  Ri...};
ified threshold, calledMlax_uncovered _cases. END WHILE
Each iteration of th&@EPEAT-UNTIL loop of Algorithm | con-
sists of three steps, comprising rule construction, rule pruning,
and pheromone updating, detailed as follows. Second, ruleR; constructed byAnt, is pruned in order to
First, Ant, starts with an empty rule, i.e., a rule with no ternfémove irrelevant terms, as will pe discussed later. For the mo-
inits antecedent, and adds one term at a time to its current parfégnt, we only mention that these irrelevant terms may have been
rule. The current partial rule constructed by an ant corresporigluded in the rule due to stochastic variations in the term se-
to the current partial path followed by that ant. Similarly, théection procedure and/or due to the use of a shortsighted, local
choice of a term to be added to the current partial rule corraeuristic function, which considers only one attribute at a time,
sponds to the choice of the direction in which the current paf@noring attribute interactions.
will be extended. The choice of the term to be added to the cur-Third, the amount of pheromone in each trail is updated, in-
rent partial rule depends on both a problem-dependent heuri§tigasing the pheromone in the trail followed4ut, (according
function ;) and on the amount of pheromone) (associated to the quality of rulek;) and decreasing the pheromone in the
with each term, as will be discussed in detail in the next se@ther trails (simulating the pheromone evaporation). Then an-
tions.Ant, keeps adding one term at a time to its current partigfher ant starts to construct its rule, using the new amounts of
rule until one of the following two stopping criteria is met. pheromone to guide its search. This process is repeated until one

1) Any term to be added to the rule would make the ruI%f the following two conditions is met. _
cover a number Of cases that iS Sma”er than a user-specl) The number of constructed rules is equal toor greatel’than
ified threshold, calledMin_cases_per_rule (minimum the user-specified threshalb_of _ants. .
number of cases covered per rule). 2) The currentAnt, has constructed a rule that is ex-
2) All attributes have already been used by the ant, so that actly the same as the rule constructed by the previous

there are no more attributes to be added to the rule an-  Norules_converg — 1 ants, whereNo_rules_converg
tecedent. Note that each attribute can occur only once  Stands for the number of rules used to test convergence of

in each rule, to avoid invalid rules such a§™(Sex = the ants. The term convergence is defined in Section V.

male) AND (Sex = female).” Once theREPEAT-UNTIL loop is completed, the best rule
among the rules constructed by all ants is added to the list of
discovered rules, as mentioned earlier, and the system starts a

ALGORITHM I: A High-Level Description of Ant-Miner
TrainingSet = {all training cases IS
DiscoveredRuleList =1]; /* rule list is initialized
with an emptylist */
WHILE (TrainingSet > Max_uncovered_cases)
t =1; /* ant index */
7 =1, [* convergence test index */
Initialize all trails with the same amount of
pheromone;
REPEAT
Ant, starts with an empty rule and incrementally
constructs a classification rule R, by adding
one term at a time to the current rule;
Prune rule Ry
Update the pheromone of all trails by increasing
pheromone in the trail followed by Ant, (pro-
portional to the quality of R,) and decreasing
pheromone in the other trails (simulating

new iteration of thewvHILE loop by reinitializing all trails with
the same amount of pheromone.

It should be noted that, in a standard definition of ACO [10],
a population is defined as the set of ants that build solutions be-
tween two pheromone updates. According to this definition, in
each iteration of thevHILE loop, Ant-Miner works with a pop-
ulation of a single ant, since pheromone is updated after a rule
is constructed by an ant. Therefore, strictly speaking, each it-
eration of thewHILE loop of Ant-Miner has a single ant that
performs many iterations. Note that different iterations of the
WHILE loop correspond to different populations, since each pop-
ulation’s ant tackles a different problem, i.e., a different training
set. However, in the text we refer to tkid iteration of the ant
as a separate ant, called ttike ant (Ant,), in order to simplify
the description of the algorithm.

From a data-mining viewpoint, the core operation of
Ant-Miner is the first step of th&EPEAT-UNTIL loop of Algo-
rithm | in which the current ant iteratively adds one term at a
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time to its current partial rule. Letrm,;; be a rule condition of the formA; = V;;, where4; is theith attribute and/;; is the
the form4; = V;;, where4; is theith attribute and’;; is the jth value belonging to the domain df;, its entropy is
jth value of the domain ofi;. The probability thaterm;; is

chosen to be added to the current partial rule is H(W|A; =Vij)
k
Py = L 7 (1) ) == (P(w]A; = Vi) - log, P(w|A; = Vij))
a i w=1
g:lﬁt j=1(771 7i5(t)) 2)
where where W is the class attribute (i.e., the attribute whose do-
i value of a problem-dependent heuristic function fomain consists of the classes to be predictédy the number

term,;. The higher the value af;;, the more rel- of classes, and’(w|A4; = V;;) is the empirical probability of

evant for classification theerm;; is and so the observing clasa conditional on having observeti; = V;;.

higher its probability of being chosen. The function The higher the value dif (W|A; = V;;), the more uniformly

that defines the problem-dependent heuristic val@tistributed the classes are and so the smaller the probability that

is based on information theory and it will be disthe current ant chooses to agelm;; to its partial rule. It is

cussed in the next section. desirable to normalize the value of the heuristic function to fa-
7;;(t) amount of pheromone associated withrm;; Cilitate its use in (1). In order to implement this normalization,

at iteration ¢, corresponding to the amount ofthe fact that the value off (W|A; = V;;) varies in the range

pheromone currently available in the positignj 0 < H(W|A; = Vi;) < logy k, wherek is the number of

of the path being followed by the current ant. Thelasses is used. Therefore, the proposed normalized informa-

better the quality of the rule constructed by an antion-theoretic heuristic function is

the higher the amount of pheromone added to the logy k — H(W|A; = Vi)

trail segments visited by the ant. Therefore, as time Mij = — » 3)
goes by, the best trail segments to be followed, i.e., Sz E (logy k — HW|A; = Viy))
the best terms (attribute-value pairs) to be added i=1 5=l

to a rule, will have greater and greater amounts %herea, z;, andb; have the same meaning as in (1),

pheromone, increasing their probability of being Note that theH (1W'| A; = V) of term, is always the same
72— Yy 2. 1

a fc;glsiz.mber of attributes. regardless pf the contents of the rule_ in Which the term occurs.

e set to one if the attributel; was not yet used by the Therefore, in ordgr to save computational tlme_,Hl(eW|Ai =
current ant or to zero, otherwise. Vi;) of all termy; is computed as a preprocessing step.

b, number of values in tr’1e domain of thi attribute. In the above heuristic function, there are just two minor

. : .%aveats. First, if the valu®;; of attributeA; does not occur in
termy; is chosen to be added to the current partial rule with training set, thed (W|4; = Vi) is set to its maximum
’ v — Yy

Ferg'gﬁl:tt);(l)l:wys proportional to the value of (1), subject to tWc{/aIue oflog, k. This corresponds to assigning term;; the

i i i lowest possible predictive power. Second, if all the cases
1) The attributed; cannot be already contained in the CUThelong to the same class thef(W|A; = Vi;) is set to zero.

rent partial rule. In order to satisfy this restriction, the antgy,g corresponds to assigning term;; the highest possible
must ‘_‘remc_ember” which terms (attribute-value pairs) arﬁredictive power.
contained in the current partial rule. , _ The heuristic function used by Ant-Miner, the entropy mea-
2) term,; cannot be added to the current partial rule if thi§ e is the same kind of heuristic function used by decision-tree
makes it cover less than a predefined minimum number gy ithms such as C4.5 [19]. The main difference between de-
cases, called thilin_cases_perrule threshold, as men- gision trees and Ant-Miner, with respect to the heuristic func-
tioned earlier. tion, is that in decision trees the entropy is computed for an at-
Once the rule antecedent is completed, the system chooggsute as a whole, since an entire attribute is chosen to expand
the rule consequent (i.e., the predicted class) that maximizgg tree, whereas in Ant-Miner the entropy is computed for an
the quality of the rule. This is done by assigning to the rulgtripute-value pair only, since an attribute-value pair is chosen
consequent the majority class among the cases covered bYtEh@xpand the rule.
rule. In addition, we emphasize that in conventional decision tree
algorithms, the entropy measure is normally the only heuristic
function used during tree building, whereas in Ant-Miner, the
For eachterm;; that can be added to the current rule, Antentropy measure is used together with pheromone updating.
Miner computes the valug;; of a heuristic function that is an This makes the rule-construction process of Ant-Miner more
estimate of the quality of this term, with respect to its ability toobust and less prone to get trapped into local optima in the
improve the predictive accuracy of the rule. This heuristic funsearch space, since the feedback provided by pheromone
tion is based on information theory [7]. More precisely, the valugpdating helps to correct some mistakes made by the short-
of 7;; for term;; involves a measure of the entropy (or amourdightedness of the entropy measure. Note that the entropy
of information) associated with that term. For eaehm;; of measure is a local heuristic measure, which considers only one

B. Heuristic Function
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attribute at a time, and so is sensitive to attribute interacti@ases covered by the pruned rule can be different from the ma-
problems. In contrast, pheromone updating tends to cope bejteity class in the cases covered by the original rule. The term
with attribute interactions, since pheromone updating is basetiose removal most improves the quality of the rule is effec-
directly on the performance of the rule as a whole (whictively removed from it, completing the first iteration. In the next
directly takes into account interactions among all attributé®ration, the term whose removal most improves the quality of
occurring in the rule). the rule is again removed and so on. This process is repeated
The process of rule construction used by Ant-Miner shoulghtil the rule has just one term or until there is no term whose
lead to very bad rules at the beginning of HEPEAT-UNTILIOOpP, removal will improve the quality of the rule.
when all terms have the same amount of pheromone. However,
this is not necessarily a bad thing for the algorithm as a whole. Pheromone Updating
Actually, we can make here an analogy with evolutionary algo- Recall that eacherm;; corresponds to a segment in some
rithms, say, genetic algorithms (GAs). o _ path that can be followed by an ant. At each iteration of the
In a GA for rule discovery, the initial population will containy,, loop of Algorithm I all term,; are initialized with the
very bad rules as well. Actually, the rules in the initial populatioBs me amount of pheromone, so that when the first ant starts
of a GA will probably be even worse than the rules built by thgs search, all paths have the same amount of pheromone. The
first ants of Ant-Miner because a typical GA for rule discovenyitial amount of pheromone deposited at each path position is

creates the initial population at random, without any kind Gfyersely proportional to the number of values of all attributes
heuristic (whereas Ant-Miner uses the entropy measure). A$&y is defined by (4)

result of the evolutionary process, the quality of the rules in the
population of the GA will improve gradually, producing better o1
. Tij(t—())— (4)

and better rules, until it converges to a good rule or a set of good b,
rules, depending on how the individual is represented. !

This is the same basic idea, at a very high level of abstraction,
of Ant-Miner. Instead of natural selection in GA, Ant-MinerWherea is the total number of attributes angis the number of
uses pheromone updating to produce better and better ruRessible values that can be taken on by attribtite
Therefore, the basic idea of Ant-Miner’s search method is more The value returned by this equation is normalized to facili-
similar to evolutionary algorithms than to the search method E¥€ its use in (1), which combines this value and the value of
decision tree and rule induction algorithms. As a result of thi§€ heuristic function. Whenever an ant constructs its rule and
approach, Ant-Miner (and evolutionary algorithms in genera‘iﬁ‘at rule is pruned (see Algorithm I), the amount of pheromone
perform a more global search, which is less likely to get trapp&¥all segments of all paths must be updated. This pheromone
into local maxima associated with attribute interaction. updating is supported by two basic ideas, namely:

For a general discussion about why evolutionary algorithms 1) the amount of pheromone associated with e@eh;;
tend to cope better with attribute interactions than greedy local- ~ occurring in the rule found by the ant (after pruning) is
search-based decision tree and rule induction algorithms, the increased in proportion to the quality of that rule;

s

=1

reader is referred to [8] and [14] . 2) the amount of pheromone associated with e@ein;;
that does not occur in the rule is decreased, simulating
C. Rule Pruning pheromone evaporation in real ant colonies.

Rule pruning is a commonplace technique in data mining [3]. 1) Increasing the Pheromone of Used Terniiscreasing the
As mentioned earlier, the main goal of rule pruning is to re¢mount of pheromone associated with egaim;; occurring in
move irrelevant terms that might have been unduly included e rule found by an ant corresponds to increasing the amount
the rule. Rule pruning potentially increases the predictive powef pheromone along the path completed by the ant. In a rule
of the rule, helping to avoid its overfitting to the training datadiscovery context, this corresponds to increasing the probability
Another motivation for rule pruning is that it improves the simof term;; being chosen by other ants in the future in proportion
plicity of the rule, since a shorter rule is usually easier to Be the quality of the rule. The quality of a rule, denoted®y

understood by the user than a longer one. is computed by the formul@ = sensitivity x specificity[16],

As soon as the current ant completes the construction of @gfined as
rule, the rule pruning procedure is called. The strategy for the

. S TP TN
rule pruning procedure is similar to that suggested by [18], but Q= : ()
X o . TP +FN FP + TN

the rule quality criteria used in the two procedures are very
different. where

The basic idea is to iteratively remove one term at a time TP  true positives, the number of cases covered by the rule
from the rule while this process improves the quality of the rule. that have the class predicted by the rule.
More precisely, in the first iteration, one starts with the full rule. FP  false positives, the number of cases covered by the rule
Then it is tentatively tried to remove each of the terms of the that have a class different from the class predicted by
rule—each one in turn—and the quality of the resulting rule is the rule.
computed using a given rule-quality function [to be defined by FN false negatives, the number of cases that are not cov-
(5)]. It should be noted that this step might involve replacing ered by the rule but that have the class predicted by the

the class in the rule consequent, since the majority class in the rule.
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TN true negatives, the number of cases that are not covered TABLE |
by the rule and that do not have the class predicted by DATA SETS USED IN THE EXPERIMENTS
the r.l'lle' L #categ. | #contin.

(’s value is within the rang® < @ < 1 and the larger Data Set #cases #classes
the value of@, the higher the quality of the rule. Pheromone attrib. | attrib.
updating for aerln?‘j is performed according to (6), for all terms T nbljana breast cancer T 5 - >
termy; that occur in the rule

o Wisconsin breast cancer 683 - 9 2
Tii(t+1) = 7i;(t) + 7(t) - Q, Vi, € R (6) ,
tic-tac-toe 958 9 - 2
whereR is the set of terms occurring in the rule constructed by
dermatology 366 33 1 6

the ant at iteration.
Therefore, for allterm;; occurring in the rule found by the hepatitis 155 13 6 2
current ant, the amount of pheromone is increased by a fraction
of the current amount of pheromone and this fraction is given
by Q. ) . . — .
2) Decreasing the Pheromone of Unused TermS: MeN-  number ofcases. the number of categorical arutes, the number of cotinuus atibtes,
tioned above, the amount of pheromone associated with eaththe number of classes of the data set.
term;,; that does not occur in the rule found by the current ant
has to be decreased in order to simulate pheromone evaporarhe main characteristics of the data sets used in our experi-
tion in real ant colonies. In Ant-Miner, pheromone evaporatiafent are summarized in Table I. The first column of this table
is implemented in a somewhat indirect way. More precisely, thfves the data set name, while the other columns indicate, re-
effect of pheromone evaporation for unused terms is achievgskctively, the number of cases, the number of categorical at-
by normalizing the value of each pheromong This normal- tributes, the number of continuous attributes, and the number of
ization is performed by dividing the value of eac}) by the classes of the data set.
summation of allr;;, Vi, j. As mentioned earlier, Ant-Miner discovers rules referring
To see how this implements pheromone evaporation, Kenly to categorical attributes. Therefore, continuous attributes
member that only the terms used by a rule have their amouraive to be discretized in a preprocessing step. This discretiza-
of pheromone increased by (6). Therefore, at normalizatigon was performed by the C4.5-Disc discretization method
time, the amount of pheromone of an unused term will 4e5]. This method simply uses the very well-known C4.5 algo-
computed by dividing its current value [not modified by (6)}ithm [19] for discretizing continuous attributes. In essence, for
by the total summation of pheromone for all terms [which wasach attribute to be discretized it is extracted, from the training
increased as a result of applying (6) to all used terms]. Tket, a reduced data set containing only two attributes: the
final effect will be the reduction of the normalized amount oéttribute to be discretized and the goal (class) attribute. C4.5 is
pheromone for each unused term. Used terms will, of courseen applied to this reduced data set. Therefore, C4.5 constructs
have their normalized amount of pheromone increased dueat@ecision tree in which all internal nodes refer to the attribute
the application of (6). being discretized. Each path in the constructed decision tree
corresponds to the definition of a categorical interval produced
E. Use of the Discovered Rules for Classifying New Cases by C4.5 (see [15] for further details).
In order to classify a new test case, unseen during training, the
discovered rules are applied in the order they were discovefdd Ant-Miner's Parameter Setting
(recall that discovered rules are kept in an ordered list). The firstRecall that Ant-Miner has the following four user-defined pa-
rule that covers the new case is applied, i.e., the case is assigigfeters (mentioned throughout Section IV).
the class predicted by that rule’s consequent. 1) Number of ants No_of_ants): This is also the max-

Itis possible that no rule of the list covers the new case. Inthis * ;\um number of complete candidate rules constructed
situation, the new case is classified by a default rule that simply 54 pruned during an iteration of theHiLE loop of

predicts the majority class in the set of uncovered training cases; Algorithm 1, since each ant is associated with a single
this is the set of cases that are not covered by any discovered e |n each iteration. the best candidate rule found is

Cleveland heart disease 303 8 5 5

rule. considered a discovered rule. The larijerof _ants, the
more candidate rules are evaluated per iteration, but the
V. COMPUTATIONAL RESULTS AND DISCUSSION slower the system is.
A. Data Sets and Discretization Method Used in the 2) Minimum number of cases per ruleMin_cases_
Experiments per_rule): Each rule must cover at leadflin_cases_

per_rule cases to enforce at least a certain degree of
generality in the discovered rules. This helps to avoid an
overfitting of the training data.
3) Maximum number of uncovered cases in the training set
Ihttp:/www.ics.uci.edu/~MLRepository.html (Max_uncovered _cases): The process of rule discovery

The performance of Ant-Miner was evaluated using six
public-domain data sets from the University of California at
Irvine repository:
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is iteratively performed until the number of training cases TABLE I
that are not covered by any discovered rule is smaller than ~ PREDICTIVE ACCURACY OF ANT-MINER AND OF CN2 AFTER
thiS threshold THE TENFOLD CROSSVALIDATION PROCEDURE

4) Number of rules used to test convergence of the ar Ant-Miner’s CN2’s
(No_rules_converg): If the current ant has constructed

a rule that is exactly the same as the rule construct Data Set predictive accuracy | Predictive accuracy
by the previousNo_rules_converg — 1 ants, then the (%) (%)
system concludes that the ants have convergedtoasin ___
rule (path). The current iteration of theHILE loop of ~ Liubljana breast cancer 75.28 =224 67.69 +3.59
Algorithm I is therefore stopped and another iteration | Sgizconsin Greast cancer 96,04 2093 94383 10388
started.
In all the experiments reported in Sections V-C—E, these [ tic-tac-toe 73.04 +2.53 97.38 £0.52
rameters were set as follows: dermatology 9429 + 1.20 90.38 +1.66

1) No_of_ants = 3000;
2) Min_cases_per_rule = 10; hepatitis 90.00 *3.11 90.00 +2.50
3) Max_uncovered_cases = 10;
4) No_rules_converg = 10.
We have made no serious attempt to Optimize the Setting'l‘% numbers right after thet*” symbol are the standard deviations of the corresponding
these parameters. Such an optimization could be tried in fut@resictive accuracies rates.
research. It is interesting to note that even the above nonopti- . _ _ _
mized parameters’ setting has produced quite good results, a CN2, there is no mechanism to allow the quality of a dis-
will be shown later. In addition, the fact that Ant-Miner paramecovered rule to be used as a feedback for constructing other
ters were not optimized for the data sets used in the experimeies. This feedback (using the mechanism of pheromone) is the
makes the comparison with CN2 more fair, since we used tA@jor characteristic of ACO algorithms and can be considered
default, nonoptimized parameters for CN2 as well. the main difference between Ant-Miner and CN2. In addition,
In any case, we also report in Section V-F the results of sorfi@t-Miner performs a stochastic search, whereas CN2 performs
experiments evaluating the robustness of Ant-Miner to chang&eterministic search. ' . . .
in some parameter settings. A comparison between Ant-Miner and CN2 is particularly in-
There is a caveat in the interpretation of the value deresting because both algorithms discover an ordered rule list.
No_of_ants. Recall that this parameter defines the maximui contrast, most of the well-known algorithms for classifica-
number of ants for each iteration of the-ILE loop of Algo- tion-rule discovery, such as C4.5, discover an unordered rule set.
rithm 1. In practice, many fewer ants are necessary to compléfeother words, since both Ant-Miner and CN2 discover rules
an iteration, since an iteration is considered finished whépPressed in the same knowledge representation, differences in
No_rules_converg successive ants converge to the same ruldeir performance reflect differences in their search strategies.

In the experiments reported here, the actual number of ants feflata-mining and machine-learning terminology, one can say
iteration was around 1500, rather than 3000. that both algorithms have the same representation bias, but dif-

ferent search (or preference) biases.

All the results of the comparison were obtained using a
Pentium 1l PC with clock rate of 333 MHz and 128 MB of

We have evaluated the performance of Ant-Miner by conmain memory. Ant-Miner was developed in C language and it
paring it with CN2 [5], [6], a well-known classification-rule dis-took about the same processing time as CN2 (on the order of
covery algorithm. In essence, CN2 searches for a rule list in aeiconds for each data set) to obtain the results.
incremental fashion. It discovers one rule at a time. Each timeThe comparison was carried out across two criteria, namely,
it discovers a rule, it adds that rule to the end of the list of dithe predictive accuracy of the discovered rule lists and their
covered rules, removes the cases covered by that rule from ¢haplicity. Predictive accuracy was measured by a well-known
training set, and calls again the procedure to discover anothen-fold cross-validation procedure [24]. In essence, each data
rule for the remaining training cases. Note that this strategydet is divided into ten mutually exclusive and exhaustive parti-
also used by Ant-Miner. In addition, both Ant-Miner and CN2ions and the algorithm is run once for each partition. Each time,
construct a rule by starting with an empty rule and incremea-different partition is used as the test set and the other nine par-
tally add one term at a time to the rule. titions are grouped together and used as the training set. The

However, the rule construction procedure is very different jpredictive accuracies (on the test set) of the ten runs are then
the two algorithms. CN2 uses a beam search to construct a raleeraged and reported as the predictive accuracy of the discov-
At each search iteration, CN2 adds all possible terms to the cared rule list.
rent partial rules, evaluates each partial rule, and retains onlyThe results comparing the predictive accuracy of Ant-Miner
the besb partial rules, wheré is the beam width. This processand CN2 are reported in Table 1l. The numbers right after the
is repeated until a stopping criterion is met. Then, only the bést” symbol are the standard deviations of the corresponding
rule, among thé rules currently kept by the beam search, is rgredictive accuracies rates. As shown in this table, Ant-Miner
turned as a discovered rule. discovered rules with a better predictive accuracy than CN2 in

Cleveland heart disease 59.67 +250 5748 +1.78

C. Comparing Ant-Miner With CN2
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TABLE IV
RESULTS FORANT-MINER WITHOUT RULE PRUNING

TABLE I
SIMPLICITY OF RULE LISTS DISCOVERED BYANT-MINER AND BY CN2

No. of terms / No. of Predictive No. of terms /
No. of rules Data Set No. of rules
rules Accuracy (%) No. of rules
Data Set Ant-Miner CN2 Ant-Miner CN2 Ljubljana
70.69 + 3.87 19.60 + 0.22 3.25
Ljubljana breast cancer
7.10+£0.31 55.40 £ 2.07 1.28 2.21
breast cancer Wisconsin
95.74 £ 0.74 22.8+0.20 5.72
Wisconsin breast cancer
6.20 +£0.25 18.60 + 0.45 1.97 2.39
breast cancer tic-tac-toe 76.83+£227 68.8+£0.32 347
tic-tac-toe 850+£0.62 | 39.70+2.52 1.18 2.90 dermatology 83.05+1.94 25.9+0.31 16.86
dermatology | 7.30 £ 0.15 18.50 £ 0.47 3.16 247 Hepatitis 925 £2.76 6.8+0.13 6.01
hepatitis 340+£0.16 1 720 +£0.25 241 1.58 Cleveland
54.82+2.56 21.8+0.20 4.32
Cleveland heart disease
9.50+0.92 | 42.40+0.71 1.71 2.79
heart disease The second column shows the predictive accuracy, the third column the number of discov-
ered rules, and the fourth column the relative number of terms per rule.

For each data set, the two first columns show the number of discovered rules (and their

standard deviation) and the two other show relative number of terms per rule. .
In the other two data sets, namely, dermatology and hepatitis,

Ant-Miner discovered rule lists simpler than the rule lists found
four data sets, namely Ljubljana breast cancer, Wisconsin breggiCN2, although in these two data sets, the difference was not
cancer, dermatology, and Cleveland heart disease. In two dgédarge as in the other four data sets.
sets, namely, Wisconsin breast cancer and Cleveland heart disfaking into account both the predictive accuracy and rule list
ease, the difference in predictive accuracy between the two algimplicity criteria, the results of our experiments can be summa-
rithms was quite small. In two data sets, Ljubljana breast canggfed as follows. Concerning classification accuracy, Ant-Miner
and dermatology, Ant-Miner was significantly more accuratgbtained results somewhat better than CN2 in four of the six data
than CN2 —that is, the corresponding predictive accuracy intgets, whereas CN2 obtained a result much better than Ant-Miner
vals (taking into account the standard deviations) do not overlap the tic-tac-toe data set. In one data set, both algorithms ob-

In one data set, hepatitis, the predictive accuracy was tzéned the same predictive accuracy. Therefore, overall one can
same in both algorithms. On the other hand, CN2 discovergay that the two algorithms are roughly competitive in terms of
rules with a better predictive accuracy than Ant-Miner in thpredictive accuracy, even though the superiority of CN2 in the
tic-tac-toe data set. In this data set, the difference was quii@tac-toe is more significant than the superiority of Ant-Miner
large. in four data sets.

We now turn to the results concerning the simplicity of the Concerning the simplicity of discovered rules overall, Ant-
discovered rule list, measured, as usual in the literature, by féer discovered rule lists much simpler (smaller) than the rule
number of discovered rules and the average number of terlists discovered by CN2. This seems a good tradeoff, since in
(conditions) per rule. The results comparing the simplicity ahany data-mining applications, the simplicity of a rule list/set
the rule lists discovered by Ant-Miner and by CN2 are reportddnds to be even more important than its predictive accuracy. Ac-
in Table IlI. tually, there are several classification-rule discovery algorithms

An important observation is that for all six data sets, the rutbat were explicitly designed to improve rule set simplicity, even
list discovered by Ant-Miner was simpler, i.e., it had a smallgtt the expense of reducing the predictive accuracy [1], [3], [4].
number of rules and terms, than the rule list discovered by
CN2. In four out of the six data sets, the difference betwedh Effect of Pruning
the number of rules discovered by Ant-Miner and CN2 is quite |n order to analyze the influence of rule pruning in the overall
large, as follows. Ant-Miner algorithm, Ant-Miner was also run without rule

In the Ljubljana breast cancer data set, Ant-Miner discopruning. All the other procedures of Ant-Miner, as described in
ered a compact rule list with 7.1 rules and 1.28 terms per rulglgorithm |, were kept unchanged. To make a fair comparison
whereas CN2 discovered a rule list on the order of ten timpetween Ant-Miner with and without pruning, the experiments
larger than this, having 55.4 rules and 2.21 conditions per rulgithout pruning used the same parameter settings specified in

In the Wisconsin breast cancer, tic-tac-toe, and ClevelaBSeéction V-B and they also consisted of a ten-fold cross-valida-
heart disease data sets, Ant-Miner discovered rule lists with 6tidn procedure applied to the six data sets described in Table I.
8.5, and 9.5 rules, respectively, whereas CN2 discovered rililee results of Ant-Miner without rule pruning are reported in
lists with 18.6, 39.7, and 42.4 rules, respectively. Table IV.
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Let us first analyze the influence of rule pruning in the pre- TABLE V
dictive accuracy of Ant-Miner. Comparing the second column of RESULTS OFANT-MINER WITHOUT PHEROMONE
Table IV with the second column of Table Il it can seen that Ant-

Predictive No. of terms /

Miner without pruning obtained a lower predictive accuracy Data Set No. of rules
than Ant-Miner with pruning in three data sets, namely, Ljubl- Accuracy (%) No. of rules
jana breast cancer, dermatology, and Cleveland heart disease Tiblana
The reduction of predictive accuracy was particularly strong 7517 £322 | 6.60%0.30 .13
in the dermatology data set, where Ant-Miner without pruning  breast cancer
obtained a predictive accuracy of 83.05%, whereas Ant-Miner :
with pruning obtained 94.29%. | ' Wisconsin 0384 2082 | 5904023 s

On the other hand, Ant-Miner without pruning obtained apre-  breast cancer
dictive accuracy somewhat larger than Ant-Miner with pruning
in two data sets, namely, tic-tac-toe and hepatitis. In the other fic-tactoe | 67.37 £2.96 | 9.30+0.56 1.07
data set, Wisconsin breast cancer, the predictive accuracy with oo T 8576 7368 | 7502016 297
and without pruning was almost equal.

Therefore, in the six data sets used in the experiments, rule hepatitis 85.00 £3.63 | 3.30+0.15 1.54
pruning seems to be beneficial more often than it is harmful, Clovelard
concerning predictive accuracy. The fact that rule pruning re- 5470 +£3.12 | 9.30+0.26 1.60
duces predictive accuracy in some data sets is not surprising. It heart disease
stems from the fact that rule pruning is a form of inductive bias

[20]_[22] and any inductive bias is suitable for some data Sé—l@ second column shows the predictive accuracy, the third column the number of discov-
. ered rules, and the fourth column the relative number of terms per rule.
and unsuitable for others.
The results concerning the simplicity of the discovered rule
list are reported in the third and fourth columns of Table IMhe predictive accuracy was almost the same for both versions
and should be compared with the second and fourth columnsdfAnt-Miner.
Table . It can be seen that in all data sets the rule list discov-With respect to the simplicity of the discovered rule
ered by Ant-Miner without pruning was much more complexists, there is not much difference between Ant-Miner with
i.e., it had a higher number of rules and terms, than the rule lteromone and Ant-Miner without pheromone, as can be seen
discovered by Ant-Miner with pruning. So, rule pruning is esby comparing the third and fourth columns of Table V with the
sential to improve the comprehensibility of the rules discoveresgcond and fourth columns of Table Il1.
by Ant-Miner. Overall, one can conclude that the use of the pheromone up-
dating procedure is important to improve the predictive accuracy
of the rules discovered by Ant-Miner—at least when pheromone
updating interacts with the information-theoretic heuristic de-
We have also analyzed the role played by pheromone in tiveed by (3). Furthermore, the improvement of predictive accu-
overall Ant-Miner performance. This was done by setting thacy associated with pheromone updating is obtained without
amount of pheromone to a constant value for all pairs of atnduly sacrificing the simplicity of the discovered rules.
tributes-values during an entire run of Ant-Miner. More pre-
cisely, we set;;(t) = 1, V4, j, t, i.e., the pheromone updatingr Rohustness to Parameter Setting
procedure was removed from Algorithm I. Recall that an ant
chooses a term to add to its current partial rule based on (1)Finally, we have also investigated Ant-Miner's robustness
Since now all candidate terms (attribute-value pairs) have thigr different settings of some parameters. As described in
amount of pheromone set to 1, ants choasen,; with prob- Section V-B, Ant-Miner has the following four parameters:
ability n;;, i.e., Ant-Miner’s search for rules is guided only by 1) number of Ants No_of_ants);
the information-theoretic heuristic defined in (3). All other pro- 2) minimum number of cases per ruleMin_cases_
cedures of Ant-Miner, as described in Algorithm I, were kept per_rule);
unaltered. 3) maximum number of uncovered cases in the training set
Again, to make a fair comparison between Ant-Miner with (Max_uncovered _cases);
pheromone and Ant-Miner without pheromone, the experiments4) number of rules used to test convergence of the ants
without pheromone also used the parameter settings specifiedin  (No_rules_converg).
Section V-B and they also consisted of a ten-fold cross-valida-Among these four parameters, we consider that the
tion procedure applied to the six data sets described in Tablewo most important ones aréMin_cases_per_rule and
The results of Ant-Miner without pheromone are reported ilax_uncovered_cases because they are directly related to the
Table V. By comparing the second column of Table V with thdegree of generality of the rules discovered by Ant-Miner,
second column of Table I, one can see that Ant-Miner withouthich, in turn, can have a potentially significant effect on the
pheromone consistently achieved a lower predictive accuraagcuracy and simplicity of the discovered rules.
than Ant-Miner with pheromone in five of the six data sets. The Therefore, in order to analyze the influence of the setting
only exception was the Ljubljana breast cancer data set, whefethese two parameters on the performance of Ant-Miner,

E. Influence of Pheromone



330

TABLE VI

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTING, VOL. 6, NO. 4, AUGUST 2002

PERFORMANCE OFANT-MINER WITH DIFFERENT PARAMETER SETTINGS

this optimization would have to be done by measuring predictive
accuracy on a validation set separated from the test set—other-
wise, the results would be (unfairly) optimistically biased. This

Ljublj. | Wisc. |tic-tac. |{derm. |hepat. lev. T
JubY 18¢ fe-tac. ) detm cpa Clev point is left for future research.
5’ 5 77.06 95.75% 74.01 93.93 91.25 5512
G. Analysis of Ant-Miner's Computational Complexity
5’ 10 74776 95.03 7329 96.05 91.25 5879 ) ) ] ]
In this section, we present an analysis of Ant-Miner's com-
5,15 7438 e TS5 9530 TS 5739  putational corr_lplexity. This aqalysi; is divided into three parts:
1) preprocessing; 2) a single iteration of thaiLE loop of Al-
10,5 | 7550 | 9458 | 72.00 | 94.05 | 9250 | 57.21  gorithm |; and 3) the entiresHILE loop of Algorithm |. Then we
combine the results of these three steps in order to determine the
10,10 | 75.05 | 9445 | 7600 | 9439 | 91.25 | 5942 computational complexity of an entire execution of Ant-Miner.
10,15 | 7542 | 9592 | 73.80 | 9262 | 8000 | =7 1) Computational complexity of preprocessiﬁij].e values
of all n;; are precomputed, as a preprocessing step, and
15,5 | 74.08 | 95.61 73.35 94.39 77.30 803 kept fixed throughout the algorithm. These values can be
computed in a single scan of the training set, so the time
15,10 [ 74.16 | 9517 | 7% i K complexity of this step i§)(n. - a), wheren is the number
TRIREEED 5T — S— — — of cases qnd is the numper of attn'butes: '
’ : 2) Computational complexity of a single iteration of the
AVG | 75.10 | 95.16 | 73.76 | 9452 | 84.03 | 58.13 WHILE loop of Algorithm I: Each iteration starts by
initializing pheromone, i.e., specifying the values of all

The first column indicates the values of the two parameters under study
(Min_cases_per_rule and Max_uncovered_cases). Each of the other columns refers

to a specific data set. Each cell indicates the predictive accuracy of Ant Miner for the
corresponding combination of parameter values and data set. The last row shows the
predictive accuracy averages of all combinations of values.

Ant-Miner was run with different settings for these two pa-
rameters. More precisely, in the experiments, three different
values for each of these two parameters were used, namely,
five, ten, and 15. All the corresponding nine combinations of
parameter values were considered, so that Ant-Miner was run
once for each combination of values bfin_cases_per_rule
andMax_uncovered_cases. Note that one of these nine combi-
nations of parameter values, namélin_cases_per_rule = 10

and Max _uncovered _cases = 10, was the combination used

in all the experiments reported in the previous sections. The
results of these experiments are reported in Table VI.

As can be observed in Table VI, Ant-Miner seems to be quite
robust to different parameter settings in almost all data sets. In-
deed, one can observe that the average results in the last row
of Table VI are similar to the results of the second column of
Table II. The only exception is the hepatitis data set, where
the predictive accuracy of Ant-Miner can vary from 76.25% to
92.50%, depending on the values of the parameters.

As expected, no single combination of parameter values is
the best for all data sets. Indeed, each combination of parameter
values has some influence in the inductive bias of Ant-Miner
and it is a well-known fact in data mining and machine learning
that there is no inductive bias that is the best for all data sets
[20]-[22].

We emphasize that the results of Table VI are reported here
only to analyze the robustness of Ant-Miner to variations in two
of its parameters. We haveot used the results of Table VI to
“optimize” the performance of Ant-Miner for each data set in
order to make the comparison between Ant-Miner and CN2 fair,
as discussed in Section V-B. Of course, we could optimize the
parameters of both Ant-Miner and CN2 for each data set, but

7;;(t0). This step takesD(a), wherea is the number

of attributes. Strictly speaking, it takeé3(a - v), where

v is the number of values per attribute. However, the
current version of Ant-Miner copes only with categorical
attributes. Hence, we can assume that each attribute
can take only a small number of values, so thas a
relatively small integer for any data set. Therefore, the
formula can be simplified t&(a).

Next, we have to consider tiEPEATIOOp. Let us first
consider a single iteration of this loop, i.e., a single ant,
and later on the entirrEPEATIOOp. The major steps per-
formed for each ant are: a) rule construction; b) rule eval-
uation; c) rule pruning; and d) pheromone updating. The
computational complexities of these steps are as follows.

a) Rule constructionThe choice of a condition to be
added to the current rule requires that an ant con-
siders all possible conditions. The valueggfand
7;;(¢) for all conditions have been precomputed.
Therefore, this step take@(a). (Again, strictly
speaking it has a complexity @(a - v), but we
are assuming that is a small integer, so that the
formula can be simplified t®(«).) In order to con-
struct a rule, an ant will choogeconditions. Note
that# is a highly variable number, depending on the
data set and on previous rules constructed by other
ants. In additiont < « (since each attribute can
occur at most once in a rule). Hence, rule construc-
tion takesO(k - a).

b) Rule evaluation:This step consists of measuring
the quality of a rule, as given by (5). This requires
matching a rule witht conditions with a training
set withV cases, which take9(k - n).

¢) Rule pruning:The first pruning iteration requires
the evaluation of: new candidate rules (each one
obtained by removing one of tieconditions from
the unpruned rule). Each of these rule evaluations
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takes on the order @f. - (k — 1)) operations. Thus, TABLE VII

the first pruning iteration takes on the order o]RATlo OF k/a FOR THEDATA SETSUSED IN THE EXPERIMENTS OFSECTIONV,
WHERE & 1S THE AVERAGE NUMBER OF CONDITIONS IN THE DISCOVERED

(n-(k—1)-k) operations, i.eQ(n-k?*). The second RULES AND a IS THE NUMBER OF ATTRIBUTES IN THE DATA SET
pruning iteration takeén - (k — 2) - (k — 1)) op-
erations and so on. The entire rule pruning process Data set kla

is repeated at mogttimes, so rule pruning takes at

mostn - (k—1)-k+n-(k—2)-(k—1)+n-(k—

3) . (k — 2) 4+ dn- (1) . (2)' which isO(k?’ . n) Wisconsin breast cancer 0.22
d) Pheromone updatingThis step consists of in-

creasing the pheromone of terms used in the rule,

which takesO(k), and decreasing the pheromone dermatology 0.09

of unused terms, which tak€¥(a). Sincek < q,

Ljubljana breast cancer 0.14

tic-tac-toe 0.13

pheromone update také¥a). hepatitis 0.13

Adding up the results derived in a), b), ¢), and d), a Cleveland heart disease | 0.13
single iteration of theRePEAT loop, corresponding to a

single ant, take®(k - a) +O(n - k) + O(n - k*) + O(a), Average 0.14

which collapses t&(k - a + k3 - n).
In order to derive the computational complexity of a
single iteration of thevHILE loop of Algorithm I, the pre-

The last row shows the averag¢a for all data sets.

vious resultO(k - a + n - k%) has to be multiplied by, Third, the previous analysis has assumed implicitly that the
where thez is the number of ants. Hence, a single iteracomputational complexity of an iteration of thveHILE loop
tion of thewHILE loop takesO(z - [k - a + n - k%]). of Algorithm | is the same for all the iterations constituting

3) In order to derive the computational complexity for théhe loop. This is a pessimistic assumption. At the end of each
entire WHILE, loop we have to multiphyO(z - [k - a + iteration, all the cases correctly covered by the just-discovered

n - k%)) by r, the number of discovered rules, which igule are removed from the current training set. Hence, as

highly variable for different data sets. Finally, we theithe iteration counter increases, Ant-Miner will access new
add the computational complexity of the preprocessiriggining subsets that have fewer and fewer cases (i.e., smaller
step, as explained earlier. Therefore, the computatior@ld smaller values of), which considerably reduces the
complexity of Ant-Miner as a whole is computational complexity of Ant-Miner.

O(r-z-[k-a+k*-n]+a-n). VI. CONCLUSION AND FUTURE WORK
It should be noted that this complexity depends very muchThis paper has proposed an algorithm for rule discovery
on the values ok, the number of conditions per rule, ancthe called Ant-Miner. The goal of Ant-Miner is to discover clas-
number of rules. The values #fandr vary a lot from data set sification rules in data sets. The algorithm is based both on
to data set, depending on the contents of the data set. research on the behavior of real ant colonies and on data-mining
At this point it is useful to make a distinction between theoncepts and principles.
computational complexity of Ant-Miner in the worst case and We have compared the performance of Ant-Miner and the
in the average case. In the worst case the valdeisfequal to well-known CN2 algorithm in six public domain data sets. The
a, S0 the formula for worst-case computational complexity isresults showed that, concerning predictive accuracy, Ant-Miner
obtained somewhat better results in four data sets, whereas CN2
O(r-z-a®-n). obtained a considerably better result in one data set. In the re-
maining data set, both algorithms obtained the same predictive
However, we emphasize that this worst case is very unlikefgcuracy. Therefore, overall one can say that Ant-Miner is com-
to occur and, in practice, the time taken by Ant-Miner tends fmarative to CN2 with respect to predictive accuracy.
be much shorter than that suggested by the worst-case formuladn the other hand, Ant-Miner has consistently found much
This is mainly due to three reasons. simpler (smaller) rule lists than CN2. Therefore, Ant-Miner
First, in the previous analysis of Step ¢)—rule pruning—thgeems particularly advantageous when it is important to
factorO(k® - n) was derived because it was considered that theinimize the number of discovered rules and rule terms (condi-
pruning process can be repeatedimes for all rules, which tions) in order to improve comprehensibility of the discovered
seems unlikely. Second, the above worst-case analysis conkitbwledge. It can be argued that this point is important in many
ered thatt = a, which is very unrealistic. In the average casdprobably most) data-mining applications, where discovered
k tends to be much smaller than Evidence supporting this knowledge will be shown to a human user as a support for
claim is provided in Table VII. This table reports, for each datatelligent decision making, as discussed in the introduction.
set used in the experiments of Section V, the value of the ratioTwo important directions for future research are as follows.
k/a, wherek is the average number of conditions in the discowrirst, it would be interesting to extend Ant-Miner to cope with
ered rules and is the number of attributes in the data set. Noteontinuous attributes, rather than requiring that this kind of at-
that the value of this ratio is on average just 14%. tribute be discretized in a preprocessing step. Second, it would
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be interesting to investigate the performance of other kinds gb1]
heuristic function and pheromone updating strategy.
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